1
|
Arslan-Kahraman DI, Ogut B, Inan MA, Kazanci F, Onan MA, Erdem M, Erdem O. Comparison of PD-L1, VISTA, LAG-3, and GAL-3 Expressions and Their Relationships to Mismatch Repair Protein and p53 Expression in 529 Cases of Endometrial Carcinoma. Int J Gynecol Pathol 2025; 44:130-143. [PMID: 38914021 DOI: 10.1097/pgp.0000000000001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The aim of this study is to evaluate the expressions of programmed death-ligand 1 (PD-L1), V-domain Ig suppressor of T-cell activation (VISTA), lymphocyte activation gene-3 (LAG-3), and galectin-3 (GAL-3), in mismatch repair-deficient (MMRd)/MMR-proficient and abnormal p53 expressing endometrial carcinomas and their relationship with clinical-histopathological features. Patients who underwent surgery for endometrial carcinoma between January 2008 and December 2018 were included in the study. Immunohistochemical analysis of MLH1, PMS2, MSH2, MSH6, p53, PD-L1, VISTA, LAG-3, and GAL-3 was performed on the tissue samples of microarray. A total of 529 patients were included. MMRd and p53-mutant tumors accounted for 31.5% and 11.5% of cases, respectively. PD-L1 and LAG-3 expressions in the MMRd and p53-mutant groups were higher than in the MMR-proficient group ( P < 0.001). GAL-3 expression in the MMR-proficient group was statistically higher than in the MMRd and p53-mutant groups ( P < 0.001). Mean age, grade, International Federation of Gynecology and Obstetrics stage, lymphovascular invasion, and lymph node metastasis were significantly higher in the p53-mutant group ( P < 0.001). In the group with PD-L1 expression, nonendometrioid histologic type, tumor grade, and lymphovascular invasion were significantly higher ( P < 0.001). Tumor grade, lymphovascular invasion, lymph node metastasis, and microcystic, elongated and fragmented pattern of invasion were significantly higher in the group with high VISTA expression ( P < 0.05). Tumor grade was significantly higher in the group with LAG-3 expression ( P < 0.001). Immunohistochemically determined subgroups and PD-L1, VISTA, LAG-3, and GAL-3 expression levels may be useful indicators of molecular features, and clinical outcomes also may have important implications for the development of targeted therapies in endometrial carcinoma.
Collapse
Affiliation(s)
| | - Betul Ogut
- Department of Pathology, Gazi University School of Medicine, Ankara, Turkey
| | - Mehmet Arda Inan
- Department of Pathology, Gazi University School of Medicine, Ankara, Turkey
| | - Ferah Kazanci
- Department of Pathology, Gazi University School of Medicine, Ankara, Turkey
- Department of Gynecology and Obstetrics, Gazi University School of Medicine, Ankara, Turkey
| | - Mehmet Anil Onan
- Department of Gynecology and Obstetrics, Gazi University School of Medicine, