1
|
Mierke CT. Softness or Stiffness What Contributes to Cancer and Cancer Metastasis? Cells 2025; 14:584. [PMID: 40277910 PMCID: PMC12026216 DOI: 10.3390/cells14080584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Beyond the genomic and proteomic analysis of bulk and single cancer cells, a new focus of cancer research is emerging that is based on the mechanical analysis of cancer cells. Therefore, several biophysical techniques have been developed and adapted. The characterization of cancer cells, like human cancer cell lines, started with their mechanical characterization at mostly a single timepoint. A universal hypothesis has been proposed that cancer cells need to be softer to migrate and invade tissues and subsequently metastasize in targeted organs. Thus, the softness of cancer cells has been suggested to serve as a universal physical marker for the malignancy of cancer types. However, it has turned out that there exists the opposite phenomenon, namely that stiffer cancer cells are more migratory and invasive and therefore lead to more metastases. These contradictory results question the universality of the role of softness of cancer cells in the malignant progression of cancers. Another problem is that the various biophysical techniques used can affect the mechanical properties of cancer cells, making it even more difficult to compare the results of different studies. Apart from the instrumentation, the culture and measurement conditions of the cancer cells can influence the mechanical measurements. The review highlights the main advances of the mechanical characterization of cancer cells, discusses the strength and weaknesses of the approaches, and questions whether the passive mechanical characterization of cancer cells is still state-of-the art. Besides the cell models, conditions and biophysical setups, the role of the microenvironment on the mechanical characteristics of cancer cells is presented and debated. Finally, combinatorial approaches to determine the malignant potential of tumors, such as the involvement of the ECM, the cells in a homogeneous or heterogeneous association, or biological multi-omics analyses, together with the dynamic-mechanical analysis of cancer cells, are highlighted as new frontiers of research.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Sciences, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Fakhrioliaei A, Tanhaei S, Pakmehr S, Noori Shakir M, Qasim MT, Hariri M, Nouhi Kararoudi A, Valilo M. Potential Role of Nrf2, HER2, and ALDH in Cancer Stem Cells: A Narrative Review. J Membr Biol 2024; 257:3-16. [PMID: 38356054 DOI: 10.1007/s00232-024-00307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Cancer is one of the main causes of death among humans, second only to cardiovascular diseases. In recent years, numerous studies have been conducted on the pathophysiology of cancer, and it has been established that this disease is developed by a group of stem cells known as cancer stem cells (CSCs). Thus, cancer is considered a stem cell disease; however, there is no comprehensive consensus about the characteristics of these cells. Several different signaling pathways including Notch, Hedgehog, transforming growth factor-β (TGF-β), and WNT/β-catenin pathways cause the self-renewal of CSCs. CSCs change their metabolic pathways in order to access easy energy. Therefore, one of the key objectives of researchers in cancer treatment is to destroy CSCs. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays an essential role in the protection of CSCs from reactive oxygen species (ROS) and chemotherapeutic agents by regulating antioxidants and detoxification enzymes. Human epidermal growth factor receptor 2 (HER2) is a member of the tyrosine kinase receptor family, which contributes to the protection of cancer cells against treatment and implicated in the invasion, epithelial-mesenchymal transition (EMT), and tumorigenesis. Aldehyde dehydrogenases (ALDHs) are highly active in CSCs and protect the cells against damage caused by active aldehydes through the regulation of aldehyde metabolism. On the other hand, ALDHs promote the formation and maintenance of tumor cells and lead to drug resistance in tumors through the activation of various signaling pathways, such as the ALDH1A1/HIF-1α/VEGF axis and Wnt/β-catenin, as well as changing the intracellular pH value. Given the growing body of information in this field, in the present narrative review, we attempted to shed light on the function of Nrf2, HER2, and ALDH in CSCs.
Collapse
Affiliation(s)
| | | | | | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Maryam Hariri
- Department of Pathobiology, Auburn University, Auburn, AL, 36832, USA
| | - Alireza Nouhi Kararoudi
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohammad Valilo
- Dpartment of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Liaghati P, Momeni P, Esfandi F, Kholghi Oskooei V, Sattari A, Ghafouri-Fard S, Taheri M. Expression analysis of CD24 and CD44 transcripts in Iranian breast cancer patients. Breast Dis 2021; 39:143-148. [PMID: 33427725 DOI: 10.3233/bd-200441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The importance of cancer stem cells (CSCs) in initiation and progression of breast cancer has been well established. This population of cells is characterized by high expression of CD44 and low expression of CD24. OBJECTIVE However, the relative abundance of CD24 and CD44 transcripts in breast cancer tissues and adjacent non-cancerous tissues (ANCTs) has not been quantified yet. METHODS In the present investigation, we assessed expression of CD24 and CD44 at transcript level in breast cancer tissues and ANCTs in association with clinical determinants of patients' outcome and parameters that predict response to therapeutic options. RESULTS There was no significant difference in expression of CD24 and CD44 in breast cancer tissues compared with ANCTs (Expression ratios: 1.03 and 0.84, P values: 0.92 and 0.61, respectively). However, CD44 expression was associated with tumor size in a way this gene was up-regulated in all of small sized (≤2 cm) tumors compared with the corresponding ANCTs (P value = 0.04). Besides, CD44 expression was significantly higher in tumors with extracapsular nodal extension compared with those without extension (P = 0.04). Expression of CD24 was higher in grade 3 tumors compared with grade 2 tumors (P = 0.04). CONCLUSION Expression levels of CD24 and CD44 were correlated with each other in ANCTs but not in tumoral tissues. The current study shows another aspect of CSC markers in the development of breast cancer.
