1
|
GŁaczynska M, Machcinska M, Donskow-Lysoniewska K. Effects of Different Media on Human T Regulatory Cells Phenotype. In Vivo 2021; 35:283-289. [PMID: 33402475 DOI: 10.21873/invivo.12257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIM Functional and quantitative Treg cell defects have been identified in a variety of autoimmune diseases. Therefore, Tregs are a major pharmaceutical target for these disorders. In the last decades, studies have been mainly focused on the identification and experimental understanding of the activity of Tregs and their mechanisms of action. MATERIALS AND METHODS This study describes how overnight storage of isolated peripheral blood mononuclear cells in different media (PBS pH 7.3, PBS pH 7.3 containing 0.5% BSA, RPMI 1640 and RPMI 1640 containing 10% FBS) affects the viability and expression of the commonly used markers for Tregs identification: CD25, CD127, CTLA-4, GITR, PD-1, FoxP3 and Helios. RESULTS Incorrectly selected storage conditions (temperature, time, medium) may affect the expression of surface and intracellular markers, thus, compromising the quality of the obtained results. CONCLUSION Appropriate protocols of cell isolation and storage are important for providing appropriate conditions for cell growth. This is crucial when analyzing small cell populations like Tregs.
Collapse
Affiliation(s)
- Magdalena GŁaczynska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Maja Machcinska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | | |
Collapse
|
2
|
Rouas R, Merimi M, Najar M, El Zein N, Fayyad‐Kazan M, Berehab M, Agha D, Bron D, Burny A, Rachidi W, Badran B, Lewalle P, Fayyad‐Kazan H. Human CD8
+
CD25
+
CD127
low
regulatory T cells: microRNA signature and impact on TGF‐β and IL‐10 expression. J Cell Physiol 2019; 234:17459-17472. [DOI: 10.1002/jcp.28367] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Redouane Rouas
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
| | - Makram Merimi
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy Institut Jules Bordet, Université Libre de Bruxelles (ULB) Brussels Belgium
| | - Nabil El Zein
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I Lebanese University Hadath Lebanon
| | - Mohammad Fayyad‐Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I Lebanese University Hadath Lebanon
| | - Mimoune Berehab
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
| | - Douaa Agha
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
| | - Dominique Bron
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
| | - Arsene Burny
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
| | - Walid Rachidi
- Univ. Grenoble Alpes, SYMMES/CIBEST UMR 5819 UGA‐CNRS‐CEA, INAC/CEA‐Grenoble Grenoble France
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I Lebanese University Hadath Lebanon
| | - Philippe Lewalle
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
| | - Hussein Fayyad‐Kazan
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I Lebanese University Hadath Lebanon
| |
Collapse
|
3
|
Cell Therapy as a Tool for Induction of Immunological Tolerance after Liver Transplantation. Bull Exp Biol Med 2018; 165:554-563. [PMID: 30121913 DOI: 10.1007/s10517-018-4213-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Indexed: 12/13/2022]
Abstract
Transplantation of solid organs, including liver, induces a number of serious complications related to immune incompatibility and requiring long-term use of immunosuppressive drugs. Finding the ways to inducing recipient immunological tolerance to the grafts is a top priority in organ transplantation and immunology. Along with the search for immunosupressive therapy, the development of alternative approaches to induction of immunological tolerance based on cell technologies is now in progress. In this regard, studies of the so-called spontaneous operational tolerance observed in ~20% patients after orthotopic liver transplantation is a promising trend. Understanding of this phenomenon can shed light on the mechanisms of immunological tolerance to allografts and will help to identify specific tolerance biomarkers and cell types with the aptitude for the induction of tolerance to liver allografts.
