1
|
Rong W, Rome CP, Dietrich MA, Yao S. Decreased CRISPLD2 expression impairs osteogenic differentiation of human mesenchymal stem cells during in vitro expansion. J Cell Physiol 2023; 238:1368-1380. [PMID: 37021796 PMCID: PMC10330378 DOI: 10.1002/jcp.31014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are the cornerstone of regenerative medicine; large quantities of hMSCs are required via in vitro expansion to meet therapeutic purposes. However, hMSCs quickly lose their osteogenic differentiation potential during in vitro expansion, which is a major roadblock to their clinical applications. In this study, we found that the osteogenic differentiation potential of human bone marrow stem cells (hBMSCs), dental pulp stem cells (hDPSCs), and adipose stem cells (hASCs) was severely impaired after in vitro expansion. To clarify the molecular mechanism underlying this in vitro expansion-related loss of osteogenic capacity in hMSCs, the transcriptome changes following in vitro expansion of these hMSCs were compared. Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2) was identified as the most downregulated gene shared by late passage hBMSCs, hDPSCs, and hASCs. Both the secreted and non-secreted CRISPLD2 proteins progressively declined in hMSCs during in vitro expansion when the cells gradually lost their osteogenic potential. We thus hypothesized that the expression of CRISPLD2 is critical for hMSCs to maintain their osteogenic differentiation potential during in vitro expansion. Our studies showed that the knockdown of CRISPLD2 in early passage hBMSCs inhibited the cells' osteogenic differentiation in a siRNA dose-dependent manner. Transcriptome analysis and immunoblotting indicated that the CRISPLD2 knockdown-induced osteogenesis suppression might be attributed to the downregulation of matrix metallopeptidase 1 (MMP1) and forkhead box Q1 (FOXQ1). Furthermore, adeno-associated virus (AAV)-mediated CRISPLD2 overexpression could somewhat rescue the impaired osteogenic differentiation of hBMSCs during in vitro expansion. These results revealed that the downregulation of CRISPLD2 contributes to the impaired osteogenic differentiation of hMSCs during in vitro expansion. Our findings shed light on understanding the loss of osteogenic differentiation in hMSCs and provide a potential therapeutic target gene for bone-related diseases.
Collapse
Affiliation(s)
- Weiqiong Rong
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Calvin P. Rome
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Marilyn A. Dietrich
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Shaomian Yao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
2
|
Xiang D, Gu M, Liu J, Dong W, Yang Z, Wang K, Fu J, Wang H. m6A RNA methylation-mediated upregulation of HLF promotes intrahepatic cholangiocarcinoma progression by regulating the FZD4/β-catenin signaling pathway. Cancer Lett 2023; 560:216144. [PMID: 36958694 DOI: 10.1016/j.canlet.2023.216144] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/25/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023]
Abstract
Hepatic leukemia factor (HLF) is aberrantly expressed in human malignancies. However, its role in regulating intrahepatic cholangiocarcinoma (ICC) remains unclear. This study aimed to define the role of HLF in ICC progression. Here, we showed that HLF expression is upregulated in ICC and predicts the poor prognosis in patients. Mechanistically, HLF activation in ICC is mediated by METTL3-dependent m6A methylation of the HLF mRNA. As per the results from the loss- or gain-of-function experiments, HLF promoted the self-renewal, tumorigenicity, proliferation and metastasis of ICC cells. RNA-seq and CUT&Tag analyses showed that frizzled-4 (FZD4) and forkhead box Q1 (FOXQ1) are target genes of HLF. Moreover, FOXQ1 transcriptionally activates METTL3 expression, forming a positive feedback loop, which subsequently activates WNT/β-catenin signaling and downstream tumor stemness. Furthermore, HLF expression was positively correlated with METTL3, IGF2BP3, FZD4 and FOXQ1 expression in ICC tissues in a large ICC cohort. The combined IHC panels exhibited a better prognostic value for patients with ICC than any of these components alone. In conclusions, these findings demonstrated that the METTL3/HLF/FOXQ1 regulatory circuit drove FZD4-mediated WNT/β-catenin activation in ICC progression, suggesting that targeting this axis could be novel therapeutic strategy for ICC.
Collapse
Affiliation(s)
- Daimin Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute(2), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Shanghai, China
| | - Mingye Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute(2), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China
| | - Junyu Liu
- International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China
| | - Wei Dong
- Department of Pathology, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China
| | - Zhishi Yang
- Department of Hepatic Surgery, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China
| | - Kui Wang
- Department of Hepatic Surgery, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China.
| | - Jing Fu
- International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Shanghai, China.
| | - Hongyang Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute(2), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Third Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Shanghai, China.
