1
|
Guo W, Li X, Qin K, Zhang P, He J, Liu Y, Yang X, Wu S. Nanopore sequencing demonstrates the roles of spermatozoal DNA N6-methyladenine in mediating transgenerational lipid metabolism disorder induced by excessive folate consumpton. Poult Sci 2024; 103:103953. [PMID: 38945000 PMCID: PMC11267017 DOI: 10.1016/j.psj.2024.103953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Increased consumption of folic acid is prevalent due to its beneficial effects, but growing evidence emphasizes the side effects pointing to excessive dietary folate intake. The effects of excessive paternal folic acid consumption on offspring and its transgenerational inheritance mechanism have not been elucidated. We hypothesize that excessive folic acid consumption will alter sperm DNA N6-methyladenine (6mA) and 5-methylcytosine (5mC) methylation and heritably influence offspring metabolic homeostasis. Here, we fed roosters either folic acid-control or folic acid-excess diet throughout life. Paternal chronic folic acid excessive supplementation increased hepatic lipogenesis and lipid accumulation but reduced lipolysis both in the roosters and their offspring, which was further confirmed to be induced by one-carbon metabolism inhibition and gene expression alteration associated with the Peroxisome proliferator-activated receptor pathway. Based on the spermatozoal genome-wide DNA methylome identified by Nanopore sequencing, multi-omics association analysis of spermatozoal and hepatic DNA methylome, transcriptome, and metabolome suggested that differential spermatozoal DNA 6mA and 5mC methylation could be involved in regulating lipid metabolism-related gene expression in offspring chickens. This model suggests that sperm DNA N6-methyladenine and 5-methylcytosine methylation were involved in epigenetic transmission and that paternal dietary excess folic acid leads to hepatic lipid accumulation in offspring.
Collapse
Affiliation(s)
- Wei Guo
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, 225125, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinyi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Medicine, Karolinska Institutet, Solna, Stockholm, 17165, Sweden
| | - Kailong Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Peilin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinhui He
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden.
| |
Collapse
|
2
|
Feng Y, Zhao C, Li T, Wang M, Serrano BR, Barcenas AR, Qu L, Zhao W, Shen M. Quercetin ameliorates lipid deposition in primary hepatocytes of the chicken embryo. Br Poult Sci 2024; 65:429-436. [PMID: 38727603 DOI: 10.1080/00071668.2024.2332717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/26/2024] [Indexed: 07/27/2024]
Abstract
1. The accumulation of excessive fat plays a role in the development of non-alcoholic fatty liver disease (NAFLD) and phytogenic feed additives have the potential to ameliorate this. This study involved the isolation and culture of primary hepatocytes from chicken embryos to establish a model of hepatic steatosis induced by oleic acid/dexamethasone (OA/DEX). Lipid accumulation and cell viability were assessed using Nile Red staining, Oil Red O staining and cell count Kit -8 (CCK8) following treatment with varying concentrations of quercetin (Que). The potential mechanism by which Que exerts its effects was preliminarily investigated.2. The results indicated that OA effectively treated lipid accumulation in hepatocytes. There was no notable variance in cell proliferation between the normal and OA/DEX groups when subjected to Que treatment at concentrations of 1000 ng/ml and 10 000 ng/ml. Triglycerides and cholesterol (low and high density) decreased with Que treatment, with the most substantial reduction observed at 10 000 ng/ml.3. Gene expression levels decreased to levels similar to those in the control groups. Western blot data demonstrated that sterol regulatory element-binding protein 1 (SREBP-1) protein expression correlated with its mRNA expression level. Que mitigated lipid accumulation through the alpha serine/threonine protein kinase (AKT) and extracellular signal-regulated kinase (ERK) pathways. Expression levels of lipid-related genes (APOB, PPARα, CYP3A5 and SREBP-1) decreased to levels similar to the control groups. Western blot data demonstrated that the SREBP-1 protein expression correlated with its mRNA expression level.4. Supplementation with Que ameliorated lipid accumulation through AKT and ERK signalling pathway in OA/DEX-induced high-fat hepatocytes.
