1
|
Mosaoa RM, Al-Rabia MW, Asfour HZ, Alhakamy NA, Mansouri RA, El-Agamy DS, Abdulaal WH, Mohamed GA, Ibrahim SRM, Elshal M. Targeting SIRT1/AMPK/Nrf2/NF-кB by sitagliptin protects against oxidative stress-mediated ER stress and inflammation during ANIT-induced cholestatic liver injury. Toxicology 2024; 507:153889. [PMID: 39029735 DOI: 10.1016/j.tox.2024.153889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Intrahepatic cholestasis is a common clinical form of hepatobiliary injury characterized by the intrahepatic accumulation of toxic bile acids. Besides its antidiabetic activity, the dipeptidyl peptidase IV inhibitor sitagliptin (SG) has been recently assigned diverse pharmacological activities and therapeutic potential against different disorders owing to its emerging antioxidant and anti-inflammatory properties. The current study explored the potential hepatoprotective effect of SG on α-naphthyl isothiocyanate (ANIT)-induced cholestatic liver injury (CLI) in mice and investigate its possible targeted signaling pathways. Mice received SG (10 and 20 mg/kg) for four consecutive days, two days before and after a single oral administration of ANIT (75 mg/kg). Our results revealed that SG administration remarkably prevented ANIT-induced histopathological lesions in the liver and maintained hepatic functions and oxidative/antioxidant balance. Ultimately, SG counteracted the inflammatory response in the liver, as indicated by the marked suppression of hepatic expression of NF-κB, TNF-α, and IL-6. Moreover, it inhibited the endoplasmic reticulum (ER) stress response in the liver. These beneficial effects of SG were accompanied by upregulation of SIRT1, p-AMPK, and Nrf2 expressions while downregulating keap1 expression in the liver. In conclusion, this study is the first to demonstrate the ability of SG to protect against ANIT-induced CLI through modulating multiple signaling cascades, including SIRT1/AMPK, Nrf2/keap1, and NF-кB, which resulted in enhanced antioxidant capacity and repressed inflammatory and ER stress responses in the liver.
Collapse
Affiliation(s)
- Rami M Mosaoa
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia; Experimental Biochemistry Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Artificial Intelligence for Precision Medicines, king Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohammed W Al-Rabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Hani Z Asfour
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Rasha A Mansouri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia.
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Wesam H Abdulaal
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia.
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
2
|
Zou B, Zhang S, Zhao J, Song G, Weng F, Xu X, Li F, Jin J, Yan D, Huang K, Liu C, Li Y, Qiu F. Glycyrrhetinic acid attenuates endoplasmic reticulum stress-induced hepatocyte apoptosis via CHOP/DR5/Caspase 8 pathway in cholestasis. Eur J Pharmacol 2023; 961:176193. [PMID: 37981257 DOI: 10.1016/j.ejphar.2023.176193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
Bile acid (BA)-induced apoptosis is a common pathologic feature of cholestatic liver injury. Glycyrrhetinic acid (GA) is the hepatoprotective constituent of licorice. In the present study, the anti-apoptotic potential of GA was investigated in wild type and macrophage-depleted C57BL/6 mice challenged with alpha-naphthyl isothiocyanate (ANIT), and hepatocytes stimulated with Taurocholic acid (TCA) or Tumor necrosis factor-alpha (TNF-α). Apoptosis was determined by TUNEL positive cells and expression of executioner caspases. Firstly, we found that GA markedly alleviated liver injury, accompanied with reduced positive TUNEL-staining cells, and expression of caspases 3, 8 and 9 in mice modeled with ANIT. Secondly, GA mitigated apoptosis in macrophage-depleted mice with exacerbated liver injury and augmented cell apoptosis. In vitro study, pre-treatment with GA reduced the expression of activated caspases 3 and 8 in hepatocytes stimulated with TCA, but not TNF-α. The ability of GA to ameliorate apoptosis was abolished in the presence of Tauroursodeoxycholic Acid (TUDCA), a chemical chaperon against Endoplasmic reticulum stress (ER stress). Furthermore, GA attenuated the over-expression of Glucose regulated protein 78 (GRP78), and blocked all three branches of Unfolded protein reaction (UPR) in cholestatic livers of mice induced by ANIT. GA also downregulated C/EBP homologous protein (CHOP) expression, accompanied with reduced expression of Death receptor 5 (DR5) and activation of caspase 8 in both ANIT-modeled mice and TCA-stimulated hepatocytes. The results indicate that GA inhibits ER stress-induced hepatocyte apoptosis in cholestasis, which correlates with blocking CHOP/DR5/Caspase 8 pathway.