| |
Collapse
|
3
|
Wang X, Zhu X. Tumor Forkhead Box Q1 Is Elevated, Correlates with Increased Tumor Size, International Federation of Gynecology and Obstetrics Stage but Worse Overall Survival in Epithelial Ovarian Cancer Patients. Cancer Biother Radiopharm 2021; 37:837-842. [PMID: 33761267 DOI: 10.1089/cbr.2020.4444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background: Forkhead box Q1 (FOXQ1) regulates epithelial ovarian cancer (EOC) cell proliferation, migration, and invasion, while its prognostic effect in EOC patients is unclear. This study aimed to assess FOXQ1 expression in EOC patients by immunohistochemical (IHC) staining and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and to analyze its correlation with EOC patients' clinical features and prognosis. Materials and Methods: FOXQ1 protein level in tumor and adjacent tissues from 173 EOC patients who underwent resection was detected by IHC staining and further scored by a semiquantitative scoring method; meanwhile, FOXQ1 mRNA level in tumor and adjacent tissues from 105 out of 173 EOC patients (whose fresh-frozen tissues were available) was detected by RT-qPCR. Besides, EOC patients' clinical features and survival data were collected. Results: Both FOXQ1 protein (n = 173) and mRNA (n = 105) levels were increased in tumor tissues compared with adjacent tissues (both p < 0.001) in EOC patients. Meanwhile, tumor FOXQ1 protein level was positively correlated with tumor size (p = 0.005) and International Federation of Gynecology and Obstetrics (FIGO) stage (p = 0.037), while FOXQ1 tumor mRNA level was only positively correlated with tumor size (p = 0.015) in EOC patients; however, they were not correlated with other clinical features such as histological subtypes, tumor differentiation, peritoneal cytology, and so on (all p > 0.05). Moreover, FOXQ1 protein (p = 0.030) and mRNA (p = 0.011) levels in tumors were both correlated with worse overall survival (OS) in EOC patients. Conclusion: FOXQ1 is elevated in tumor tissues, and its high tumor expression correlates with increased tumor size, elevated FIGO stage, and worse OS in EOC patients.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaowu Zhu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Xiang L, Zheng J, Zhang M, Ai T, Cai B. FOXQ1 promotes the osteogenic differentiation of bone mesenchymal stem cells via Wnt/β-catenin signaling by binding with ANXA2. Stem Cell Res Ther 2020; 11:403. [PMID: 32943107 PMCID: PMC7500022 DOI: 10.1186/s13287-020-01928-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND This study investigated the role of Forkhead box Q1 (FOXQ1) in the osteogenic differentiation of bone mesenchymal stem cells. METHODS Mouse bone mesenchymal stem cells (mBMSCs) were transfected with lentivirus to generate Foxq1-overexpressing mBMSCs, Foxq1-suppressed mBMSCs, and mBMSC controls. The activity of osteogenic differentiation was evaluated with alizarin red staining, alkaline phosphatase activity assay, and RT-qPCR. Wnt/β-catenin signaling activities were compared among groups by TOPFlash/FOPFlash assay, immunofluorescence staining, and western blot assay of beta-catenin (CTNNB1). Coimmunoprecipitation mass spectrometry was also carried out to identify proteins binding with FOXQ1. RESULTS Our data showed that FOXQ1 expression was positively correlated with the osteogenic differentiation of the mBMSCs. FOXQ1 also promoted the nuclear translocation of CTNNB1 in the mBMSCs, enhancing Wnt/β-catenin signaling, which was also shown to be essential for the osteogenic differentiation-promoting effect of FOXQ1 in the mBMSCs. Annexin A2 (ANXA2) was bound with FOXQ1, and its depletion reversed the promoting effect of FOXQ1 on Wnt/β-catenin signaling. CONCLUSION These results showed that FOXQ1 binds with ANXA2, promoting Wnt/β-catenin signaling in bone mesenchymal stem cells, which subsequently promotes osteogenic differentiation.
Collapse
Affiliation(s)
- Lusai Xiang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan west Road, Guangzhou, 510055, Guangdong, China.
| | - Junming Zheng
- Foshan Stomatological Hospital, School of Stomatology and Medicine, Foshan University, No. 5, Hebin road, Chancheng district, Foshan, 528000, Guangdong, China
| | - Mengdan Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan west Road, Guangzhou, 510055, Guangdong, China
| | - Tingting Ai
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan west Road, Guangzhou, 510055, Guangdong, China
| | - Bin Cai
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, No. 56 Lingyuan west Road, Guangzhou, 510055, Guangdong, China
| |
Collapse
|
5
|
MiR-342-3p inhibits cell migration and invasion through suppressing forkhead box protein Q1 in ovarian carcinoma. Anticancer Drugs 2020; 30:917-924. [PMID: 31517731 DOI: 10.1097/cad.0000000000000801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous studies have shown that microRNAs are involved in the pathogenesis of ovarian carcinoma (OC). However, the abnormal expression and function of miR-342-3p have not been reported in OC. Therefore, this research was designed to explore its role in OC. In this study, qRT-PCR assay showed that the expression level of miR-342-3p was reduced in OC tissues and cell lines. Functionally, Transwell assay suggested that overexpression of miR-342-3p suppressed cell migration and invasion in OC. In addition, forkhead box protein Q1 (FOXQ1) was confirmed to be a direct target gene by luciferase activity assay. Furthermore, FOXQ1 was found to be upregulated and function as an oncogene in OC. More importantly, miR-342-3p was negatively correlated with FOXQ1 expression in OC tissues. Furthermore, overexpression of FOXQ1 could partially rescue inhibitory effect of miR-342-3p on cell migration and invasion in OC. In brief, we concluded that miR-342-3p inhibited migration and invasion of OC cells through suppressing FOXQ1 expression.