Collapse
Affiliation(s)
- Y Feng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - C Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - T Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - M Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - B R Serrano
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - A R Barcenas
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - L Qu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - W Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - M Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Plant Protein and Bionatural Products Research Center, Ministry of Agriculture, Havana, Cuba
| |
Collapse
|
3
|
Wu L, Hu Z, Lv Y, Ge C, Luo X, Zhan S, Huang W, Shen X, Yu D, Liu B. Hericium erinaceus polysaccharides ameliorate nonalcoholic fatty liver disease via gut microbiota and tryptophan metabolism regulation in an aged laying hen model. Int J Biol Macromol 2024; 273:132735. [PMID: 38825293 DOI: 10.1016/j.ijbiomac.2024.132735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Polysaccharides extracted from Hericium erinaceus (HEP) exhibit hepatoprotective activity in the alleviation of non-alcoholic fatty liver disease (NAFLD); however, the mechanisms underlying whether and how HEP regulation of the gut microbiota to alleviate liver-associated metabolic disorders are not well understood. This study used an aged laying hen model to explore the mechanisms through which HEP alleviates NAFLD, with a focus on regulatory function of HEP in the gut microbiome. The results showed that HEP ameliorated hepatic damage and metabolic disorders by improving intestinal barrier function and shaping the gut microbiota and tryptophan metabolic profiles. HEP increased the abundance of Lactobacillus and certain tryptophan metabolites, including indole-3-carboxylic acid, kynurenic acid, and tryptamine in the cecum. These metabolites upregulated the expression of ZO-1 and Occludin by activating the AhR and restoring the intestinal barrier integrity. The increased intestinal barrier functions decreased LPS transferring from the intestine to the liver, inhibited hepatic LPS/TLR4/MyD88/NF-κB pathway activation, and reduced hepatic inflammatory response and apoptosis. Fecal microbiota transplantation experiments further confirmed that the hepatoprotective effect is likely mediated by HEP-altered gut microbiota and their metabolites. Overall, dietary HEP could ameliorate the hepatic damage and metabolic disorders of NAFLD through regulating the "gut-liver" axis.
Collapse
Affiliation(s)
- Lianchi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaoying Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujie Lv
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaoyue Ge
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Luo
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shenao Zhan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weichen Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Shen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongyou Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang 312500, China.
| | - Bing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang 312500, China.
| |
Collapse
|
4
|
Yao Y, Wang H, Yang Y, Jiang Z, Ma H. Dehydroepiandrosterone protects against oleic acid-triggered mitochondrial dysfunction to relieve oxidative stress and inflammation via activation of the AMPK-Nrf2 axis by targeting GPR30 in hepatocytes. Mol Immunol 2023; 155:110-123. [PMID: 36773597 DOI: 10.1016/j.molimm.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/14/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023]
Abstract
Fatty liver hemorrhage syndrome (FLHS) seriously threatens the health and performance of laying hens, and the occurrence and development of FLHS are closely related to oxidative damage and inflammation; thus, diets supplemental with activated substances to relive the oxidative stress and inflammation maybe effectively control the occurrences of FLHS. Dehydroepiandrosterone (DHEA) has beneficial effects in fat-reduction, anti-oxidation and anti-inflammation, and it was widely applied to alleviate multiple metabolic-related diseases; however, there are few reports on whether DHEA can prevent against metabolic-related diseases by modulating oxidative stress and inflammation, especially FLHS in laying hens. Herein, present study aimed to investigate the regulatory actions and potential molecular mechanism of DHEA on inflammation and oxidative stress triggered by oleic acid (OA)-stimulation in primary chicken hepatocytes and chicken hepatocellular carcinoma cell line (LMH). The results showed that DHEA significantly alleviated oxidative stress challenged by OA-stimulation via activation of AMP-activated protein kinase (AMPK)-nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway in hepatocytes, which led to relieving effect of DHEA on inflammatory by inhibiting mitogen-activated protein kinases (MAPKs) and nuclear factor κB (NF-κB) signaling pathways. Mechanistically, we found that the activation of AMPK-Nrf2 signaling pathway by DHEA treatment was mediated by G-protein coupled estrogen receptor (GPR30/GPER) in OA-stimulated hepatocytes. Further investigation found that DHEA activated the GPR30-mediated AMPK-Nrf2 signaling pathways to increase antioxidant capacity and inhibit mitochondrial reactive oxygen species (ROS) overproduction, which thereby inhibiting the activation of ROS-induced MAPK and NF-κB signaling pathways in OA-stimulated hepatocytes. Overall, these data demonstrated that DHEA attenuates the oxidative stress and inflammation triggered by OA-stimulation, and these beneficial effects of DHEA are achieved by activating the GPR30-mediated AMPK-Nrf2 signaling to prevent the impairment of mitochondrial function, and thereby inhibiting the activation of ROS-induced MAPK and NF-κB signaling pathways in hepatocytes. These results revealed the effects and mechanisms of DHEA on oxidative stress and inflammation, and also provide substantial information to support it as a potential nutritional supplement in preventing the occurrences of FLHS in laying hens and other metabolic-related diseases in animals and humans.