Collapse
|
4
|
Baroja-Mazo A, Revilla-Nuin B, Parrilla P, Martínez-Alarcón L, Ramírez P, Pons JA. Tolerance in liver transplantation: Biomarkers and clinical relevance. World J Gastroenterol 2016; 22:7676-91. [PMID: 27678350 PMCID: PMC5016367 DOI: 10.3748/wjg.v22.i34.7676] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/04/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023] Open
Abstract
Transplantation is the optimal treatment for end-stage organ failure, and modern immunosuppression has allowed important progress in short-term outcomes. However, immunosuppression poorly influences chronic rejection and elicits chronic toxicity in current clinical practice. Thus, a major goal in transplantation is to understand and induce tolerance. It is well established that human regulatory T cells expressing the transcription factor FoxP3 play important roles in the maintenance of immunological self-tolerance and immune homeostasis. The major regulatory T cell subsets and mechanisms of expansion that are critical for induction and long-term maintenance of graft tolerance and survival are being actively investigated. Likewise, other immune cells, such as dendritic cells, monocyte/macrophages or natural killer cells, have been described as part of the process known as "operational tolerance". However, translation of these results towards clinical practice needs solid tools to identify accurately and reliably patients who are going to be tolerant. In this way, a plethora of genetic and cellular biomarkers is raising and being validated worldwide in large multi-center clinical trials. Few of the studies performed so far have provided a detailed analysis of the impact of immunosuppression withdrawal on pre-existing complications derived from the long-term administration of immunosuppressive drugs and the side effects associated with them. The future of liver transplantation is aimed to develop new therapies which increase the actual low tolerant vs non-tolerant recipients ratio.
Collapse
|
5
|
Denies S, Cicchelero L, de Rooster H, Daminet S, Polis I, Van de Maele I, Sanders NN. Immunological and angiogenic markers during metronomic temozolomide and cyclophosphamide in canine cancer patients. Vet Comp Oncol 2016; 15:594-605. [PMID: 26961119 DOI: 10.1111/vco.12203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/24/2015] [Accepted: 11/05/2015] [Indexed: 12/01/2022]
Abstract
Metronomic chemotherapy stimulates the immune response via depletion of regulatory T cells (Tregs) and suppresses angiogenesis by modulating the secretion of thrombospondin-1 (TSP-1) and vascular endothelial growth factor (VEGF). In this study, blood was collected from 10 healthy dogs and from 30 canine cancer patients before and 2 and 4 weeks after treatment with metronomic temozolomide (6.6 mg m-2 ), cyclophosphamide (12.5 mg m-2 ) or cyclophosphamide and temozolomide. The percentage of circulating CD25+ Foxp3+ CD4+ Tregs and the plasma levels of TSP-1 and VEGF were measured. There was a significant difference in the percentage of Tregs between cancer patients and healthy dogs. A significant decrease in Tregs was noted in patients treated with metronomic cyclophosphamide and the combination. Treatment with temozolomide had no effect on the percentage of Tregs. TSP-1 and VEGF levels were, respectively, significantly lower and higher in cancer patients than in healthy dogs, but they were not influenced by any of the studied metronomic treatment regimens.
Collapse
Affiliation(s)
- S Denies
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - L Cicchelero
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - H de Rooster
- Small Animal Hospital, Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - S Daminet
- Small Animal Hospital, Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - I Polis
- Small Animal Hospital, Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - I Van de Maele
- Small Animal Hospital, Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - N N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
6
|
Jebbawi F, Fayyad-Kazan H, Merimi M, Lewalle P, Verougstraete JC, Leo O, Romero P, Burny A, Badran B, Martiat P, Rouas R. A microRNA profile of human CD8(+) regulatory T cells and characterization of the effects of microRNAs on Treg cell-associated genes. J Transl Med 2014; 12:218. [PMID: 25090912 PMCID: PMC4440568 DOI: 10.1186/s12967-014-0218-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 07/21/2014] [Indexed: 12/14/2022] Open
Abstract
Background Recently, regulatory T (Treg) cells have gained interest in the fields of immunopathology, transplantation and oncoimmunology. Here, we investigated the microRNA expression profile of human natural CD8+CD25+ Treg cells and the impact of microRNAs on molecules associated with immune regulation. Methods We purified human natural CD8+ Treg cells and assessed the expression of FOXP3 and CTLA-4 by flow cytometry. We have also tested the ex vivo suppressive capacity of these cells in mixed leukocyte reactions. Using TaqMan low-density arrays and microRNA qPCR for validation, we could identify a microRNA ‘signature’ for CD8+CD25+FOXP3+CTLA-4+ natural Treg cells. We used the ‘TargetScan’ and ‘miRBase’ bioinformatics programs to identify potential target sites for these microRNAs in the 3′-UTR of important Treg cell-associated genes. Results The human CD8+CD25+ natural Treg cell microRNA signature includes 10 differentially expressed microRNAs. We demonstrated an impact of this signature on Treg cell biology by showing specific regulation of FOXP3, CTLA-4 and GARP gene expression by microRNA using site-directed mutagenesis and a dual-luciferase reporter assay. Furthermore, we used microRNA transduction experiments to demonstrate that these microRNAs impacted their target genes in human primary Treg cells ex vivo. Conclusions We are examining the biological relevance of this ‘signature’ by studying its impact on other important Treg cell-associated genes. These efforts could result in a better understanding of the regulation of Treg cell function and might reveal new targets for immunotherapy in immune disorders and cancer.