Collapse
|
6
|
Kim SH, Hahm ER, Singh KB, Singh SV. Novel mechanistic targets of forkhead box Q1 transcription factor in human breast cancer cells. Mol Carcinog 2020; 59:1116-1128. [PMID: 32754922 DOI: 10.1002/mc.23241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 01/06/2023]
Abstract
The transcription factor forkhead box Q1 (FoxQ1) is overexpressed in different solid tumors including breast cancer, but the mechanism underlying its oncogenic function is still not fully understood. In this study, we compared RNA-seq data from FoxQ1 overexpressing SUM159 cells with that of empty vector-transfected control cells to identify novel mechanistic targets of this transcription factor. Analysis of The Cancer Genome Atlas (TCGA) data set revealed significantly higher expression of FoxQ1 in black breast cancer patients compared with white women with this disease. In contrast, expression of FoxQ1 was comparable in ductal and lobular carcinomas in the breast cancer TCGA data set. Complementing our published findings in basal-like subtype, immunohistochemistry revealed upregulation of FoxQ1 protein in luminal-type human breast cancer tissue microarrays when compared with normal mammary tissues. Many previously reported transcriptional targets of FoxQ1 (eg, E-cadherin, N-cadherin, fibronectin 1, etc) were verified from the RNA-seq analysis. FoxQ1 overexpression resulted in the downregulation of genes associated with cell cycle checkpoints, M phase, and cellular response to stress/external stimuli as evidenced from the Reactome pathway analysis. Consequently, FoxQ1 overexpression resulted in mitotic arrest in basal-like SUM159 and human mammary epithelial cell line, but not in luminal-type MCF-7 cells. Finally, we show for the first time that FoxQ1 is a direct transcriptional regulator of interleukin (IL)-1α, IL-8, and vascular endothelial growth factor in breast cancer cells as evidenced by chromatin immunoprecipitation assay. In conclusion, the present study reports novel mechanistic targets of FoxQ1 in human breast cancer cells.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Krishna B Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Gong Z, Yu J, Yang S, Lai PBS, Chen GG. FOX transcription factor family in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2020; 1874:188376. [PMID: 32437734 DOI: 10.1016/j.bbcan.2020.188376] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/13/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multistep process, involving the progressive accumulation of molecular alterations and transcriptomic alterations. The Forkhead-box (FOX) transcription factor family is characterized by its unique DNA binding domain (FKH or winged-helix domain). Human FOX family consists of about 17 subfamilies, at least 43 members. Some of them are liver-enriched transcription factors, suggesting that they may play a crucial role in the development or/and functions of the liver. Dysregulation of FOX transcription factors may contribute to the pathogenesis of HCC because they can activate or suppress the expression of various tumor-related molecules, and pinpoint different molecular and cellular events. Here we summarized, analyzed and discussed the status and the functions of the human FOX family of transcription factors in HCC, aiming to help the further development of them as potential therapeutic targets or/and diagnostic/prognostic markers for HCC.
Collapse
Affiliation(s)
- Zhongqin Gong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianqing Yu
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shucai Yang
- Department of Clinical Laboratory, Pingshan District people's Hospital of Shenzhen, Shenzhen, China
| | - Paul B S Lai
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| | - George G Chen
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Gao X, Yang J. Identification of Genes Related to Clinicopathological Characteristics and Prognosis of Patients with Colorectal Cancer. DNA Cell Biol 2020; 39:690-699. [PMID: 32027181 DOI: 10.1089/dna.2019.5088] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to identify genes with clinical significance in colorectal cancer (CRC). Gene expression profiles of 585 CRC tissues and 61 normal colorectal tissues from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to identify differentially expressed genes (DEGs) between CRC and normal colorectal tissues. DAVID and KOBAS tools were used to explore Gene Ontology (GO) and KEGG pathways enriched by DEGs, respectively. In addition, TCGA data sets were also used to identify prognostic factors and develop a prognostic prediction model for CRC. A total of 353 DEGs including 117 upregulated and 236 downregulated genes in CRC were identified based on GSE32323 data set. These DEGs were significantly enriched in the biological process related to the regulation of cell proliferation and 50 signaling pathways, such as "TGF-beta signaling pathway," "Wnt signaling pathway," and "Jak-STAT signaling pathway." GCG, ADH1B, SLC4A4, ZG16, and CLCA4 were the top five downregulated in CRC. FOXQ1, LGR5, CLDN1, KRT23, and DPEP1 were the top five upregulated in CRC. KRT23 expression could affect tumor stage and regional lymph node metastasis in CRC patients. FOXQ1 expression could affect tumor distant metastasis in CRC patients. Survival analysis indicated that SLC4A4 expression was associated with the prognosis of CRC patients. Prognostic prediction model developed based on age, tumor stage, and SLC4A4 expression exhibited an efficient performance in predicting 1-, 3-, and 5-year overall survival of CRC patients. In conclusion, the current study identified several genes and pathways related to CRC, which provided new insight in understanding molecular mechanism of tumorigenesis and development of CRC.