Collapse
Affiliation(s)
- Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huihui Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihao Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Yao Y, Wang H, Yang Y, Jiang Z, Ma H. Dehydroepiandrosterone activates the GPER-mediated AMPK signaling pathway to alleviate the oxidative stress and inflammatory response in laying hens fed with high-energy and low-protein diets. Life Sci 2022; 308:120926. [PMID: 36058264 DOI: 10.1016/j.lfs.2022.120926] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
Fatty liver hemorrhagic syndrome (FLHS) seriously threatens the layer industry due to it can cause a sudden decline in egg production and acute death, and dietary supplement with bioactive substance is considered an effective way to prevent the FLHS occurrence. Dehydroepiandrosterone (DHEA) is a popular dietary supplement and it possesses anti-oxidative and anti-inflammatory functions; however, the effect and underlying mechanism about DHEA in protecting against the occurrence and development of FLHS remain elucidated. The current results showed that DHEA relieved HELP-induced decrease of egg productivity and liver injury in laying hens. Meanwhile, DHEA markedly enhanced the antioxidant capacity and then alleviated oxidative stress via activation of nuclear factor (erythroid-derived 2)-like 2 (NRF-2) signal in laying hens fed with HELP diets. In addition, DHEA significantly alleviated HELP-stimulated systemic inflammatory response by suppressing the overproduction of hepatic pro-inflammatory factors in laying hens, and further found this beneficial effect was achieved by blocking the activation of NF-κB pathway. Furthermore, we found that DHEA promoted the AMP-activated protein kinase α (AMPKα) activation and increased the G-protein-coupled estrogen receptor (GPER) expression level in laying hens fed with HELP diets. In summary, our data demonstrated that DHEA attenuates oxidative stress and inflammation through the activation of GPER-AMPK signal axis in laying hens fed with HELP diets. These results might facilitate an understanding of the benefits and mechanism of DHEA on the development of FLHS, and provide sufficient data to support it as a dietary supplement to control the FLHS-related metabolic diseases in chickens.