Collapse
Affiliation(s)
- Bin Zou
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China
| | - Shuang Zhang
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China
| | - Jing Zhao
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China
| | - Guochao Song
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China
| | - Fengyi Weng
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China
| | - Xiaoqing Xu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China
| | - Fengling Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China
| | - Jingyi Jin
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China
| | - Dongming Yan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China
| | - Kai Huang
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China
| | - Chenghai Liu
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China.
| | - Yue Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China.
| | - Furong Qiu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201213, China.
| |
Collapse
|
3
|
Tak J, Kim SG. Effects of toxicants on endoplasmic reticulum stress and hepatic cell fate determination. Toxicol Res 2023; 39:533-547. [PMID: 37779594 PMCID: PMC10541383 DOI: 10.1007/s43188-023-00201-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 10/03/2023] Open
Abstract
Toxicant-induced injury is a significant global health issue. However, the mechanisms through which toxicants such as carbon tetrachloride, acetaminophen, dimethylformamide, cocaine, and morphine induce the death of multiple cell types and contribute to liver toxicity are highly complex. This phenomenon involves intricate signaling pathways in association with oxidative stress, inflammation, and activation of death receptors, which are closely linked to endoplasmic reticulum (ER) stress. ER stress initially triggers the unfolded protein response, which either promotes cell survival or causes cell death at later times, depending on the severity and duration of the stress. Thus, comprehending the molecular basis governing cell fate determination in the context of ER stress may provide key insights into the prevention and treatment of toxicant-induced injury. This review summarizes our current understanding of agents that trigger different forms of ER stress-mediated cell death, necroptosis, ferroptosis, pyroptosis, and apoptosis, and covers the underlying molecular basis of toxicant-induced ER stress, as well as potential target molecules.
Collapse
Affiliation(s)
- Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Kyeonggi-do 10326 Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Kyeonggi-do 10326 Republic of Korea
| |
Collapse
|
4
|
Cheng L, Liang Z, You X, Jia C, Liu Z, Sun F. The Role of the Mesencephalic Astrocyte-Derived Neurotrophic Factor in Patients in Intensive Care Units Receiving Voriconazole Therapy. J Clin Pharmacol 2023; 63:604-612. [PMID: 36609957 DOI: 10.1002/jcph.2201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Recent publications regarding the role of mesencephalic astrocyte-derived neurotrophic factor (MANF) in various metabolic and degenerative disorders suggest that MANF is both a marker of disease and a possible therapeutic agent. We investigate the role of plasma MANF levels in patients in intensive care units (ICUs) receiving voriconazole (VCZ) therapy while also comparing MANF levels in healthy individuals. A single-center prospective study was conducted. The plasma MANF level in patients in ICU was found to have high interindividual variability and was significantly higher than that in healthy controls (P < .01). Compared with patients using VCZ only, patients using both VCZ and amikacin had 3-fold lower MANF concentrations (P < .05). The MANF concentrations also decreased when alkaline phosphatase (ALP) and serum creatinine levels were above the upper limits of the normal range (P < .05) and the estimated glomerular filtration rate (eGFR) was below the lower limit of the normal range (P < .01). Receiver operating characteristic curve analysis indicated that low MANF levels were associated with high ALP levels, high creatinine levels, and low eGFR. The cut-off value of MANF for ALP levels higher than 126 U/L was 0.35 ng/mL (area under curve, AUC = 0.62, 95%CI = 0.50-0.74, P = .044); for serum creatinine levels higher than 104 μmol/L, the cut-off value was 0.41 ng/mL (AUC = 0.74, 95%CI = 0.62-0.87, P = .001); and for eGFR below 80 mL/min, the cut-off value was 0.75 ng/mL (AUC = 0.70, 95%CI = 0.59-0.81, P = .002). Monitoring plasma MANF levels may be of value for clinical decision-making regarding the choice of antibiotics and the prediction of impaired liver function and renal function in patients admitted to an ICU.