Collapse
Affiliation(s)
- Xueren Gao
- School of Pharmacy, Yancheng Teachers' University, Yancheng, China
| | - Jiaojiao Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Tai yuan, China
| |
Collapse
|
9
|
Li L, Xu B, Zhang H, Wu J, Song Q, Yu J. Potentiality of forkhead box Q1 as a biomarker for monitoring tumor features and predicting prognosis in non-small cell lung cancer. J Clin Lab Anal 2019; 34:e23031. [PMID: 31713908 PMCID: PMC6977110 DOI: 10.1002/jcla.23031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/25/2022] Open
Abstract
Background This study aimed to explore the correlation of forkhead box Q1 (FOXQ1) with clinicopathological features and survival profiles in patients with non‐small cell lung cancer (NSCLC). Methods A total of 238 NSCLC patients with TNM stage I‐III who underwent surgical resection were reviewed, and the expression of FOXQ1 in tumor and paired adjacent tissue was detected using immunohistochemistry assays. The clinical data and survival data of patients with NSCLC were retrieved and calculated. Results FOXQ1 expression was increased in tumor tissue (61.3% high expression and 38.7% low expression) compared with paired adjacent tissue (37.8% high expression and 62.2% low expression) (P < .001). In addition, high FOXQ1 expression was associated with larger tumor size (P = .042), lymph node metastasis (P = .040), and advanced TNM stage (P = .002). Disease‐free survival (DFS) (P = .016) and overall survival (OS) (P = .008) were both reduced in patients with high FOXQ1 expression compared with patients with low FOXQ1 expression. Additionally, high FOXQ1 expression (P = .043), poor pathological differentiation (P = .003), and lymph node metastasis (P < .001) were independent risk factors for DFS, and high FOXQ1 expression (P = .021), tumor size (>5 cm) (P = .014), and lymph node metastasis (P < .001) were independent risk factors for OS. Conclusion High FOXQ1 expression is associated with advanced tumor features as well as undesirable survival profiles in patients with NSCLC, implying the potential prognostic value of FOXQ1 for NSCLC.
Collapse
Affiliation(s)
- Lan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huibo Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Wu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qibin Song
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinming Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, China
| |
Collapse
|
10
|
Li Y, Wang HQ, Wang AC, Li YX, Ding SS, An XJ, Shi HY. Overexpression of Forkhead box Q1 correlates with poor prognosis in papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2019; 90:334-342. [PMID: 30378716 DOI: 10.1111/cen.13896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/02/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Forkhead box Q1 (FOXQ1), a member of the forkhead transcription factor family, plays important parts in cell cycle, apoptosis, metabolism, immunology and tumour genesis. Its expression has been associated with poor clinical prognosis in various tumours. However, the clinical significance of FOXQ1 in papillary thyroid carcinoma (PTC) has not been fully studied. The purpose of this study was to investigate whether FOXQ1 is correlated with poor prognosis in PTC. DESIGN/METHODS We performed a retrospective study of 136 PTCs. Immunohistochemistry (IHC) was used to examine the expression of FOXQ1 in 136 PTCs and 47 nodular goitre specimens. Rank-sum test, chi-square test, Kaplan-Meier survival analysis, univariate and multivariate Cox analyses were used to investigate the clinical and prognostic significance of FOXQ1 expression in PTC. RESULTS The comparison of PTC specimens with nodular goitre with papillary hyperplasia specimens revealed an upregulation of FOXQ1 in PTC. Overexpression of FOXQ1 was observed in 63.24% of PTC and correlated with classic variant, tall variant, distant metastasis, AJCC stage and recurrence. FOXQ1-positive expression was associated with shorter disease-free survival: median disease-free survival of FOXQ1-positive patients was 23 months compared with 128 months for FOXQ1-negative patients (Log-rank χ2 = 12.31, P = 0.00045). Additional independent risk factors in this study were multifocality (recurrence-free survival [RFS]: hazard ratio [HR] = 2.391, P < 0.05), extrathyroidal extension (RFS: HR = 3.906, P < 0.05) and positive expression of FOXQ1 (RFS: HR = 6.385, P < 0.01). CONCLUSIONS Our results indicated that FOXQ1 may be a useful additional biomarker to evaluate the progression of PTC and to predict likely relapse of disease.
Collapse
Affiliation(s)
- Ying Li
- Department of Pathology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Department of Pathology, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Hong-Qun Wang
- Department of Pathology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Ai-Chun Wang
- Department of Pathology, Haidian Maternal & Children Health Hospital, Beijing, China
| | - Ying-Xue Li
- Department of Pathology, Liaocheng People's Hospital, LiaoCheng, China
| | - Shan-Shan Ding
- Department of Pathology, The General Hospital of the PLA Rocket Force, Beijing, China
| | - Xiao-Jing An
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huai-Yin Shi
- Department of Pathology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
11
|
Earley AM, Dixon CT, Shiau CE. Genetic analysis of zebrafish homologs of human FOXQ1, foxq1a and foxq1b, in innate immune cell development and bacterial host response. PLoS One 2018; 13:e0194207. [PMID: 29534099 PMCID: PMC5849333 DOI: 10.1371/journal.pone.0194207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/27/2018] [Indexed: 01/01/2023] Open
Abstract
FOXQ1 is a member of the forkhead-box transcription factor family that has important functions in development, cancer, aging, and many cellular processes. The role of FOXQ1 in cancer biology has raised intense interest, yet much remains poorly understood. We investigated the possible function of the two zebrafish orthologs (foxq1a and foxq1b) of human FOXQ1 in innate immune cell development and function. We employed CRISPR-Cas9 targeted mutagenesis to create null mutations of foxq1a and foxq1b in zebrafish. Using a combination of molecular, cellular, and embryological approaches, we characterized single and double foxq1a bcz11 and foxq1b bcz18 mutants. This study provides the first genetic mutant analyses of zebrafish foxq1a and foxq1b. Interestingly, we found that foxq1a, but not foxq1b, was transcriptionally regulated during a bacterial response, while the expression of foxq1a was detected in sorted macrophages and upregulated in foxq1a-deficient mutants. However, the transcriptional response to E. coli challenge of foxq1a and foxq1b mutants was not significantly different from that of their wildtype control siblings. Our data shows that foxq1a may have a role in modulating bacterial response, while both foxq1a and foxq1b are not required for the development of macrophages, neutrophils, and microglia. Considering the implicated role of FOXQ1 in a vast number of cancers and biological processes, the foxq1a and foxq1b null mutants from this study provide useful genetic models to further investigate FOXQ1 functions.