Collapse
Affiliation(s)
- Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huihui Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihao Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Xu H, Jiang Y, Miao XM, Tao YX, Xie L, Li Y. A Model Construction of Starvation Induces Hepatic Steatosis and Transcriptome Analysis in Zebrafish Larvae. BIOLOGY 2021; 10:92. [PMID: 33513687 PMCID: PMC7911188 DOI: 10.3390/biology10020092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 01/20/2023]
Abstract
Hepatic steatosis caused by starvation, resulting in non-alcoholic fatty liver disease (NAFLD), has been a research topic of human clinical and animal experiments. To understand the molecular mechanisms underlying the triggering of abnormal liver metabolism by starvation, thus inducing hepatic lipid accumulation, we used zebrafish larvae to establish a starvation-induced hepatic steatosis model and conducted comparative transcriptome analysis by RNA-seq. We demonstrated that the incidence of larvae steatosis is positively correlated with starvation time. Under starvation conditions, the fatty acid transporter (slc27a2a and slc27a6-like) and fatty acid translocase (cd36) were up-regulated significantly to promote extrahepatic fatty acid uptake. Meanwhile, starvation inhibits the hepatic fatty acid metabolism pathway but activates the de novo lipogenesis pathway to a certain extent. More importantly, we detected that the expression of numerous apolipoprotein genes was downregulated and the secretion of very low density lipoprotein (VLDL) was inhibited significantly. These data suggest that starvation induces hepatic steatosis by promoting extrahepatic fatty acid uptake and lipogenesis, and inhibits hepatic fatty acid metabolism and lipid transport. Furthermore, we found that starvation-induced hepatic steatosis in zebrafish larvae can be rescued by targeting the knockout cd36 gene. In summary, these findings will help us understand the pathogenesis of starvation-induced NAFLD and provide important theoretical evidence that cd36 could serve as a potential target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Hao Xu
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (Y.J.); (X.-M.M.); (Y.-X.T.); (L.X.)
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China
| | - Yu Jiang
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (Y.J.); (X.-M.M.); (Y.-X.T.); (L.X.)
| | - Xiao-Min Miao
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (Y.J.); (X.-M.M.); (Y.-X.T.); (L.X.)
| | - Yi-Xi Tao
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (Y.J.); (X.-M.M.); (Y.-X.T.); (L.X.)
| | - Lang Xie
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (Y.J.); (X.-M.M.); (Y.-X.T.); (L.X.)
| | - Yun Li
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (Y.J.); (X.-M.M.); (Y.-X.T.); (L.X.)
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Developmental changes in hepatic lipid metabolism of chicks during the embryonic periods and the first week of posthatch. Poult Sci 2020; 99:1655-1662. [PMID: 32111330 PMCID: PMC7587903 DOI: 10.1016/j.psj.2019.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022] Open
Abstract
The liver is the main site of de novo lipogenesis in poultry, and hepatic lipid metabolism disorder will lead to excessive abdominal fat deposition or fatty liver disease, finally causing huge economic loss. The present study was conducted to investigate developmental changes in hepatic lipid metabolism of chicks from embryonic periods to the first week after hatching. Liver samples were collected from embryonic day 11 (E11) to the age of day 7 posthatch (D7) for lipid metabolism analysis. Hematoxylin–eosin and Oil Red O staining analysis showed that hepatic lipids increased gradually during embryonic period and declined posthatch; The sum of hepatic triglycerides and cholesterol reached the peak at E19 and D1 by ELISA analysis (P < 0.05). Acetyl-CoA carboxylase, fatty acid synthase, and acyl-CoA desaturase 1 mRNA expression in the liver were higher from E17 to D1 with the peak at E19 when compared with those at E13 and E15 (P < 0.05). Hepatic elongase of very long-chain fatty acids 6 and microsomal triglyceride transfer protein mRNA abundance were lower during embryonic periods but reached relative higher level after hatching (P < 0.05). On the contrary, hepatic carbohydrate response element binding protein (ChREBP), carnitine palmitoyltransferase 1, and peroxisome proliferators–activated receptor α expression were higher during embryonic periods but decreased posthatch (P < 0.05). The mRNA abundance of sterol-regulatory element binding protein 1c was the lowest at E13 and E15, then increased gradually from E17 to D1, while decreased from D3 to D7 little by little (P < 0.05). In summary, hepatic lipogenesis genes have different expression patterns during the embryonic periods and the first week of posthatch, which might be activated by ChREBP during embryonic periods; fatty acid oxidation was enhanced around the hatched day but declined posthatch. These findings will broaden the understanding of physiological characteristics and dynamic pattern about hepatic lipid metabolism in chicks.