Collapse
Affiliation(s)
- Pegah Liaghati
- Department of Cellular and Molecular Biology-Molecular Cellular Science, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parto Momeni
- Department of Cellular and Molecular Biology-Molecular Cellular Science, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Vahid Kholghi Oskooei
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ali Sattari
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Gyan E, Owiredu WKBA, Fondjo LA, Jackson AM, Green AR, Rahman GA. A review of the racial heterogeneity of breast cancer stem cells. Gene 2021; 796-797:145805. [PMID: 34197949 DOI: 10.1016/j.gene.2021.145805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/05/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
Breast Cancer Stem Cells has become the toast of many breast cancer investigators in the past two decades owing to their crucial roles in tumourigenesis, progression, differentiation, survival and chemoresistance. Despite the growing list of research data in this field, racial or ethnic comparison studies on these stem cells remain scanty. This study is a comparative racial analysis of putative breast cancer stem cells. Research articles on the clinicopathological significance of breast cancer stem cells within a period of 17 years (2003-2020) were reviewed across 5 major races (African/Black American, Asian, Caucasian/White, Hispanic/Latino, and American). The associations between the stem cells markers (CD44+/CD24-/low, BMI1, ALDH1, CD133, and GD2) and clinicopathological and clinical outcomes were analysed. A total of 40 studies were included in this study with 50% Asian, 25% Caucasian, 10% African, 5% American and 2.5% Hispanic/Latino, and 7.5% other mixed races. CD44+/CD24-/low has been associated with TNBC/Basal like phenotype across all races. It is generally associated with poor clinicopathological features such as age, tumour size, lymph node metastasis and lymphovascular invasion. In Asians, CD44+/CD24-/low was associated with DFS and OS but not in Caucasians. ALDH1 was the most studied breast CSC marker (40% of all studies on breast cancer stem cell markers) also associated with poor clinicopathological features including size, age, stage, lymph node metastasis and Nottingham Prognostic Index. ALDH1 was also associated with DFS and OS in Asians but not Caucasians. Racial variations exist in breast cancer stem cell pattern and functions but ill-defined due to multiple factors. Further research is required to better understand the role of breast CSC.
Collapse
Affiliation(s)
- Eric Gyan
- University of Nottingham, Division of Cancer and Stem Cells, School of Medical Sciences, Nottingham, UK; Kwame Nkrumah University of Science and Technology, Department of Molecular Medicine, School of Medical Sciences, Kumasi, Ghana; University of Health and Allied Sciences, Department of Pathology, School of Medicine, Ho, Ghana.
| | - William K B A Owiredu
- Kwame Nkrumah University of Science and Technology, Department of Molecular Medicine, School of Medical Sciences, Kumasi, Ghana
| | - Linda Ahenkorah Fondjo
- Kwame Nkrumah University of Science and Technology, Department of Molecular Medicine, School of Medical Sciences, Kumasi, Ghana
| | - Andrew M Jackson
- University of Nottingham, Division of Cancer and Stem Cells, School of Medical Sciences, Nottingham, UK
| | - Andrew R Green
- University of Nottingham, Division of Cancer and Stem Cells, School of Medical Sciences, Nottingham, UK
| | - Ganiyu A Rahman
- University of Cape Coast, School of Medical Sciences, Department of Surgery, Cape Coast, Ghana
| |
Collapse
|
5
|
Hapidah H, Djabir YY, Prihantono P. Increased aldehyde dehydrogenase 1 (ALDH1) levels are associated with chemo-responsiveness in breast cancer patients treated with taxane-adriamycin-cyclophosphamide regimen. Breast Dis 2021; 40:S33-S37. [PMID: 34057116 DOI: 10.3233/bd-219005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Increased plasma aldehyde dehydrogenase 1 (ALDH1) levels have been proposed to predict cancer chemoresistance. However, studies have reported inconsistent results, depending on the type of cancer cells used. OBJECTIVE This study aimed to investigate the correlation between plasma levels of ALDH1 and chemotherapy responses to the taxane-adriamycin-cyclophosphamide (TAC) regimen in breast cancer patients. METHODS Thirty breast cancer patients who underwent chemotherapy using the TAC regimen were included in this study. Blood sampling was performed before chemotherapy was initiated and after the first and third cycles of chemotherapy administration. After 3 cycles of chemotherapy, patients were categorized as non-responsive if the tumor size was reduced <30%, if the tumor size remained the same or increased, or if any new tumors were discovered. Patients were defined as responsive after 3 cycles of chemotherapy if the tumor mass disappeared, if the tumor size was reduced by at least 30% of the initial size and if no new tumors were found. RESULTS Among the 30 patients, only five were responsive to the TAC regimen. The clinical response to TAC was not correlated with the patient's age, cancer grading, or tumor stage. A change in the ALDH1 levels was observed after the third cycle of TAC administration, with significantly higher ALDH1 levels observed in responsive compared with non-responsive patients (p < 0.05). CONCLUSION The results of this study may indicate a role for ALDH1 in chemoresponsiveness, rather than chemoresistance, for the TAC regimen in breast cancer patients. Further research remains necessary to confirm this result.