Collapse
Affiliation(s)
- Alison M. Earley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Cameron T. Dixon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Celia E. Shiau
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
12
|
Yang L, Yi K, Wang H, Zhao Y, Xi M. Comprehensive analysis of lncRNAs microarray profile and mRNA-lncRNA co-expression in oncogenic HPV-positive cervical cancer cell lines. Oncotarget 2018; 7:49917-49929. [PMID: 27363024 PMCID: PMC5226557 DOI: 10.18632/oncotarget.10232] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/16/2016] [Indexed: 11/25/2022] Open
Abstract
Long non-coding RNAs are emerging to be novel regulators in gene expression. In current study, lncRNAs microarray and lncRNA-mRNA co-expression analysis were performed to explore the alternation and function of lncRNAs in cervical cancer cells. We identified that 4750 lncRNAs (15.52%) were differentially expressed in SiHa (HPV-16 positive) (2127 up-regulated and 2623 down-regulated) compared with C-33A (HPV negative), while 5026 lncRNAs (16.43%) were differentially expressed in HeLa (HPV-18 positive) (2218 up-regulated and 2808 down-regulated) respectively. There were 5008 mRNAs differentially expressed in SiHa and 4993 in HeLa, which were all cataloged by GO terms and KEGG pathway. With the help of mRNA-lncRNA co-expression network, we found that ENST00000503812 was significantly negative correlated with RAD51B and IL-28A expression in SiHa, while ENST00000420168, ENST00000564977 and TCONS_00010232 had significant correlation with FOXQ1 and CASP3 expression in HeLa. Up-regulation of ENST00000503812 may inhibit RAD51B and IL-28A expression and result in deficiency of DNA repair pathway and immune responses in HPV-16 positive cervical cancer cell. Up-regulation of ENST00000420168, ENST00000564977 and down-regulation of TCONS_00010232 might stimulate FOXQ1 expression and suppress CASP3 expression in HPV-18 positive cervical cancer cell, which lead to HPV-induced proliferation and deficiency in apoptosis. These results indicate that changes of lncRNAs and related mRNAs might impact on several cellular pathways and involve in HPV-induced proliferation, which enriches our understanding of lncRNAs and coding transcripts anticipated in HPV oncogenesis of cervical cancer.
Collapse
Affiliation(s)
- LingYun Yang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ke Yi
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - HongJing Wang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - YiQi Zhao
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - MingRong Xi
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Qin A, Zhu J, Liu X, Zeng D, Gu M, Lv C. MicroRNA-1271 inhibits cellular proliferation of hepatocellular carcinoma. Oncol Lett 2017; 14:6783-6788. [PMID: 29181102 DOI: 10.3892/ol.2017.7052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 02/13/2017] [Indexed: 12/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-associated mortality worldwide, particularly in China. MicroRNAs (miRs) serve important roles in the pathogenesis of HCC. The present study investigated the function of miR-1271 in HCC. The miR-1271 levels were analyzed by quantitative reverse transcription polymerase chain reaction. Cells growth was examined by MTT assay. Bioinformatics algorithms from TargetScanHuman were used to predict the target genes of miR-1271. The protein level was assayed by western blotting. miR-1271 demonstrated a lower expression level in HCC tissues. Upregulation of miR-1271 suppressed the growth of HepG-2 and Huh-7 cells and induced apoptosis of cells. Forkhead box Q1 (FOXQ1) was targeted by miR-1271. In conclusion, miR-1271 is a novel tumor suppressor that inhibits HCC proliferation and induces cellular apoptosis by targeting FOXQ1 in HCC. The results of the present study may provide a novel therapeutic target of HCC.