Collapse
|
8
|
Hamid H, Zhang JY, Li WX, Liu C, Li ML, Zhao LH, Ji C, Ma QG. Interactions between the cecal microbiota and non-alcoholic steatohepatitis using laying hens as the model. Poult Sci 2019; 98:2509-2521. [PMID: 30690636 DOI: 10.3382/ps/pey596] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
Chronic liver disease has caused increasing numbers of deaths worldwide. Fatty liver hemorrhagic syndrome, one of the chronic liver diseases in laying hens, has great similarity to non-alcoholic fatty liver disease (NAFLD) in humans. It is characterized by the pathological accumulation of liver fat. Non-invasive techniques are needed for early identification of fibrosis. As primary de novo lipogenesis in the liver of chicken is similar to that of humans, mature chicken is an ideal animal model for the understanding of NAFLD. This study was aimed to evaluate the relationships between gut microbiota and natural chronic liver disease (i.e., non-alcoholic steatohepatitis [NASH] and fibrosis stages) in a well-characterized laying hen population. One hundred 20-wk-old Hy-Line Brown laying hens were used and fed with basal diets until 52 wk of age. At the end of the experiment, birds were killed for sampling blood, liver, and cecal contents, and then classified by liver histology measurement into different groups. We investigated microbial community structure of cecum using 16S rRNA gene sequencing. Subjects in stage 0 fibrosis without NASH were classified as low NAFLD (Group A), subjects in stage 1-2 fibrosis with mild to moderate NASH were defined as low NASH (Group B), and subjects in stage 3 fibrosis were defined as severe NASH (Group C). The abundance of Firmicutes was reduced in Groups B and C (P < 0.001), whereas opposite results were observed for the abundance of Bacteroidetes. Additionally, the families Bacteroidaceae, Ruminococcaceae Lachnospiraceae, and lactobacillae were significantly different between groups of differing fibrosis stages (P < 0.001), driven entirely by alterations of Bacteroides and lactobacillus and lachnospiraceae genera (P < 0.001), were observed. Results indicated that cecal dysbiosis was linked with the severity of fibrosis and NASH; importantly, increased levels of serum AST, alkaline phosphatase, and uric acid were accompanied with liver fibrosis and NASH severity. Collectively, these data highlight the role of gut-liver axis and associations between the gut microbiota and fibrosis and NASH severity.
Collapse
Affiliation(s)
- H Hamid
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - J Y Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China.,Key Laboratory of Biomass Energy and Materials of Jiangsu Province, Nanjing 210042, China
| | - W X Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - C Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - M L Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - L H Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - C Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Q G Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
9
|
Liu Y, Shen J, Yang X, Sun Q, Yang X. Folic Acid Reduced Triglycerides Deposition in Primary Chicken Hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13162-13172. [PMID: 30484310 DOI: 10.1021/acs.jafc.8b05193] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Abdominal fat or fatty liver cause huge economic losses in the poultry industry, and nonalcoholic fatty liver disease (NAFLD) is also a global health issue in humans. More than 90% of de novo lipogenesis in humans and chickens is undertaken by the liver, which is proved to be full of lipids in new-born chickens. Folic acid was thought to have correlation with lipid metabolism. Primary hepatocytes from new-born chickens were employed as a natural model of early stage fatty liver in vitro and further to explore whether folic acid could prevent fatty liver in the current study. We found that folic acid addition reduced triglyceride deposition by suppressing de novo fatty acid synthesis and coordinately promoting triglyceride hydrolysis and exportation in primary chicken hepatocytes from new-born chickens. In addition, lipogenesis suppression was through the PI3K/AKT/SREBP pathway mediated by weakening insulin/IGF signal. Our data suggested that folic acid may be considered as a precautionary strategy for abdominal fat deposition in broilers or fatty liver in laying hens and humans. In addition, mechanism regulation also implied that an IGF2 inhibitor and PI3K inhibitor may be used for the NAFLD precautionary measure to reduce TG deposition.