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Pharmacy, The First Affiliated Hospital of the Army Medical University (Third Military Medical University), Chongqing, China
| | - Zaiming Liang
- Department of Pharmacy, The First Affiliated Hospital of the Army Medical University (Third Military Medical University), Chongqing, China
| | - Xi You
- Department of Pharmacy, The First Affiliated Hospital of the Army Medical University (Third Military Medical University), Chongqing, China
| | - Changsheng Jia
- Department of Pharmacy, The First Affiliated Hospital of the Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhirui Liu
- Department of Pharmacy, The First Affiliated Hospital of the Army Medical University (Third Military Medical University), Chongqing, China
| | - Fengjun Sun
- Department of Pharmacy, The First Affiliated Hospital of the Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
5
|
Pan PH, Wang YY, Lin SY, Liao SL, Chen YF, Huang WC, Chen CJ, Chen WY. 18β-Glycyrrhetinic Acid Protects against Cholestatic Liver Injury in Bile Duct-Ligated Rats. Antioxidants (Basel) 2022; 11:antiox11050961. [PMID: 35624826 PMCID: PMC9138139 DOI: 10.3390/antiox11050961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023] Open
Abstract
18β-Glycyrrhetinic acid is a nutraceutical agent with promising hepatoprotective effects. Its protective mechanisms against cholestatic liver injury were further investigated in a rodent model of extrahepatic cholestasis caused by Bile Duct Ligation (BDL) in rats. The daily oral administration of 18β-Glycyrrhetinic acid improved liver histology, serum biochemicals, ductular reaction, oxidative stress, inflammation, apoptosis, impaired autophagy, and fibrosis. 18β-Glycyrrhetinic acid alleviated the BDL-induced hepatic and systemic retention of bile acids, matrix-producing cell activation, hepatic collagen deposition, Transforming Growth Factor beta-1/Smad activation, malondialdehyde elevation, glutathione reduction, High Mobility Group Box-1/Toll-Like Receptor-4 activation, NF-κB activation, inflammatory cell infiltration/accumulation, Interleukin-1β expression, Signal Transducer and Activator of Transcription-1 activation, Endoplasmic Reticulum stress, impairment autophagy, and caspase 3 activation. Conversely, the protein expression of Sirt1, Farnesoid X Receptor, nuclear NF-E2-Related Factor-2, Transcription Factor EB, bile acid efflux transporters, and LC3-II, as well as the protein phosphorylation of AMP-Activated Protein Kinase, was promoted in 18β-Glycyrrhetinic acid-treated BDL rats. The hepatoprotective effects of 18β-Glycyrrhetinic acid in the present investigation correlated well with co-activation and possible interactions among Sirt, FXR, and Nrf2. The concurrent or concomitant activation of Sirt1, FXR, and Nrf2 not only restored the homeostatic regulation of bile acid metabolism, but also alleviated oxidative stress, inflammation, apoptosis, impaired autophagy, and fibrosis.
Collapse
Affiliation(s)
- Pin-Ho Pan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-C.H.)
- Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung City 435, Taiwan
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Yu-Fang Chen
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City 840, Taiwan;
| | - Wei-Chi Huang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-C.H.)
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
- Correspondence: (C.-J.C.); (W.-Y.C.); Tel.: +886-4-23592525 (ext. 4022) (C.-J.C.); +886-4-2284-0368 (W.-Y.C.)
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-C.H.)
- Correspondence: (C.-J.C.); (W.-Y.C.); Tel.: +886-4-23592525 (ext. 4022) (C.-J.C.); +886-4-2284-0368 (W.-Y.C.)