Collapse
Affiliation(s)
- Hapidah Hapidah
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Yulia Yusrini Djabir
- Laboratory of Clinical Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Prihantono Prihantono
- Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
6
|
Razmi M, Ghods R, Vafaei S, Sahlolbei M, Saeednejad Zanjani L, Madjd Z. Clinical and prognostic significances of cancer stem cell markers in gastric cancer patients: a systematic review and meta-analysis. Cancer Cell Int 2021; 21:139. [PMID: 33639931 PMCID: PMC7912890 DOI: 10.1186/s12935-021-01840-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) is considered one of the most lethal malignancies worldwide, which is accompanied by a poor prognosis. Although reports regarding the importance of cancer stem cell (CSC) markers in gastric cancer progression have rapidly developed over the last few decades, their clinicopathological and prognostic values in gastric cancer still remain inconclusive. Therefore, the current meta-analysis aimed to quantitatively re-evaluate the association of CSC markers expression, overall and individually, with GC patients’ clinical and survival outcomes. Methods Literature databases including PubMed, Scopus, ISI Web of Science, and Embase were searched to identify the eligible articles. Hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs) were recorded or calculated to determine the relationships between CSC markers expression positivity and overall survival (OS), disease-free survival (DFS)/relapse-free survival (RFS), disease-specific survival (DSS)/ cancer-specific survival (CSS), and clinicopathological features. Results We initially retrieved 4,425 articles, of which a total of 66 articles with 89 studies were considered as eligible for this meta-analysis, comprising of 11,274 GC patients. Overall data analyses indicated that the overexpression of CSC markers is associated with TNM stage (OR = 2.19, 95% CI 1.84–2.61, P = 0.013), lymph node metastasis (OR = 1.76, 95% CI 1.54–2.02, P < 0.001), worse OS (HR = 1.65, 95% CI 1.54–1.77, P < 0.001), poor CSS/DSS (HR = 1.69, 95% CI 1.33–2.15, P < 0.001), and unfavorable DFS/RFS (HR = 2.35, 95% CI 1.90–2.89, P < 0.001) in GC patients. However, CSC markers expression was found to be slightly linked to tumor differentiation (OR = 1.25, 95% CI 1.01–1.55, P = 0.035). Sub-analysis demonstrated a significant positive relationship between most of the individual markers, specially Gli-1, Oct-4, CD44, CD44V6, and CD133, and clinical outcomes as well as the reduced survival, whereas overexpression of Lgr-5, Nanog, and sonic hedgehog (Shh) was not found to be related to the majority of clinical outcomes in GC patients. Conclusion The expression of CSC markers is mostly associated with worse outcomes in patients with GC, both overall and individual. The detection of a combined panel of CSC markers might be appropriate as a prognostic stratification marker to predict tumor aggressiveness and poor prognosis in patients with GC, which probably results in identifying novel potential targets for therapeutic approaches.
Collapse
Affiliation(s)
- Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sahlolbei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Lv J, Liu Y, Cheng F, Li J, Zhou Y, Zhang T, Zhou N, Li C, Wang Z, Ma L, Liu M, Zhu Q, Liu X, Tang K, Ma J, Zhang H, Xie J, Fang Y, Zhang H, Wang N, Liu Y, Huang B. Cell softness regulates tumorigenicity and stemness of cancer cells. EMBO J 2021; 40:e106123. [PMID: 33274785 PMCID: PMC7809788 DOI: 10.15252/embj.2020106123] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 12/26/2022] Open
Abstract
Identifying and sorting highly tumorigenic and metastatic tumor cells from a heterogeneous cell population is a daunting challenge. Here, we show that microfluidic devices can be used to sort marker-based heterogeneous cancer stem cells (CSC) into mechanically stiff and soft subpopulations. The isolated soft tumor cells (< 400 Pa) but not the stiff ones (> 700 Pa) can form a tumor in immunocompetent mice with 100 cells per inoculation. Notably, only the soft, but not the stiff cells, isolated from CD133+ , ALDH+ , or side population CSCs, are able to form a tumor with only 100 cells in NOD-SCID or immunocompetent mice. The Wnt signaling protein BCL9L is upregulated in soft tumor cells and regulates their stemness and tumorigenicity. Clinically, BCL9L expression is correlated with a worse prognosis. Our findings suggest that the intrinsic softness is a unique marker of highly tumorigenic and metastatic tumor cells.
Collapse
Affiliation(s)
- Jiadi Lv
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Yaoping Liu
- Institute of MicroelectronicsPeking UniversityBeijingChina
| | - Feiran Cheng
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Jiping Li
- Beijing Smartchip Microelectronics Technology Company LimitedBeijingChina
| | - Yabo Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Tianzhen Zhang
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Nannan Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Cong Li
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Zhenfeng Wang
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Longfei Ma
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Mengyu Liu
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Qiang Zhu
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Xiaohan Liu
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Ke Tang
- Department of Biochemistry & Molecular BiologyTongji Medical CollegeHuazhong University of Science & TechnologyWuhanChina
| | - Jingwei Ma
- Department of Biochemistry & Molecular BiologyTongji Medical CollegeHuazhong University of Science & TechnologyWuhanChina
| | - Huafeng Zhang
- Department of Biochemistry & Molecular BiologyTongji Medical CollegeHuazhong University of Science & TechnologyWuhanChina
| | - Jing Xie
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Yi Fang
- National Cancer Center/Cancer HospitalCAMSBeijingChina
| | - Haizeng Zhang
- National Cancer Center/Cancer HospitalCAMSBeijingChina
| | - Ning Wang
- Deaprtment of Mechanical Science and TechnologyThe Grainger College of EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Yuying Liu
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
- Clinical Immunology CenterCAMSBeijingChina
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
- Department of Biochemistry & Molecular BiologyTongji Medical CollegeHuazhong University of Science & TechnologyWuhanChina
- Clinical Immunology CenterCAMSBeijingChina
| |
Collapse
|
8
|
Li Y, Wu C. LINC00261/microRNA-550a-3p/SDPR axis affects the biological characteristics of breast cancer stem cells. IUBMB Life 2020; 73:188-201. [PMID: 33274565 DOI: 10.1002/iub.2416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play key roles in the pathogenesis of breast cancer (BC). The study was to explore the effect of long non-coding RNA LINC00261/microRNA (miR)-550a-3p/serum deprivation response (SDPR) axis on the biological characteristics of BC stem cells (BCSCs). BC and adjacent normal tissues of patients were collected. LINC00261, miR-550a-3p and SDPR expression in BC tissues and cell lines and CD24 and CD44 expression in BC tissues was detected. CD44+ /CD24-/low BCSCs were sorted. CD44+ /CD24-/low MDA-MB-231 and MCF-7 cells were screened and transfected with altered expression of LINC00261 or miR-550a-3p to explore their roles in cell viability, microsphere (MS) formation ability, migration and invasion of CD44+ /CD24-/low BCSCs. The targeting relationships of LINC00261, miR-550a-3p and SDPR were detected. Reduced LINC00261, decreased SDPR and elevated miR-550a-3p exhibited in BC tissues of patients and cell lines. Elevated CD44+/ CD24- were present in BC tissues. LINC00261 up-regulated SDPR expression as a sponge of miR-550a-3p. Elevated LINC00261 suppressed BC cell viability, MS formation ability, migration and invasion of CD44+ /CD24-/low BCSCs. Moreover, up-regulated miR-550a-3p reversed the inhibitive effect of elevated LINC00261 on BCSCs, and reduced SDPR reversed the promotive effect of decreased miR-550a-3p on BCSCs. The study highlights that LINC00261 can adsorb miR-550a-3p to modulate SDPR, thus inhibiting the viability and MS formation of BC cells, reducing migration and invasion of CD44+ /CD24-/low BCSCs, exerting a potential effect on therapy.
Collapse
Affiliation(s)
- Yi Li
- Department of Breast Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Chihua Wu
- Department of Breast Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
9
|
Breast cancer stem cells: A fallow research ground in Africa. Pathol Res Pract 2020; 216:153118. [PMID: 32853953 DOI: 10.1016/j.prp.2020.153118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
|
10
|
Lin YY, Wang CY, Phan NN, Chiao CC, Li CY, Sun Z, Hung JH, Chen YL, Yen MC, Weng TY, Hsu HP, Lai MD. PODXL2 maintains cellular stemness and promotes breast cancer development through the Rac1/Akt pathway. Int J Med Sci 2020; 17:1639-1651. [PMID: 32669966 PMCID: PMC7359396 DOI: 10.7150/ijms.46125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
The cluster of differentiation 34 (CD34) family, which includes CD34, podocalyxin-like protein 1 (PODXL), and PODXL2, are type-I transmembrane sialomucins and markers of hematopoietic stem cells (HSCs) and vascular-associated tissues. CD34 family proteins are expressed by endothelial cells and hematopoietic precursors. PODXL is well known to be associated with invadopodia formation and to promote the epithelial-mesenchymal transition, tumor migration and invasion. PODXL expression was correlated with poor survival of cancer patients. However, the role of PODXL2 in cancer has been less fully explored. To reveal the novel role of PODXL2 in breast cancer, the present study evaluated PODXL2 levels in relation to clinical outcomes of cancer patients by performing a bioinformatics analysis using the Oncomine database, Kaplan-Meier plots, and the CCLE database. Empirical validation of bioinformatics predictions was conducted utilizing the short hairpin (sh)-RNA silencing method for PODXL2 in the BT474 invasive ductal breast carcinoma cell line. The bioinformatics analysis revealed that PODXL2 overexpression was correlated with poor survival of breast cancer patients, suggesting an oncogenic role of PODXL2 in breast carcinoma. In a validation experiment, knockdown of PODXL2 in BT474 cells slightly influenced cell proliferation, suppressed migration, and inhibited expressions of downstream molecules, including Ras-related C3 botulinum toxin substrate 1 (Rac1), phosphorylated (p)-Akt (S473), and p-paxillin (Y31) proteins. In addition, knockdown of PODXL2 reduced expression levels of cancer stem cell (CSC) markers, including Oct-4 and Nanog, and the breast CSC marker aldehyde dehydrogenase 1 (ALDH1). Collectively, our present study demonstrated that PODXL2 plays a crucial role in cancer development and could serve as a potential prognostic biomarker in breast cancer patients.
Collapse
Affiliation(s)
- Yi-Yi Lin
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Nam Nhut Phan
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Chung-Chieh Chiao
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chung-Yen Li
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Zhengda Sun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Yi-Ling Chen
- Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Yang Weng
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.,Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
11
|
BRCA1 regulates the cancer stem cell fate of breast cancer cells in the context of hypoxia and histone deacetylase inhibitors. Sci Rep 2019; 9:9702. [PMID: 31273285 PMCID: PMC6609720 DOI: 10.1038/s41598-019-46210-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer cell stemness is essential for enabling malignant progression and clonal evolution. Cancer cell fate is likely determined by complex mechanisms involving both cell-intrinsic pathways and stress signals from tumor microenvironment. In this study, we examined the role of the tumor suppressor BRCA1 and hypoxia in the regulation of cancer cell stemness using genetically matched breast cancer cell lines. We have found that BRCA1, a multifunctional protein involved in DNA repair and epigenetic regulation, plays a critical role in the regulation of cancer stem cell (CSC)-like characteristics. Reconstitution of BRCA1 resulted in significant decrease of the CSC-like populations in breast cancer cells whereas down-regulation of BRCA1 resulted in significant increase of the CSC-like populations. Furthermore, the BRCA1-reconstituted tumor cells are more sensitive to the histone deacetylase (HDAC) inhibitor-induced loss of stemness than the BRCA1-deficient cells are. Surprisingly, hypoxia preferentially blocks HDAC inhibitor-induced differentiation of the BRCA1-reconstituted breast cancer cells. In light of the increasing numbers of clinical trials involving HDAC inhibitors in human cancers, our observations strongly suggest that the BRCA1 status and tumor hypoxia should be considered as potentially important clinical parameters that may affect the therapeutic efficacy of HDAC inhibitors.
Collapse
|
12
|
Wang Q, Zhong Y, Liu W, Wang Z, Gu L, Li X, Zheng J, Du H, Zhong Z, Xie F. Enhanced chemotherapeutic efficacy of the low-dose doxorubicin in breast cancer via nanoparticle delivery system crosslinked hyaluronic acid. Drug Deliv 2019; 26:12-22. [PMID: 30691317 PMCID: PMC6352940 DOI: 10.1080/10717544.2018.1507057] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite the development of treatment options in breast cancer, many patients die of recurrence and metastasis. Owing to enhanced permeability and retention in solid tumor tissue, nanoparticle (NP) delivery systems have been emerged as novel strategy in cancer chemotherapy. As extracellular matrix, glycosaminoglycan hyaluronan (HA) could bind its surface receptor adhesion molecule CD44 which is strongly expressed on breast cancer. We have previously reported a doxorubicin (DOX)-loaded HA-Lys-LA X-NPs (X-NP-DOX) NP delivery system for breast cancer treatment. In this study, we further investigated the antitumor effect of X-NP-DOX NP delivery system using low-dose DOX in both in vitro and in vivo systems. We demonstrated that low-dose X-NP-DOX possessed the ability for inhibiting MCF-7 breast cancer cell growth, invasion, and migration, and inducing apoptosis in vitro. In in vivo experiments, injection of low-dose X-NP-DOX into tumor-bearing mouse resulted in significant reduction of tumor size. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining further revealed that low-dose X-NP-DOX induced higher percentage of apoptotic cells compared with free DOX or saline. Furthermore, our study demonstrated that low-dose X-NP-DOX inhibited Notch1 and Ras/MAPK pathways, decreased cancer stem cell population, and reduced tumorigenesis compared to free DOX in both in vitro and in vivo settings. Owing to its enhanced efficacy and higher targetability compared to free DOX, low-dose DOX delivered by NP system may be a promising novel strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Qin Wang
- a Department of Pathology, Institutes of Biology and Medical Sciences , Soochow University Medical College, Soochow University , Suzhou P. R. China.,b Department of Immunology, Institutes of Biology and Medical Sciences , Soochow University Medical College, Soochow University , Suzhou , P. R. China
| | - Yinan Zhong
- c Biomedical Polymers Laboratory, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou P. R. China
| | - Wenting Liu
- a Department of Pathology, Institutes of Biology and Medical Sciences , Soochow University Medical College, Soochow University , Suzhou P. R. China.,d Department of Pathology , The Frist Affiliated Hospital of Soochow University , Suzhou , P.R. China
| | - Zemin Wang
- e Investigative Toxicology and Pathology Laboratory, School of Public Health , Indiana University , Bloomington , IN , USA
| | - Liqin Gu
- f Department of Pathology , Taicang Traditional Medicine Hospital of Jiangsu Province , Taicang , P.R. China
| | - Xuejiao Li
- a Department of Pathology, Institutes of Biology and Medical Sciences , Soochow University Medical College, Soochow University , Suzhou P. R. China
| | - Jiqing Zheng
- a Department of Pathology, Institutes of Biology and Medical Sciences , Soochow University Medical College, Soochow University , Suzhou P. R. China
| | - Huan Du
- a Department of Pathology, Institutes of Biology and Medical Sciences , Soochow University Medical College, Soochow University , Suzhou P. R. China
| | - Zhiyuan Zhong
- c Biomedical Polymers Laboratory, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou P. R. China
| | - Fang Xie
- a Department of Pathology, Institutes of Biology and Medical Sciences , Soochow University Medical College, Soochow University , Suzhou P. R. China
| |
Collapse
|
13
|
Clinicopathological significance of cancer stem cell markers CD44 and ALDH1 expression in breast cancer. Breast Cancer 2018; 25:698-705. [DOI: 10.1007/s12282-018-0875-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/20/2018] [Indexed: 01/14/2023]
|
14
|
Lee A, Won KY, Lim SJ, Cho SY, Han SA, Park S, Song JY. ALDH1 and tumor infiltrating lymphocytes as predictors for neoadjuvant chemotherapy response in breast cancer. Pathol Res Pract 2018; 214:619-624. [DOI: 10.1016/j.prp.2018.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/27/2018] [Accepted: 04/13/2018] [Indexed: 11/24/2022]
|
15
|
Kim H, Lin Q, Glazer PM, Yun Z. The hypoxic tumor microenvironment in vivo selects the cancer stem cell fate of breast cancer cells. Breast Cancer Res 2018; 20:16. [PMID: 29510720 PMCID: PMC5840770 DOI: 10.1186/s13058-018-0944-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/19/2018] [Indexed: 12/23/2022] Open
Abstract
Background Tumor hypoxia is an independent prognostic factor associated with poor patient survival. Emerging evidence suggests that hypoxia can potentially maintain or enhance the stem cell phenotype of both normal stem cells and cancer cells. However, it remains to be determined whether cell fate is regulated in vivo by the hypoxic tumor microenvironment (TME). Methods We established a hypoxia-sensing xenograft model to identify hypoxic tumor cell in vivo primarily using human breast cancer cell lines MDA-MB-231 and MCF7. Hypoxic tumor cells were identified in situ by fluorescence of green fluorescence protein. They were further isolated from xenografts, purified and sorted by flow cytometry for detailed analysis of their stem cell characteristics. Results We have found that hypoxic tumor cells freshly isolated from xenografts contain increased subpopulations of tumor cells with cancer stem cell (CSC)-like characteristics. The CSC characteristics of the hypoxic tumor cells are further enhanced upon re-implantation in vivo, whereas secondary xenografts derived from the non-hypoxic tumor cells remain similar to the primary xenografts. Interestingly, the phenotypes exhibited by the hypoxic tumor cells are stable and remain distinctively different from those of the non-hypoxic tumor cells isolated from the same tumor mass even when they are maintained under the same ambient culture conditions. Mechanistically, the PI3K/AKT pathway is strongly potentiated in the hypoxic tumor cells and is required to maintain the CSC-like phenotype. Importantly, the differential cell fates between hypoxic and non-hypoxic tumor cells are only found in tumor cells isolated from the hypoxic TME in vivo and are not seen in tumor cells treated by hypoxia in vitro alone. Conclusions These previously unknown observations suggest that the hypoxic TME may promote malignant progression and therapy resistance by coordinating induction, selection and/or preferential maintenance of the CSC-like phenotype in tumor cells. Electronic supplementary material The online version of this article (10.1186/s13058-018-0944-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hoon Kim
- Department of Therapeutic Radiology, Yale University School of Medicine, P. O. Box 208040, New Haven, CT, 06520-8040, USA
| | - Qun Lin
- Department of Therapeutic Radiology, Yale University School of Medicine, P. O. Box 208040, New Haven, CT, 06520-8040, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, P. O. Box 208040, New Haven, CT, 06520-8040, USA
| | - Zhong Yun
- Department of Therapeutic Radiology, Yale University School of Medicine, P. O. Box 208040, New Haven, CT, 06520-8040, USA.
| |
Collapse
|
16
|
Cong F, Yu H, Gao X. Expression of CD24 and B7-H3 in breast cancer and the clinical significance. Oncol Lett 2017; 14:7185-7190. [PMID: 29344150 PMCID: PMC5754897 DOI: 10.3892/ol.2017.7142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022] Open
Abstract
This study aimed to investigate the correlation between the expression of CD24 and B7-H3 in breast cancer tissues and the clinical significance. Expression of CD24 and B7-H3 in breast cancer and adjacent tissues were detected by immunohistochemistry. Quantitative PCR was used to detect the expression of CD24 and B7-H3 mRNA in breast cancer and adjacent tissues. The expression of CD24 and B7-H3 protein in breast cancer and adjacent tissues was detected by immunoblotting. The correlation between the expression levels of the two proteins was analyzed and the relationship between the expression of two proteins and the 5-year survival of breast cancer patients was investigated. CD24 and B7-H3 were positively expressed in breast cancer and adjacent tissues, the CD24-positive rate was 75.7 and 25.7%, respectively, and the B7-H3-positive rate was 56.8 and 43.2%, respectively, and the differences were statistically significant (P<0.05). The expression of CD24 was positively correlated with the expression of B7-H3 (Spearman's correlation coefficient r, 0.297; p=0.036). The positive and negative expression of CD24 and B7-H3 significantly affected the 5-year survival of breast cancer patients (P<0.05). Quantitative PCR results showed that the expression levels of CD24 and B7-H3 mRNA in breast cancer tissues were significantly higher than those in adjacent tissues (P<0.05). The expression levels of CD24 and B7-H3 protein in breast cancer tissues were also significantly higher than those in adjacent tissues (P<0.05). CD24 and B7-H3 were highly expressed in breast cancer, suggesting that both CD24 and B7-H3 were related to the development of breast cancer. Five-year survival analysis of breast cancer patients showed that the high expression of CD24 and B7-H3 were correlated with the poor prognosis of patients. Thus, CD24 and B7-H3 may become new targets for the treatment of breast cancer.
Collapse
Affiliation(s)
- Fang Cong
- Department of General Surgery, Weihai Wendeng People's Hospital, Weihai, Shandong 264400, P.R. China
| | - Haitao Yu
- Department of Clinical Laboratories, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Xiuhua Gao
- Department of Breast Surgery, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| |
Collapse
|
17
|
Clinicopathological and prognostic value of CD24 expression in breast cancer: a meta-analysis. Int J Biol Markers 2017; 32:e182-e189. [PMID: 28315505 DOI: 10.5301/jbm.5000254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND A number of studies have been conducted to explore the relationship between CD24 expression and the prognosis of breast cancer; however, the results remain inconsistent. Therefore, we performed this meta-analysis to clarify the impact of CD24 expression on clinicopathological features and prognosis of breast cancer. METHODS A comprehensive literature search for relevant studies was performed, and statistical analysis was conducted using Stata software. RESULTS Twenty studies, including 5,179 cases, were included in this meta-analysis. The pooled analysis indicated that CD24 expression was associated with lymph node invasion (odds ratio [OR] = 0.68, for negative vs. positive, 95% confidence interval [95% CI], 0.53-0.87, p = 0.002) and TNM stage (OR = 0.63, for I + II vs. III + IV, 95% CI, 0.49-0.81, p<0.001). The prognosis analysis also suggested CD24 overexpression indicated a poorer 5-year overall survival (OS) rate (relative risk ratio [RR] = 0.93, 95% CI, 0.86-0.99, p = 0.03) and 5-year disease-free survival (DFS) rate (RR = 0.90, 95% CI, 0.83-0.98, p = 0.02). However, CD24 expression had no correlation with tumor size, tumor grade, distance metastasis, estrogen receptor (ER) status, progesterone receptor (PR) status, or HER2 status. CONCLUSIONS Our results suggest that higher CD24 expression is significantly associated with lower OS rate, lower DFS rate and some clinicopathological factors such as lymph node invasion and TNM stage. This meta-analysis suggested that CD24 is an efficient prognostic factor in breast cancer.
Collapse
|
18
|
Prognostic significance of CD24 and CD44 in breast cancer: a meta-analysis. Int J Biol Markers 2017; 32:e75-e82. [PMID: 27470135 DOI: 10.5301/jbm.5000224] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Numerous studies have focused on the prognostic roles of CD24 and CD44 in breast cancer, but the results have been equivocal. The aim of this study was to gain better insight into the relationship between expression of CD24 and of CD44, either alone or in combination, and prognostic parameters in breast cancer. METHODS Publications addressing the associations of CD24 or CD44 expression with survival outcome in breast cancer were selected for the meta-analysis according to defined criteria. Studies were pooled and odds ratios (ORs) or hazard ratios (HRs) were calculated. Publication bias and sensitivity analyses were also conducted. RESULTS Sixteen studies comprising 5,697 breast cancer cases were included in our meta-analysis. Overall, CD24 overexpression was significantly associated with histological grade (OR = 1.52; 95% CI 1.12-2.06, p = 0.007), stage (OR = 1.74; 95% CI 1.27-2.40, p<0.001), shortened overall survival (HR = 1.48; 95% CI 1.21-1.80, p<0.001) and disease-free survival (HR 1.45, 95% CI 1.19-1.76, p<0.001), while no such association was observed when we limited our analysis to CD44 and CD44+/CD24- phenotypes. Subgroup analyses for CD24 according to the studies categorized by ethnicity, staining patterns and follow-up period were also conducted, and supported the stability of the prognostic role of CD24. CONCLUSIONS Our study demonstrated that the putative stem cell marker CD24 was significantly associated with worse survival based on the obtained data. In particular, CD24 may play a role in tumorigenesis and cancer progression. However, further large-scale studies are needed to confirm these findings.
Collapse
|
19
|
Li Z, Yin S, Zhang L, Liu W, Chen B, Xing H. Clinicopathological characteristics and prognostic value of cancer stem cell marker CD133 in breast cancer: a meta-analysis. Onco Targets Ther 2017; 10:859-870. [PMID: 28243121 PMCID: PMC5317305 DOI: 10.2147/ott.s124733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The association of CD133 overexpression with clinicopathological significance and prognosis in patients with breast cancer remains controversial. We thus performed a meta-analysis to evaluate the role of CD133 expression in the development and prognosis of breast cancer. Methods The databases PubMed, Embase, and Cochrane Library (updated to August 1, 2016) were searched. Pooled odds ratios (ORs) or hazard ratios (HRs) with 95% confidence intervals (95% CI) were used to evaluate the impact of CD133 expression on clinicopathological features, overall survival, and disease-free survival. Results A total of 1,734 patients from 13 studies were subject to final analysis. The results showed a significant association between overexpression of CD133 and estrogen receptor status (OR 0.35, 95% CI 0.18–0.70), progesterone receptor status (OR 0.56, 95% CI 0.43–0.74), human epidermal growth factor-2 status (OR 1.81, 95% CI 1.33–2.45), lymph node metastasis (OR 1.98, 95% CI 1.34–2.92), and tumor histological grade (OR 1.79, 95% CI 1.26–2.54) in breast cancer. However, no significant correlation was found between upregulation of CD133 expression and onset age (OR 1.03, 95% CI 0.70–1.53) or tumor size (OR 1.29, 95% CI 0.80–2.09). Moreover, CD133-positive breast cancer patients had a higher risk of mortality (HR 1.91, 95% CI 1.21–3.03) and disease progression (HR 2.70, 95% CI 1.05–6.95). Conclusion This meta-analysis suggested that CD133 might be a predictor of clinical outcomes as well as prognosis and could be a potentially new gene therapy target for breast cancer patients.