Collapse
Affiliation(s)
- Andong Qin
- Institute of Liver Disease, The Fourth Hospital of Huai'an, Huaian, Jiangsu 223002, P.R. China
| | - Jiehua Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Xingxiang Liu
- Institute of Liver Disease, The Fourth Hospital of Huai'an, Huaian, Jiangsu 223002, P.R. China
| | - Dongxiao Zeng
- Institute of Liver Disease, The Fourth Hospital of Huai'an, Huaian, Jiangsu 223002, P.R. China
| | - Maolin Gu
- Institute of Liver Disease, The Fourth Hospital of Huai'an, Huaian, Jiangsu 223002, P.R. China
| | - Chun Lv
- Institute of Liver Disease, The Fourth Hospital of Huai'an, Huaian, Jiangsu 223002, P.R. China
| |
Collapse
|
14
|
Guo J, Yan Y, Yan Y, Guo Q, Zhang M, Zhang J, Goltzman D. Tumor-associated macrophages induce the expression of FOXQ1 to promote epithelial-mesenchymal transition and metastasis in gastric cancer cells. Oncol Rep 2017; 38:2003-2010. [PMID: 28791370 PMCID: PMC5652949 DOI: 10.3892/or.2017.5877] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies, and is the second leading cause of cancer-related deaths worldwide. Macrophages infiltrated in the tumor microenvironment (TME) called tumor-associated macrophages (TAMs) are key orchestrators in TME. In GC, it has been reported that infiltration of TAMs is associated with epithelial-mesenchymal transition (EMT)-related proteins in human GC tissues, but the exactly mechanism has not been clarified. In the present study, we aimed to elucidate the underlying mechanism of TAMs on GC cells. THP-1 cells were used to investigate the effects of TAMs on GC cells. The effects of invasion and migration induced by coculture with TAMs were investigated by Transwell invasion and wound healing assays. The expression of EMT-related genes and forkhead box Q1 (FOXQ1) were examined in MKN45 and MKN74 cells after being co-cultured with TAMs. The density of TAMs and the expression of FOXQ1 were analyzed by immunohistochemistry in GC tissues. Our results revealed that, co-culture with TAMs promoted the invasion and migration of GC cells. Co-culture with TAMs induced EMT in GC cells. FOXQ1 is essential for TAM-induced EMT and metastasis in GC cells. Furthermore, silencing of FOXQ1 blocked the effect of TAM-enhanced EMT and metastasis of GC cells. High expression of CD68 was correlated with positive FOXQ1 expression (r=0.613; P<0.001) in clinical GC samples. Our data provided evidence that TAMs promote EMT, invasion and migration of GC cells via FOXQ1. Therefore, the TAM/FOXQ1 axis may represent a novel target for GC cells.
Collapse
Affiliation(s)
- Jian Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Yan
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yu Yan
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qinyue Guo
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mingxin Zhang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jia Zhang
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - David Goltzman
- Departments of Medicine and Physiology, McGill University, Montreal, Quebec H3A 1A1, Canada
| |
Collapse
|
15
|
Cui X, Zhang J, Lv J, Yan Y, Liu X, Wang J, Lv Y, Zhang J. Prognostic value of FOXQ1 in patients with malignant solid tumors: a meta-analysis. Onco Targets Ther 2017; 10:1777-1781. [PMID: 28367060 PMCID: PMC5370067 DOI: 10.2147/ott.s130905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Forkhead box Q1 (FOXQ1, also known as HFH1), a member of the forkhead transcription factor family, has been demonstrated to be overexpressed in multiple tumors and is thought to be an indicator of poor clinical outcomes. Methods A meta-analysis using qualified relevant literature was performed to evaluate the prognostic significance of FOXQ1 in various malignant solid tumors. A search of electronic databases was conducted in MEDLINE, Embase, and the Cochrane Library to identify relevant studies published from 1966 to July 30, 2016, and the studies were identified by further evaluation. The pooled hazard ratios (HRs) with 95% confidence intervals (CIs) for analyses were assessed to investigate the association between FOXQ1 expression and overall survival (OS) of patients with malignant solid tumors. Results A total of 1,520 patients from six studies (seven cohorts) with multiple malignant solid tumors were included. For OS, high FOXQ1 expression could significantly predict worse outcome with the pooled HR of 1.38 (95% CI: 1.17–1.59; P<0.001). The subgroup analysis suggested that the elevated levels of FOXQ1 appear to be associated with worse OS in hepatocellular carcinoma (HR =1.34; 95% CI: 1.11–1.57; P<0.001) and other cancers (HR =1.62; 95% CI: 1.09–2.14; P<0.001). Conclusion This meta-analysis indicated that the high expression of FOXQ1 is associated with an adverse OS in malignant solid tumors, suggesting that FOXQ1 may be a predictor of poor prognosis for the development of malignant solid tumors.
Collapse
Affiliation(s)
- Xiaohai Cui
- The Second Department of Thoracic Surgery; Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Provincial Regenerative Medicine and Surgical Engineering Research Center
| | - Jing Zhang
- The Second Department of Thoracic Surgery
| | - Jiajun Lv
- Xi'an Jiaotong University Health Science Center
| | - Yan Yan
- The Second Department of Thoracic Surgery
| | - Xu Liu
- The Second Department of Thoracic Surgery
| | | | - Yi Lv
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Provincial Regenerative Medicine and Surgical Engineering Research Center; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jia Zhang
- The Second Department of Thoracic Surgery
| |
Collapse
|
16
|
Zhang X, Wang L, Wang Y, Shi S, Zhu H, Xiao F, Yang J, Yang A, Hao X. Inhibition of FOXQ1 induces apoptosis and suppresses proliferation in prostate cancer cells by controlling BCL11A/MDM2 expression. Oncol Rep 2016; 36:2349-56. [DOI: 10.3892/or.2016.5018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/15/2016] [Indexed: 11/05/2022] Open
|
17
|
Zhang J, Liu Y, Zhang J, Cui X, Li G, Wang J, Ren H, Zhang Y. FOXQ1 promotes gastric cancer metastasis through upregulation of Snail. Oncol Rep 2016; 35:3607-13. [PMID: 27109028 DOI: 10.3892/or.2016.4736] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 02/15/2016] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer (GC) is one of the most common cancers, and the second most common cause of cancer deaths worldwide. Forkhead box Q1 (FOXQ1) is a member of the forkhead transcription factor family and its upregulation is closely correlated with tumor progression and prognosis of multiple cancer types, including GC. FOXQ1 has been shown to regulate EMT and function in human cancers. However, the role of FOXQ1 in regulating EMT in GC and the exactly mechanism has not been clarified. The purpose of this study was to investigate the effects of FOXQ1 on EMT in human GC. FOXQ1 protein was detected by immunohistochemistry in human GC specimens and their clinical significance evaluated. We examined the cell biology and molecular biology changes after overexpression and knockdown of FOXQ1 in gastric cancer cells in vitro. To further understand the underlying mechanisms of EMT promoted by FOXQ1, we examined the changes of target genes of FOXQ1 after overexpression and knockdown of FOXQ1 in gastric cancer cells. In the present study, we demonstrate that FOXQ1 is overexpressed in GC tissues and its expression level is closely correlated with histologic differentiation, pTNM stage, and lymphatic metastasis of GC. Kaplan-Meier survival analysis showed that a high expression level of FOXQ1 resulted in a significantly poor prognosis of GC patients. FOXQ1 modulated GC cell invasion in vitro, and induced E-cadherin repression. FOXQ1 also upregulated the expression of vimentin in vitro. The Snail signaling pathway was likely involved in the induction of EMT by FOXQ1 in GC. Our results demonstrate that FOXQ1 is a prognostic marker for patients with GC, FOXQ1 over-expression is involved in acquisition of the mesenchymal phenotype of gastric cancer cells, and that subsequent Snail expression is essential for induction of EMT. The results suggest that FOXQ1 is a potential therapeutic target for the development of therapies for GC.