| |
Collapse
|
6
|
Shi Z, Song Y, Gao X, Loor JJ, Aboragah A, Yu H, Fang Z, Zhu Y, Du X, Li X, Gao W, Liu G. Disruption of endoplasmic reticulum homeostasis exacerbates liver injury in clinically ketotic cows. J Dairy Sci 2021; 104:9130-9141. [PMID: 34001360 DOI: 10.3168/jds.2021-20238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/10/2021] [Indexed: 12/19/2022]
Abstract
Disruption of endoplasmic reticulum (ER) homeostasis, a condition termed "ER stress," contributes to the development of liver injury in nonruminants. Because liver injury is a prominent pathological feature associated with overproduction of ketone bodies in dairy cows with ketosis, understanding the ER stress state and its functional consequences on liver injury is of particular interest. Here, 30 multiparous cows (within 3 wk postpartum) classified based on blood β-hydroxybutyrate (BHB) as healthy (n = 15, BHB <0.6 mM) or clinically ketotic (n = 15, BHB >3.0 mM) were used. Compared with healthy cows, ketotic cows had greater levels of serum fatty acids and activities of serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, γ-glutamyl transferase, and glutamate dehydrogenase but lower serum glucose. Furthermore, dairy cows with ketosis had greater protein abundance of ER stress markers in liver tissue, including protein kinase RNA-like ER kinase (PERK), inositol-requiring protein-1α (IRE1α), and cleaved activating transcription factor-6 (ATF6). Cows with ketosis also had higher mRNA levels of hepatic 78-kDa glucose-regulated protein (GRP78) and spliced X-box binding protein 1 (sXBP1). These data confirmed an enhanced ER stress state in clinically ketotic cows. To explore whether enhanced hepatic ER stress was induced by elevated ketone bodies and the possible contribution of ER stress to liver injury, in vitro experiments were then performed using isolated primary calf hepatocytes treated with incremental concentrations of BHB (0, 0.6, 1.2, 3.0, and 4.8 mM) for 12 h with or without overexpression of GRP78 (the master regulator of unfolded protein response). Phosphorylation levels of PERK and IRE1α proteins, level of cleaved ATF6 protein, and mRNA abundance of GRP78 and sXBP1 in hepatocytes increased after treatment with high (3.0 and 4.8 mM) BHB, indicating a mechanistic link between excessive BHB and enhanced hepatic ER stress. Furthermore, treatment with 3.0 and 4.8 mM BHB markedly elevated activities of aspartate aminotransferase and alanine aminotransferase in cell supernatant, indicating exacerbated hepatocyte damage after ER stress was enhanced. Overexpression of GRP78 attenuated both BHB-induced ER stress and the ensuing cellular damage, suggesting that hepatocyte damage caused by excessive BHB can be mediated via enhanced ER stress. Overall, the present study revealed that ER stress may exacerbate liver injury development in clinically ketotic cows, underscoring the biological relevance of this pathway in the context of liver injury.
Collapse
Affiliation(s)
- Zhen Shi
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Yuxiang Song
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xinxing Gao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Ahmad Aboragah
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Hao Yu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Zhiyuan Fang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Yiwei Zhu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xiliang Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Wenwen Gao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China.
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
7
|
Gijbels E, Pieters A, De Muynck K, Vinken M, Devisscher L. Rodent models of cholestatic liver disease: A practical guide for translational research. Liver Int 2021; 41:656-682. [PMID: 33486884 PMCID: PMC8048655 DOI: 10.1111/liv.14800] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Cholestatic liver disease denotes any situation associated with impaired bile flow concomitant with a noxious bile acid accumulation in the liver and/or systemic circulation. Cholestatic liver disease can be subdivided into different types according to its clinical phenotype, such as biliary atresia, drug-induced cholestasis, gallstone liver disease, intrahepatic cholestasis of pregnancy, primary biliary cholangitis and primary sclerosing cholangitis. Considerable effort has been devoted to elucidating underlying mechanisms of cholestatic liver injuries and explore novel therapeutic and diagnostic strategies using animal models. Animal models employed according to their appropriate applicability domain herein play a crucial role. This review provides an overview of currently available in vivo animal models, fit-for-purpose in modelling different types of cholestatic liver diseases. Moreover, a practical guide and workflow is provided which can be used for translational research purposes, including all advantages and disadvantages of currently available in vivo animal models.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium,Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Alanah Pieters
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Kevin De Muynck
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium,Hepatology Research UnitInternal Medicine and PaediatricsLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Lindsey Devisscher
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| |
Collapse
|
8
|
Ghanem CI, Manautou JE. Modulation of Hepatic MRP3/ABCC3 by Xenobiotics and Pathophysiological Conditions: Role in Drug Pharmacokinetics. Curr Med Chem 2019; 26:1185-1223. [PMID: 29473496 DOI: 10.2174/0929867325666180221142315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/17/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