Collapse
Affiliation(s)
- Zhan Li
- Department of Breast Surgery
| | - Songcheng Yin
- Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning
| | | | | | - Bo Chen
- Department of Breast Surgery
| | - Hua Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
20
|
Kim WG, Lee J. Axillary Skip Metastases and the False-Negative Rate of Sentinel Lymph Node Biopsy in Patients With Breast Cancer Are Related to Negative ALDH-1 Expression and Ki-67 Expression. Int J Surg Pathol 2017; 25:397-405. [DOI: 10.1177/1066896917690024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Breast cancer stem cells (CSCs) have been hypothesized to be the driving force behind tumorigenesis and metastasis. In this study, we evaluated the relationships between CSC expressions in primary breast cancers and corresponding metastatic sentinel and nonsentinel lymph nodes (SLNs and NSLNs). The clinical implications of these relationships were also investigated. CSC expressions were evaluated in 167 breast cancer specimens and associated lymph node biopsies (when present). We used double immunohistochemistry of CD44/CD24 and single immunohistochemistry of ALDH-1 on paraffin-embedded breast tissue, SLN, and NSLN specimens. Seven cases had metastatic NSLNs without SLN involvement—so-called “skip metastasis.” Fifty cases of SLNs (29.9%) and 33 cases of NSLNs (25.7%) had metastases. In the breast cancers, metastatic SLNs, and NSLNs, the expression rates of CD44+/CD24− were 47.9%, 26.1%, and 34.6 %, respectively, while the expression rates of ALDH-1+ were 42.5%, 36.4%, and 33.3%, respectively. Significant relationships were not observed between CSC expressions in breast cancer and metastatic SLNs or NSLNs. The presence of skip metastasis correlated with negative ALDH-1 in breast cancer ( P = .04), as well as several clinicopathologic factors: age >50 years ( P = .004), negative lymphovascular tumor emboli ( P = .02), and high Ki-67 expression ( P = .04). Axillary lymph node metastasis showed no significant relationship with any CSC marker. However, CD44+/CD24− and ALDH-1 expressions of metastatic SLNs correlated with CSCs of primary breast cancers. In summary, skip metastasis correlated with negative expression of ALDH-1 in primary breast cancers, which could be promising as a means of assessing the risk of skip metastasis.
Collapse
Affiliation(s)
- Woo Gyeong Kim
- Department of Pathology, Inje University Haeundae Paik Hospital, Busan, Republic of Korea
| | - JungSun Lee
- Department of Surgery, Inje University Haeundae Paik Hospital, Busan, Republic of Korea
| |
Collapse
|
21
|
Yang Z, Sun N, Cheng R, Zhao C, Liu J, Tian Z. Hybrid nanoparticles coated with hyaluronic acid lipoid for targeted co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells. J Mater Chem B 2017; 5:6762-6775. [DOI: 10.1039/c7tb01510k] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
HA-modified hybrid nanoparticles for targeted co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells.
Collapse
Affiliation(s)
- Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Na Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Rui Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Chenyang Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Jie Liu
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangdong 510006
- China
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an 710049
- China
| |
Collapse
|
22
|
Ham SL, Joshi R, Luker GD, Tavana H. Engineered Breast Cancer Cell Spheroids Reproduce Biologic Properties of Solid Tumors. Adv Healthc Mater 2016; 5:2788-2798. [PMID: 27603912 PMCID: PMC5142748 DOI: 10.1002/adhm.201600644] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/03/2016] [Indexed: 01/11/2023]
Abstract
Solid tumors develop as 3D tissue constructs. As tumors grow larger, spatial gradients of nutrients and oxygen and inadequate diffusive supply to cells distant from vasculature develops. Hypoxia initiates signaling and transcriptional alterations to promote survival of cancer cells and generation of cancer stem cells (CSCs) that have self-renewal and tumor-initiation capabilities. Both hypoxia and CSCs are associated with resistance to therapies and tumor relapse. This study demonstrates that 3D cancer cell models, known as tumor spheroids, generated with a polymeric aqueous two-phase system (ATPS) technology capture these important biological processes. Similar to solid tumors, spheroids of triple negative breast cancer cells deposit major extracellular matrix proteins. The molecular analysis establishes presence of hypoxic cells in the core region and expression of CSC gene and protein markers including CD24, CD133, and Nanog. Importantly, these spheroids resist treatment with chemotherapy drugs. A combination treatment approach using a hypoxia-activated prodrug, TH-302, and a chemotherapy drug, doxorubicin, successfully targets drug resistant spheroids. This study demonstrates that ATPS spheroids recapitulate important biological and functional properties of solid tumors and provide a unique model for studies in cancer research.
Collapse
Affiliation(s)
- Stephanie L. Ham
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, United States
| | - Ramila Joshi
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, United States
| | - Gary D. Luker
- Department of Radiology, Microbiology and Immunology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, United States
| |
Collapse
|
23
|
Ieni A, Tuccari G. Comments on the "Prognostic Impact and Clinicopathological Correlation of CD133 and ALDH1 Expression in Invasive Breast Cancer". J Breast Cancer 2016; 19:96-8. [PMID: 27064968 PMCID: PMC4822115 DOI: 10.4048/jbc.2016.19.1.96] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/21/2016] [Indexed: 01/13/2023] Open
Affiliation(s)
- Antonio Ieni
- Department of Human Pathology "Gaetano Barresi", University of Messina, Messina; Azienda Ospedaliera Universitaria "Policlinico Gaetano Martino", Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology "Gaetano Barresi", University of Messina, Messina; Azienda Ospedaliera Universitaria "Policlinico Gaetano Martino", Messina, Italy
| |
Collapse
|
24
|
Fargeas CA, Corbeil D. Comments on the "Prognostic Impact and Clinicopathological Correlation of CD133 and ALDH1 Expression in Invasive Breast Cancer" and the "Commentary by Antonio Ieni and Giovanni Tuccari". J Breast Cancer 2016; 19:336-338. [PMID: 27721886 PMCID: PMC5053321 DOI: 10.4048/jbc.2016.19.3.336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/27/2016] [Indexed: 11/30/2022] Open
Affiliation(s)
- Christine A. Fargeas
- Tissue Engineering Laboratories (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Denis Corbeil
- Tissue Engineering Laboratories (BIOTEC), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|