Collapse
Affiliation(s)
- Jing Zhang
- The Second Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yimin Liu
- Baoji Renmin Hospital, Baoji, Shaanxi 721000, P.R. China
| | - Jia Zhang
- The Second Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaohai Cui
- The Second Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Gang Li
- The Second Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jiansheng Wang
- The Second Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hong Ren
- The Second Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yunfeng Zhang
- The Second Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
18
|
ZHANG MINGTING, XU QINGLI, YAN SHUFEN, LI ZHIGANG, YAN WEI, JIA XIAOJING. Suppression of forkhead box Q1 by microRNA-506 represses the proliferation and epithelial-mesenchymal transition of cervical cancer cells. Oncol Rep 2016; 35:3106-14. [DOI: 10.3892/or.2016.4651] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/17/2015] [Indexed: 11/05/2022] Open
|
19
|
Zhang Z, Ma J, Luan G, Kang L, Su Y, He Y, Luan F. MiR-506 suppresses tumor proliferation and invasion by targeting FOXQ1 in nasopharyngeal carcinoma. PLoS One 2015; 10:e0122851. [PMID: 25856555 PMCID: PMC4391879 DOI: 10.1371/journal.pone.0122851] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/24/2015] [Indexed: 01/09/2023] Open
Abstract
MiRNAs are small noncoding RNAs that play important roles in various biological processes including tumorigenesis. However, little is known about the expression and function of miR-506 in nasopharyngeal carcinoma (NPC). In this study, we showed that miR-506 was downregulated in nasopharyngeal carcinoma (NPC) cell lines and tissues. Ectopic expression of miR-506 dramatically suppressed cell proliferation, colony formation and invasion. Moreover, we identified the Forkhead box Q1 (FOXQ1) gene as a novel direct target of miR-506. MiR-506 exerts its tumor suppressor function through inhibition of the FOXQ1, which was involved in tumor metastasis and proliferation in various cancers. Furthermore, the expression of FOXQ1 is up-regulated in NPC cell lines and tissues. Taken together, our results indicate that miR-506 functions as a tumor suppressor miRNA in NPC and that its suppressive effects are mediated chiefly by repressing FOXQ1 expression.
Collapse
Affiliation(s)
- Zhanchi Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, PR China
| | - Jun Ma
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, PR China
| | - Guang Luan
- The Third Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Lin Kang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, PR China
| | - Yuhong Su
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, PR China
| | - Yanan He
- Department of Otorhinolaryngology, The Third Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Feng Luan
- Department of Otorhinolaryngology, The Third Hospital of Hebei Medical University, Shijiazhuang, PR China
- * E-mail:
| |
Collapse
|
20
|
Tian YE, Xie XU, Lin Y, Tan G, Zhong WU. Androgen receptor in hepatocarcinogenesis: Recent developments and perspectives. Oncol Lett 2015; 9:1983-1988. [PMID: 26136999 DOI: 10.3892/ol.2015.3025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/13/2015] [Indexed: 02/06/2023] Open
Abstract
Previous studies have indicated that males are at a higher risk of developing hepatocellular carcinoma (HCC) compared with females. Identifying the factors that cause this gender-specific difference in the incidence of HCC has long been considered important for revealing the molecular mechanisms involved in hepatocarcinogenesis. Given the unprecedented tools that are now available for molecular research, genetic studies have established that the androgen receptor (AR) may be partly responsible for gender disparity in HCC. AR has a dual role, promoting HCC initiation and development, as well as suppressing HCC metastasis. The present review provides an overview of the involvement of AR signaling in HCC. The review highlighted important studies, examples of the direct AR transcriptional target genes involved in HCC and novel theories concerning the conventional concept, suggesting that targeting the AR, rather than the androgen, may provide an improved therapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Y E Tian
- Department of Emergency Medicine, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - X U Xie
- Department of General Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yao Lin
- Department of Urology, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Guang Tan
- Department of General Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - W U Zhong
- Department of Emergency Medicine, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
21
|
Peng XH, Huang HR, Lu J, Liu X, Zhao FP, Zhang B, Lin SX, Wang L, Chen HH, Xu X, Wang F, Li XP. MiR-124 suppresses tumor growth and metastasis by targeting Foxq1 in nasopharyngeal carcinoma. Mol Cancer 2014; 13:186. [PMID: 25098939 PMCID: PMC4267157 DOI: 10.1186/1476-4598-13-186] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 08/01/2014] [Indexed: 01/10/2023] Open
Abstract