Liver transporters play an important role in the pharmacokinetics and disposition of pharmaceuticals, environmental contaminants, and endogenous compounds. Among them, the family of ATP-Binding Cassette (ABC) transporters is the most important due to its role in the transport of endo- and xenobiotics. The ABCC sub-family is the largest one, consisting of 13 members that include the cystic fibrosis conductance regulator (CFTR/ABCC7); the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) and the multidrug resistanceassociated proteins (MRPs). The MRP-related proteins can collectively confer resistance to natural, synthetic drugs and their conjugated metabolites, including platinum-containing compounds, folate anti-metabolites, nucleoside and nucleotide analogs, among others. MRPs can be also catalogued into "long" (MRP1/ABCC1, -2/C2, -3/C3, -6/C6, and -7/C10) and "short" (MRP4/C4, -5/C5, -8/C11, -9/C12, and -10/C13) categories. While MRP2/ABCC2 is expressed in the canalicular pole of hepatocytes, all others are located in the basolateral membrane. In this review, we summarize information from studies examining the changes in expression and regulation of the basolateral hepatic transporter MPR3/ABCC3 by xenobiotics and during various pathophysiological conditions. We also focus, primarily, on the consequences of such changes in the pharmacokinetic, pharmacodynamic and/or toxicity of different drugs of clinical use transported by MRP3.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacologicas (ININFA), Facultad de Farmacia y Bioquimica. CONICET. Universidad de Buenos Aires, Buenos Aires, Argentina.,Catedra de Fisiopatologia. Facultad de Farmacia y Bioquimica. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jose E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
9
|
Vilas-Boas V, Gijbels E, Cooreman A, Van Campenhout R, Gustafson E, Leroy K, Vinken M. Industrial, Biocide, and Cosmetic Chemical Inducers of Cholestasis. Chem Res Toxicol 2019; 32:1327-1334. [PMID: 31243985 DOI: 10.1021/acs.chemrestox.9b00148] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A frequent side effect of many drugs includes the occurrence of cholestatic liver toxicity. Over the past couple of decades, drug-induced cholestasis has gained considerable attention, resulting in a plethora of data regarding its prevalence and mechanistic basis. Likewise, several food additives and dietary supplements have been reported to cause cholestatic liver insults in the past few years. The induction of cholestatic hepatotoxicity by other types of chemicals, in particular synthetic compounds, such as industrial chemicals, biocides, and cosmetic ingredients, has been much less documented. Such information can be found in occasional clinical case reports of accidental intake or suicide attempts as well as in basic and translational study reports on mechanisms or testing of new therapeutics in cholestatic animal models. This paper focuses on such nonpharmaceutical and nondietary synthetic chemical inducers of cholestatic liver injury, in particular alpha-naphthylisocyanate, 3,5-diethoxycarbonyl-1,4-dihydrocollidine, methylenedianiline, paraquat, tartrazine, triclosan, 2-octynoic acid, and 2-nonynoic acid. Most of these cholestatic compounds act by similar mechanisms. This could open perspectives for the prediction of cholestatic potential of chemicals.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Axelle Cooreman
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Emma Gustafson
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Kaat Leroy
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| |
Collapse
|
10
|
Gijbels E, Vilas-Boas V, Deferm N, Devisscher L, Jaeschke H, Annaert P, Vinken M. Mechanisms and in vitro models of drug-induced cholestasis. Arch Toxicol 2019; 93:1169-1186. [PMID: 30972450 DOI: 10.1007/s00204-019-02437-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
Cholestasis underlies one of the major manifestations of drug-induced liver injury. Drug-induced cholestatic liver toxicity is a complex process, as it can be triggered by a variety of factors that induce 2 types of biological responses, namely a deteriorative response, caused by bile acid accumulation, and an adaptive response, aimed at removing the accumulated bile acids. Several key events in both types of responses have been characterized in the past few years. In parallel, many efforts have focused on the development and further optimization of experimental cell culture models to predict the occurrence of drug-induced cholestatic liver toxicity in vivo. In this paper, a state-of-the-art overview of mechanisms and in vitro models of drug-induced cholestatic liver injury is provided.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Neel Deferm
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49, Bus 921, 3000, Leuven, Belgium
| | - Lindsey Devisscher
- Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 1018, Kansas City, KS, 66160, USA
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49, Bus 921, 3000, Leuven, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
11
|
Abstract
Endoplasmic reticulum (ER) stress occurs when ER homeostasis is perturbed with accumulation of unfolded/misfolded protein or calcium depletion. The unfolded protein response (UPR), comprising of inositol-requiring enzyme 1α (IRE1α), PKR-like ER kinase (PERK) and activating transcription factor 6 (ATF6) signaling pathways, is a protective cellular response activated by ER stress. However, UPR activation can also induce cell death upon persistent ER stress. The liver is susceptible to ER stress given its synthetic and other biological functions. Numerous studies from human liver samples and animal disease models have indicated a crucial role of ER stress and UPR signaling pathways in the pathogenesis of liver diseases, including non-alcoholic fatty liver disease, alcoholic liver disease, alpha-1 antitrypsin deficiency, cholestatic liver disease, drug-induced liver injury, ischemia/reperfusion injury, viral hepatitis and hepatocellular carcinoma. Extensive investigations have demonstrated the potential underlying mechanisms of the induction of ER stress and the contribution of UPR pathways during the development of the diseases. Moreover ER stress and the UPR proteins and genes have become emerging therapeutic targets to treat liver diseases.
Collapse
Affiliation(s)
- Xiaoying Liu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tarry Building 15-709, 303 East Superior Street, Chicago, IL 60611, Northwestern University Feinberg School of Medicine, Chicago, IL, USA, Corresponding author: Xiaoying-liu@northwestern
| | - Richard M. Green
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tarry Building 15-709, 303 East Superior Street, Chicago, IL 60611, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
12
|
Abstract
Cholestasis can be defined as any situation of impaired bile secretion with concomitant accumulation of bile acids in the liver or in the systemic circulation. A variety of factors may evoke cholestasis, including genetic disorders, metabolic pathologies, infectious diseases, immunogenic stimuli, and drugs. Drug-induced cholestasis is a mechanistically complex process. At least three triggering factors of drug-induced cholestasis have been described, including effects on drug transporters, various hepatocellular changes, and altered bile canaliculi dynamics. These stimuli induce two cellular responses, each typified by a number of key events, namely a deteriorative response activated by bile acid accumulation and an adaptive response aimed at decreasing the uptake and increasing the export of bile acids into and from the liver, respectively. The mechanistic scenario of drug-induced cholestasis is described in this chapter.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
13
|
Zhang HY, Wang HL, Zhong GY, Zhu JX. Molecular mechanism and research progress on pharmacology of traditional Chinese medicine in liver injury. PHARMACEUTICAL BIOLOGY 2018; 56:594-611. [PMID: 31070528 PMCID: PMC6282438 DOI: 10.1080/13880209.2018.1517185] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/27/2018] [Accepted: 08/21/2018] [Indexed: 05/09/2023]
Abstract
CONTEXT Liver disease is a common threat to human health, caused by a variety of factors that damage the liver. Recent studies have shown that active ingredients (for example: flavonoids, saponins, acids, phenols, and alkaloids) from Traditional Chinese Medicine (TCM) can have hepatoprotective benefits, which represents an attractive source of drug discovery for treating liver injury. OBJECTIVE We reviewed recent contributions on the chemically induced liver injury, immunological liver damage, alcoholic liver injury, and drug-induced liver injury, in order to summarize the research progress in molecular mechanism and pharmacology of TCM, and provides a comprehensive overview of new TCM treatment strategies for liver disease. MATERIALS AND METHODS Relevant literature was obtained from scientific databases such as Pubmed, Web of Science. and CNKI databases on ethnobotany and ethnomedicines (from January 1980 to the end of May 2018). The experimental studies involving the antihepatic injury role of the active agents from TCM and the underlying mechanisms were identified. The search terms included 'liver injury' or 'hepatic injury', and 'traditional Chinese medicine', or 'herb'. RESULTS A number of studies revealed that the active ingredients of TCM exhibit potential therapeutic benefits against liver injury, while the underlying mechanisms appear to contribute to the regulation of inflammation, oxidant stress, and pro-apoptosis signaling pathways. DISCUSSION AND CONCLUSIONS The insights provided in this review will help further exploration of botanical drugs in the development of liver injury therapy via study on the effective components of TCM.
Collapse
Affiliation(s)
- Hong Yang Zhang
- Research Center of Traditional Chinese Medicine Resources and Minority Medicine, Jiangxi University of Traditional Chinese Medicine, Nan Chang, China
| | - Hong Ling Wang
- Research Center of Traditional Chinese Medicine Resources and Minority Medicine, Jiangxi University of Traditional Chinese Medicine, Nan Chang, China
| | - Guo Yue Zhong
- Research Center of Traditional Chinese Medicine Resources and Minority Medicine, Jiangxi University of Traditional Chinese Medicine, Nan Chang, China
| | - Ji Xiao Zhu
- Research Center of Traditional Chinese Medicine Resources and Minority Medicine, Jiangxi University of Traditional Chinese Medicine, Nan Chang, China
| |
Collapse
|
14
|
Xu W, Liu B, Cai X, Zhang M, Zhang XH, Yu P. Fluorescent poly(hydroxyurethane): Biocompatibility evaluation and selective detection of Fe(III). J Appl Polym Sci 2018. [DOI: 10.1002/app.46723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wan Xu
- Department of Toxicology, School of Public Health; Zhejiang University; Hangzhou 310058 China
| | - Bin Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Xiaobo Cai
- Department of Toxicology, School of Public Health; Zhejiang University; Hangzhou 310058 China
| | - Mohan Zhang
- Department of Toxicology, School of Public Health; Zhejiang University; Hangzhou 310058 China
| | - Xing-Hong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Peilin Yu
- Department of Toxicology, School of Public Health; Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
15
|
Burban A, Sharanek A, Guguen-Guillouzo C, Guillouzo A. Endoplasmic reticulum stress precedes oxidative stress in antibiotic-induced cholestasis and cytotoxicity in human hepatocytes. Free Radic Biol Med 2018; 115:166-178. [PMID: 29191461 DOI: 10.1016/j.freeradbiomed.2017.11.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/11/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) stress has been associated with various drug-induced liver lesions but its participation in drug-induced cholestasis remains unclear. We first aimed at analyzing liver damage caused by various hepatotoxic antibiotics, including three penicillinase-resistant antibiotics (PRAs), i.e. flucloxacillin, cloxacillin and nafcillin, as well as trovafloxacin, levofloxacin and erythromycin, using human differentiated HepaRG cells and primary hepatocytes. All these antibiotics caused early cholestatic effects typified by bile canaliculi dilatation and reduced bile acid efflux within 2h and dose-dependent enhanced caspase-3 activity within 24h. PRAs induced the highest cholestatic effects at non cytotoxic concentrations. Then, molecular events involved in these lesions were analyzed. Early accumulation of misfolded proteins revealed by thioflavin-T fluorescence and associated with phosphorylation of the unfolded protein response sensors, eIF2α and/or IRE1α, was evidenced with all tested hepatotoxic antibiotics. Inhibition of ER stress markedly restored bile acid efflux and prevented bile canaliculi dilatation. Downstream of ER stress, ROS were also generated with high antibiotic concentrations. The protective HSP27-PI3K-AKT signaling pathway was activated only in PRA-treated cells and its inhibition increased ROS production and aggravated caspase-3 activity. Overall, our results demonstrate that (i) various antibiotics reported to cause cholestasis and hepatocellular injury in the clinic can also induce such effects in in vitro human hepatocytes; (ii) PRAs cause the strongest cholestatic effects in the absence of cytotoxicity; (iii) cholestatic features occur early through ER stress; (iv) cytotoxic lesions are observed later through ER stress-mediated ROS generation; and (v) activation of the HSP27-PI3K-AKT pathway protects from cytotoxic damage induced by PRAs only.
Collapse
Affiliation(s)
- Audrey Burban
- INSERM U991/1241, Numecan, Rennes, France; Rennes 1 University, Rennes, France
| | - Ahmad Sharanek
- INSERM U991/1241, Numecan, Rennes, France; Rennes 1 University, Rennes, France
| | | | - André Guillouzo
- INSERM U991/1241, Numecan, Rennes, France; Rennes 1 University, Rennes, France.