Collapse
Affiliation(s)
- Fadi Jebbawi
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Hussein Fayyad-Kazan
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Makram Merimi
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Philippe Lewalle
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | | | - Oberdan Leo
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Pedro Romero
- Ludwig Center for Cancer Research of the University of Lausanne, Lausanne, Switzerland.
| | - Arsene Burny
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Bassam Badran
- Department of Biochemistry, Laboratory of Immunology, EDST-PRASE, Faculty of Sciences, Lebanese University, Hadath-Beirut, Lebanon.
| | - Philippe Martiat
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Redouane Rouas
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| |
Collapse
|
7
|
Lv H, Pan ZQ, Hu SY, Qiu LM. CD4 +CD25 + regulatory T cells and different states of HBV infection. Shijie Huaren Xiaohua Zazhi 2014; 22:1373-1377. [DOI: 10.11569/wcjd.v22.i10.1373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CD4+CD25+ regulatory T cells are a recently discovered subset of CD4+ T cell population that mediates immune suppression. Recent studies suggested that regulatory T cells are closely associated with the prognosis of different states of HBV infection. Here we review the types, mechanisms of action and immunophenotypes of CD4+CD25+ regulatory T cells, as well as their relationship with different states of HBV infection.
Collapse
|
8
|
Abstract
There have been significant advances in the development and application of novel therapeutic approaches and improved diagnostics for cancer in the past decade. Manipulation and/or assessment of cancer-specific immunity have been central to these advances. Murine models are a standard for the preclinical development of cancer immunotherapeutics. However, critical advances in our understanding of the role of the immune microenvironment and the assessment of cancer-specific immunity have not been fully applied to rodent models. Methods to preserve the function of immune cells after cryopreservation and standard approaches to quantitative immune assays have not been developed. Furthermore, a detailed evaluation of the immune tumor environment, which can impact a clinical response to different agents, is rarely undertaken as models are being contemplated. Rapid translation of immunoncology agents to the clinic will require standardization of immunologic assay methods and a more detailed immunologic characterization of common mouse models. Outlined here are the critical elements in assessing immunity in cancer mouse models and suggestions concerning the standardization of approaches when using these models for the study of immunoncology.
Collapse
Affiliation(s)
- Mary L Disis
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington 98109
| | | |
Collapse
|
9
|
Li W, Wang L, Jiang C, Li H, Zhang K, Xu Y, Hao Q, Li M, Xue X, Qin X, Zhang C, Wang H, Zhang W, Zhang Y. UXT is a novel regulatory factor of regulatory T cells associated with Foxp3. Eur J Immunol 2013; 44:533-44. [PMID: 24136450 PMCID: PMC4165274 DOI: 10.1002/eji.201343394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 09/05/2013] [Accepted: 10/08/2013] [Indexed: 01/21/2023]
Abstract
Regulatory T (Treg) cells are a constitutively immunosuppressive subtype of T cells that contribute to the maintenance of immunological self-tolerance and immune homeostasis. However, the molecular mechanisms involved in the regulation of Treg cells remain unclear. In the present study, we identified ubiquitously expressed transcript (UXT) to be a novel regulator of human Treg-cell function. In cultured human Treg cells, UXT associates with Foxp3 in the nucleus by interacting with the proline-rich domain in the N-terminus of Foxp3. Knockdown of UXT expression in Treg cells results in a less-suppressive phenotype, demonstrating that UXT is an important regulator of the suppressive actions of Treg cells. Depletion of UXT affects the localization stability of Foxp3 protein in the nucleus and downregulates the expression of Foxp3-related genes. Overall, our results show that UXT is a cofactor of Foxp3 and an important player in Treg-cell function.