Background The molecular mechanisms underlying dysregulation of microRNAs have been documented in nasopharyngeal carcinoma (NPC). Our previous study demonstrated that plasma miR-124 was down-regulated in NPC using microarray analysis and quantitative PCR validation. Though growing studies showed that down-regulated miR-124 was closely related to tumourigenesis in various types of cancers, the role of miR-124 in NPC remains largely unknown. Methods The expression level of miR-124 was evaluated in NPC cell lines and patient specimens using quantitative reverse transcription-PCR (Real-time qPCR). The clinicopathological significance of the resultant data was later analyzed. Then, we explored the role of miR-124 in NPC tumorigenesis by in vitro and in vivo experiments. Homo sapiens forkhead box Q1 (Foxq1) was confirmed as a novel direct target gene of miR-124 by the dual-luciferase assay and western bolt. Results We found that miR-124 was commonly down-regulated in NPC specimens and NPC cell lines. The expression of miR-124 was inversely correlation with clinical stages and marked on T stages. Then, the ectopic expression of miR-124 dramatically inhibited cell proliferation, colony formation, migration and invasion in vitro, as well as tumor growth and metastasis in vivo. Furthermore, we identified Foxq1 as a novel direct target of miR-124. Functional studies showed that knockdown of Foxq1 inhibited cell growth, migration and invasion, whereas Foxq1 overexpression partially rescued the suppressive effect of miR-124 in NPC. In clinical specimens, Foxq1 was commonly up-regulated in NPC, and the level increased with clinical stages and T stages. Additionally, the level of Foxq1 was inversely correlated with miR-124. Conclusions Our results demonstrate that miR-124 functions as a tumor-suppressive microRNA in NPC, and that its suppressive effects are mediated chiefly by repressing Foxq1 expression. MiR-124 could serve as an independent biomarker to identify patients with different clinical characteristics. Therefore, our findings provide valuable clues toward the understanding the of mechanisms of NPC pathogenesis and provide an opportunity to develop new effective clinical therapies in the future. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-186) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiang Ping Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
22
|
Xia L, Huang W, Tian D, Zhang L, Qi X, Chen Z, Shang X, Nie Y, Wu K. Forkhead box Q1 promotes hepatocellular carcinoma metastasis by transactivating ZEB2 and VersicanV1 expression. Hepatology 2014; 59:958-73. [PMID: 24005989 DOI: 10.1002/hep.26735] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 02/05/2023]
Abstract
UNLABELLED Forkhead box Q1 (FoxQ1) is a master regulator of tumor metastasis. However, the molecular mechanism of FoxQ1 in regulating hepatocellular carcinoma (HCC) metastasis remains unknown. Here we report a novel function for FoxQ1 in modifying the tumor microenvironment to promote HCC metastasis. FoxQ1 expression was an independent and significant risk factor for the recurrence and survival in two independent cohorts totaling 1,002 HCC patients. FoxQ1 induced epithelial-mesenchymal transition (EMT) through the transactivation of ZEB2 expression by directly binding to the ZEB2 promoter. Knockdown of ZEB2 decreased FoxQ1-enhanced HCC metastasis, whereas up-regulation of ZEB2 rescued the decreased metastasis induced by FoxQ1 knocking down. Additionally, serial deletion, site-directed mutagenesis, and a chromatin immunoprecipitation assays showed that VersicanV1, which promoted HCC metastasis and macrophage attraction, was a direct transcriptional target of FoxQ1. FoxQ1-induced VersicanV1 expression promoted the secretion of chemokine (C-C motif) ligand 2 (CCL2) from HCC cells. Chemotaxis assay showed that the culture media from FoxQ1-overexpressing HCC cells increased the migratory activity of the macrophages. Inhibition of VersicanV1 and CCL2 expression significantly inhibited FoxQ1-mediated macrophage migration. In animal studies, the up-regulation of FoxQ1 in HCC cells promoted HCC metastasis and intratumoral tumor associated macrophage (TAM) infiltration, whereas knockdown of VersicanV1 reduced FoxQ1-mediated HCC metastasis and intratumoral TAM infiltration. Depletion of macrophages using clodronate liposomes dramatically decreased FoxQ1-enhanced HCC metastasis. In human HCC tissues, FoxQ1 expression was positively correlated with ZEB2 and VersicanV1 expression and intratumoral TAM infiltration. Patients with positive coexpression of FoxQ1 and ZEB2, FoxQ1, and VersicanV1, or FoxQ1 and intratumoral TAMs were associated with poorer prognosis. CONCLUSION FoxQ1 promotes HCC metastasis by transactivating ZEB2 and VersicanV1 expression, resulting in the induction of EMT and the recruitment of macrophage infiltration.
Collapse
Affiliation(s)
- Limin Xia
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an Shaanxi Province, P.R. China; Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei Province, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|