Collapse
Affiliation(s)
- Yanli Liu
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Jing Shen
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Xin Yang
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Qingzhu Sun
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Xiaojun Yang
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| |
Collapse
|
10
|
Zhu L, Liao R, Wu N, Zhu G, Yang C. Heat stress mediates changes in fecal microbiome and functional pathways of laying hens. Appl Microbiol Biotechnol 2018; 103:461-472. [DOI: 10.1007/s00253-018-9465-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/25/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
|
11
|
Tsai MT, Chen YJ, Chen CY, Tsai MH, Han CL, Chen YJ, Mersmann HJ, Ding ST. Identification of Potential Plasma Biomarkers for Nonalcoholic Fatty Liver Disease by Integrating Transcriptomics and Proteomics in Laying Hens. J Nutr 2017; 147:293-303. [DOI: 10.3945/jn.116.240358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/03/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Affiliation(s)
- Meng-Tsz Tsai
- Department of Animal Science and Technology, National Taiwan University, Taipei City, Taiwan
| | - Yu-Jen Chen
- Institute of Biotechnology, National Taiwan University, Taipei City, Taiwan
| | - Ching-Yi Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei City, Taiwan
| | - Mong-Hsun Tsai
- Institute of Biotechnology, National Taiwan University, Taipei City, Taiwan
| | - Chia-Li Han
- Institute of Chemistry, Academia Sinica, Taipei City, Taiwan
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei City, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei City, Taiwan
| | - Harry J Mersmann
- Department of Animal Science and Technology, National Taiwan University, Taipei City, Taiwan
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei City, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
12
|
The effect of 1-week feed restriction on performance, digestibility of nutrients and digestive system development in the growing rabbit. Animal 2016; 10:1-9. [DOI: 10.1017/s1751731115001810] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
13
|
Alleviation of Carbon-Tetrachloride-Induced Liver Injury and Fibrosis by Betaine Supplementation in Chickens. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:725379. [PMID: 26491462 PMCID: PMC4600548 DOI: 10.1155/2015/725379] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/28/2015] [Accepted: 09/02/2015] [Indexed: 01/18/2023]
Abstract
Betaine is a food component with well-reported hepatoprotection effects. However, the effects and mechanisms of betaine on liver fibrosis development are still insufficient. Because metabolic functions of chicken and human liver is similar, we established a chicken model with carbon Tetrachloride- (CCl4-) induced fibrosis for studying antifibrotic effect of betaine in vivo and in vitro. Two-week-old male chicks were supplemented with betaine (1%, w/v) in drinking water for 2 weeks prior to the initiation of CCl4 treatment (i.p.) until sacrifice. Primary chicken hepatocytes were treated with CCl4 and betaine to mimic the in vivo supplementation. The supplementation of betaine significantly alleviated liver fibrosis development along with the inhibition of lipid peroxidation, hepatic inflammation cytokine, and transforming growth factor-β1 expression levels. These inhibitive effects were also accompanied with the attenuation of hepatic stellate cell activation. Furthermore, our in vitro studies confirmed that betaine provides antioxidant capacity for attenuating the hepatocyte necrosis by CCl4. Altogether, our results highlight the antioxidant ability of betaine, which alleviates CCl4-induced fibrogenesis process along with the suppression of hepatic stellate cells activation. Since betaine is a natural compound without toxicity, we suggest betaine can be used as a potent nutritional or therapeutic factor for reducing liver fibrosis.
Collapse
|
14
|
Deniz GY, Geyikoğlu F, Türkez H, Bakır TÖ, Çolak S, Aslan A. The biochemical and histological effects of lichens in normal and diabetic rats. Toxicol Ind Health 2013; 32:601-13. [DOI: 10.1177/0748233713506769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxidative stress plays an important role in causing diabetes; however, no studies have thoroughly reported on the toxic and beneficial effects of lichen extracts in patients with diabetes mellitus (DM). This study covers a previously unrecognized effect of two well-known lichen species Cetraria islandica and Pseudevernia furfuracae in streptozotocin (STZ)-induced diabetes. In experimental design, control or diabetic rats were either untreated or treated with aqueous lichen extracts (250–500 mg/kg /day) for 2 weeks starting at 72 h after STZ injection. On day 14, animals were anaesthetized, and metabolic and biochemical parameters were appreciated between control and treatment groups. The histopathology of liver was examined using three different staining methods: hematoxylin–eosin (H&E), periodic acid Schiff (PAS), and reticulin and Sudan Black B. Our experimental data showed that increasing doses of C. islandica and P. furfuracae alone did not have any detrimental effects on studied parameters and the malondialdehyde level of liver. C. islandica extract showed positive results for antioxidant capacity compared to doses of P. furfuracae extract. However, the protective effect of C. islandica extract on diabetes-induced disorders and hepatic damages is still unclear. Moreover, unfortunately, animals subjected to DM therapy did not benefit from the usage of increasing lichen doses due to their unchanged antioxidant activity in tissues. The results obtained in present study suggested that C. islandica and P. furfuracae is safe but the power of these is limited because of intensive oxidative stress in liver of type 1 diabetic rats. It is also implied that C. islandica extract is especially suitable for different administration routes in DM animals.
Collapse
Affiliation(s)
| | | | - Hasan Türkez
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | | | - Suat Çolak
- Department of Biology, Artvin Coruh University, Artvin, Turkey
| | - Ali Aslan
- Department of Biology, Kazim Karabekir Education Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
15
|
Arana S, Alves VAF, Sabino M, Tabata YA, Nonogaki S, Zaidan-Dagli ML, Hernandez-Blazquez FJ. Immunohistochemical evidence for myofibroblast-like cells associated with liver injury induced by aflatoxin B1 in rainbow trout (Oncorhynchus mykiss). J Comp Pathol 2013; 150:258-65. [PMID: 24016778 DOI: 10.1016/j.jcpa.2013.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/24/2013] [Accepted: 07/06/2013] [Indexed: 12/22/2022]
Abstract
In mammalian species, profibrogenic cells are activated to become myofibroblasts in response to liver damage. Few studies have examined hepatic myofibroblasts and their role in liver damage in teleosts. The aim of the present study was to investigate the involvement of myofibroblast-like cells in rainbow trout (Oncorhynchus mykiss) with hepatic damage induced by aflatoxin B1 (AFB1). Histopathological and immunohistochemical analyses characterized alterations in the liver stroma during the carcinogenic process. Anti-human α-smooth muscle actin (SMA) and anti-human desmin primary antibodies were used in immunohistochemistry. Only the anti-SMA reagent labelled cells in trout liver. In the livers of control fish, only smooth muscle in blood vessels and around bile ducts was labelled. In the livers from AFB1-treated fish, SMA-positive cells were present in the stroma surrounding neoplastic lesions and in areas of desmoplastic reaction. These observations indicate that in teleosts, as in mammals, the myofibroblast-like cell is involved in fibrosis associated with liver injury. Chronic liver injury induced in trout by aflatoxin may provide a useful model system for study of the evolution of such mechanisms.
Collapse
Affiliation(s)
- S Arana
- Department of Histology and Embryology, Institute of Biology, University of Campinas (UNICAMP), CP: 6109, CEP: 13083-970 Campinas, São Paulo, Brazil.
| | - V A F Alves
- Department of Pathology, School of Medicine, São Paulo University, São Paulo
| | - M Sabino
- Adolfo Lutz Institute, São Paulo, Brazil
| | - Y A Tabata
- Estação Experimental de Salmonicultura Dr. Ascânio de Faria, APTA, Secretaria de Agricultura e Abastecimento de São Paulo, São Paulo, Brazil
| | - S Nonogaki
- Adolfo Lutz Institute, São Paulo, Brazil
| | - M-L Zaidan-Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, São Paulo University, São Paulo, Brazil
| | - F J Hernandez-Blazquez
- Department of Surgery, School of Veterinary Medicine and Animal Science, São Paulo University, São Paulo, Brazil
| |
Collapse
|
16
|
Schleicher J, Guthke R, Dahmen U, Dirsch O, Holzhuetter HG, Schuster S. A theoretical study of lipid accumulation in the liver-implications for nonalcoholic fatty liver disease. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:62-9. [PMID: 23999488 DOI: 10.1016/j.bbalip.2013.08.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/24/2013] [Accepted: 08/15/2013] [Indexed: 02/08/2023]
Abstract
A hallmark of the nonalcoholic fatty liver disease is the accumulation of lipids. We developed a mathematical model of the hepatic lipid dynamics to simulate the fate of fatty acids in hepatocytes. Our model involves fatty acid uptake, lipid oxidation, and lipid export. It takes into account that storage of triacylglycerol within hepatocytes leads to cell enlargement reducing the sinusoids radius and impairing hepatic microcirculation. Thus oxygen supply is reduced, which impairs lipid oxidation. The analysis of our model revealed a bistable behavior (two stable steady states) of the system, in agreement with histological observations showing distinct areas of lipid accumulation in lobules. The first (healthy) state is characterized by intact lipid oxidation and a low amount of stored lipids. The second state in our model may correspond to the steatotic cell; it is marked by a high amount of stored lipids and a reduced lipid oxidation caused by impaired oxygen supply. Our model stresses the role of insufficient oxygen supply for the development of steatosis. We discuss implications of our results in regard to the experimental design aimed at exploring lipid metabolism reactions under steatotic conditions. Moreover, the model helps to understand the reversibility of lipid accumulation and predicts the reversible switch to show hysteresis. The system can switch from the steatotic state back to the healthy state by reduction of fatty acid uptake below the threshold at which steatosis started. The reversibility corresponds to the observation that caloric restriction can reduce the lipid content in the liver.
Collapse
Affiliation(s)
- J Schleicher
- Department of Bioinformatics, University of Jena, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Jiang S, Cheng HW, Cui LY, Zhou ZL, Hou JF. Changes of blood parameters associated with bone remodeling following experimentally induced fatty liver disorder in laying hens. Poult Sci 2013; 92:1443-53. [PMID: 23687138 DOI: 10.3382/ps.2012-02800] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Studies have demonstrated that obesity and osteoporosis are linked disorders in humans. This study examined the hypothesis that excessive lipid consumption affects bone metabolism in laying hens. A total of one hundred 63-wk-old laying hens were randomly divided into 2 treatments and fed either a regular layer diet (control) or a high energy and low protein diet (HE-LP; experimental treatment) for 80 d. Egg production, feed intake, and BW were recorded at various days during the treatment. At d 80, ten randomly chosen birds per treatment group were killed. Abdominal fat weight, liver weight, and liver fat content were determined. Serum levels of total calcium, inorganic phosphate, and alkaline phosphatase were measured using a biochemical analyzer. Serum concentrations of osteocalcin, leptin-like protein, and estrogen were measured by enzyme-linked immunosorbent assay. Tibia length and width were measured using a vernier caliper; density of the right tibias was determined using an x-ray scanner; and mechanical properties of the left tibias were analyzed using a material testing machine. The expression of osteocalcin and osteoprotegerin mRNA in the keel bone was analyzed by real-time PCR. The concentration of osteocalcin protein in the keels was measured using western blot. Compared with control hens, hens fed the HE-LP diet had lower egg production, lower feed intake, greater liver fat content, and greater abdominal fat pad mass (P < 0.05). Feeding the HE-LP diet increased serum alkaline phosphatase activity, osteocalcin, leptin-like protein, and estrogen concentrations (P < 0.05), and decreased the keel osteocalcin concentrations (P < 0.05). There were significant positive correlations between the serum concentrations of leptin-like protein, estrogen, and osteocalcin regardless of treatment (P < 0.05). The results indicated that HE-LP diet induced a fatty liver disorder in laying hens with an upregulation in bone turnover and exacerbated skeletal damage. The data supported a role for lipid metabolism in skeletal heath of laying hens.
Collapse
Affiliation(s)
- S Jiang
- College of Veterinary Medicine, Nanjing Agricultural University, P. R. China, 210095
| | | | | | | | | |
Collapse
|