Collapse
Affiliation(s)
- Weina Li
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hofmann U, Frantz S. How can we cure a heart "in flame"? A translational view on inflammation in heart failure. Basic Res Cardiol 2013; 108:356. [PMID: 23740214 PMCID: PMC3709073 DOI: 10.1007/s00395-013-0356-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 01/12/2023]
Abstract
The prevalence of chronic heart failure is still increasing making it a major health issue in the 21st century. Tremendous evidence has emerged over the past decades that heart failure is associated with a wide array of mechanisms subsumed under the term “inflammation”. Based on the great success of immuno-suppressive treatments in auto-immunity and transplantation, clinical trials were launched targeting inflammatory mediators in patients with chronic heart failure. However, they widely lacked positive outcomes. The failure of the initial study program directed against tumor necrosis factor-α led to the search for alternative therapeutic targets involving a broader spectrum of mechanisms besides cytokines. We here provide an overview of the current knowledge on immune activation in chronic heart failure of different etiologies, summarize clinical studies in the field, address unresolved key questions, and highlight some promising novel therapeutic targets for clinical trials from a translational basic science and clinical perspective.
Collapse
Affiliation(s)
- Ulrich Hofmann
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany.
| | | |
Collapse
|
11
|
Challenges in cryopreservation of regulatory T cells (Tregs) for clinical therapeutic applications. Int Immunopharmacol 2013; 16:371-5. [PMID: 23428908 DOI: 10.1016/j.intimp.2013.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/01/2013] [Indexed: 11/22/2022]
Abstract
Promising results of initial studies applying ex-vivo expanded regulatory T cell (Treg) as a clinical intervention have increased interest in this type of the cellular therapy and several new clinical trials involving Tregs are currently on the way. Methods of isolation and expansion of Tregs have been studied and optimized to the extent that such therapy is feasible, and allows obtaining sufficient numbers of Tregs in the laboratory following Good Manufacturing Practice (GMP) guidelines. Nevertheless, Treg therapy could even more rapidly evolve if Tregs could be efficiently cryopreserved and stored for future infusion or expansions rather than utilization of only freshly isolated and expanded cells as it is preferred now. Currently, our knowledge regarding the impact of cryopreservation on Treg recovery, viability, and functionality is still limited. Based on experience with cryopreserved peripheral blood mononuclear cells (PBMCs), cryopreservation may have a detrimental effect on Tregs, can decrease Treg viability, cause abnormal cytokine secretion, and compromise expression of surface markers essential for proper Treg function and processing. Therefore, optimal strategies and conditions for Treg cryopreservation in conjunction with cell culture, expansion, and processing for clinical application still need to be investigated and defined.
Collapse
|
12
|
Casavant BP, Guckenberger DJ, Berry SM, Tokar JT, Lang JM, Beebe DJ. The VerIFAST: an integrated method for cell isolation and extracellular/intracellular staining. LAB ON A CHIP 2013; 13:391-6. [PMID: 23223939 DOI: 10.1039/c2lc41136a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Isolation and characterization of a specific subset of cells from a large heterogeneous population is necessary for studying rare subpopulations of cells. Existing methods require transfer or wash steps that risk causing loss of the rare cell population of interest. Integrated methods reduce loss, making these methods especially useful for reliable isolation of rare cell populations. In this report, we demonstrate the VerIFAST, a device that builds upon the simplified workflow of the Immiscible Filtration Assisted by Surface Tension (IFAST) to integrate a method for cellular isolation with methods for extra- and intracellular staining. First, a front-end purification step allows cells and unwanted particulates to passively settle out of the operational path of the paramagnetic particles, resulting in good efficiency of capture (>80%) and purity (>70%) with a single virtual wall traverse. Second, a Sieve Chamber is used downstream of the isolation chamber that removes excess unbound paramagnetic particles (PMPs) and performs complex multi-step washing procedures without centrifugation or transfer steps. Further, cellular staining can be performed in the device and is demonstrated for extracellular epithelial cell adhesion molecule (EpCAM), intracellular pan-cytokeratins, and Ki-67.
Collapse
Affiliation(s)
- Benjamin P Casavant
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | |
Collapse
|