| |
Collapse
|
16
|
Zhou HQ, Liu W, Wang J, Huang YQ, Li PY, Zhu Y, Wang JB, Ma X, Li RS, Wei SZ, Li K, Li HT, Li JY, Xiao XH, Zhao YL. Paeoniflorin attenuates ANIT-induced cholestasis by inhibiting apoptosis in vivo via mitochondria-dependent pathway. Biomed Pharmacother 2017; 89:696-704. [DOI: 10.1016/j.biopha.2017.02.084] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/02/2017] [Accepted: 02/22/2017] [Indexed: 12/29/2022] Open
|
17
|
Modulation of the Unfolded Protein Response by Tauroursodeoxycholic Acid Counteracts Apoptotic Cell Death and Fibrosis in a Mouse Model for Secondary Biliary Liver Fibrosis. Int J Mol Sci 2017; 18:ijms18010214. [PMID: 28117681 PMCID: PMC5297843 DOI: 10.3390/ijms18010214] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 12/12/2022] Open
Abstract
The role of endoplasmic reticulum stress and the unfolded protein response (UPR) in cholestatic liver disease and fibrosis is not fully unraveled. Tauroursodeoxycholic acid (TUDCA), a hydrophilic bile acid, has been shown to reduce endoplasmic reticulum (ER) stress and counteract apoptosis in different pathologies. We aimed to investigate the therapeutic potential of TUDCA in experimental secondary biliary liver fibrosis in mice, induced by common bile duct ligation. The kinetics of the hepatic UPR and apoptosis during the development of biliary fibrosis was studied by measuring markers at six different timepoints post-surgery by qPCR and Western blot. Next, we investigated the therapeutic potential of TUDCA, 10 mg/kg/day in drinking water, on liver damage (AST/ALT levels) and fibrosis (Sirius red-staining), in both a preventive and therapeutic setting. Common bile duct ligation resulted in the increased protein expression of CCAAT/enhancer-binding protein homologous protein (CHOP) at all timepoints, along with upregulation of pro-apoptotic caspase 3 and 12, tumor necrosis factor receptor superfamily, member 1A (TNFRsf1a) and Fas-Associated protein with Death Domain (FADD) expression. Treatment with TUDCA led to a significant reduction of liver fibrosis, accompanied by a slight reduction of liver damage, decreased hepatic protein expression of CHOP and reduced gene and protein expression of pro-apoptotic markers. These data indicate that TUDCA exerts a beneficial effect on liver fibrosis in a model of cholestatic liver disease, and suggest that this effect might, at least in part, be attributed to decreased hepatic UPR signaling and apoptotic cell death.
Collapse
|
18
|
Jiao G, Hao L, Wang M, Zhong B, Yu M, Zhao S, Wang P, Feng R, Tan S, Chen L. Upregulation of endoplasmic reticulum stress is associated with diaphragm contractile dysfunction in a rat model of sepsis. Mol Med Rep 2016; 15:366-374. [PMID: 27959404 DOI: 10.3892/mmr.2016.6014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/02/2016] [Indexed: 11/06/2022] Open
Abstract
Sepsis often causes diaphragm contractile dysfunction. Endoplasmic reticulum (ER) stress has been implicated in muscle contractile dysfunction. However, it remains unknown if ER stress occurs in the diaphragm during sepsis. In the present study, rats were divided into 4 groups and received placebo or one of three durations of endotoxin treatment (24, 48 h and 7 days). Isometric contractile force of the diaphragm was measured and lung wet-to-dry ratio (W/D) was calculated. Hematoxylin and eosin (H&E) staining of lung tissue was performed and electron microscopy assessed ER damage in the diaphragm during sepsis. The mRNA and protein expression of glucose‑regulated protein 78 kDa (GRP78), glucose-regulated protein 94 kDa (GRP94), C/EBP homologous protein (CHOP), endoplasmic reticulum protein 44 (ERP44), protein disulfide-isomerase like protein (ERP57) and protein disulfide isomerase family A member 4 (ERP72) in diaphragm muscles were measured using reverse transcription‑quantitative polymerase chain reaction and western blot analysis. The level of cleaved caspase-12 was analyzed by western blot analysis. The results demonstrated that sepsis increased lung W/D. H&E staining revealed that sepsis caused alveolar congestion, hemorrhage and rupture. Swollen and distended ER was observed using electron microscopy during sepsis and decreased diaphragm contractile function was also observed. The expression levels of ER stress markers (GRP78, GRP94, CHOP, ERP44, ERP57 and ERP72) and the level of cleaved caspase‑12 were significantly elevated in septic rats compared with control rats, particularly in the 48 h group. In conclusion, the present study indicated that weakened diaphragm contraction and damaged ER in septic rats was associated with increased expression of ER stress markers.
Collapse
Affiliation(s)
- Guangyu Jiao
- Respiratory Department and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Mengmeng Wang
- Respiratory Department and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bin Zhong
- Respiratory Department and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Miao Yu
- Respiratory Department and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuang Zhao
- Respiratory Department and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Pingping Wang
- Respiratory Department and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shutao Tan
- Respiratory Department and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Liu Chen
- Respiratory Department and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|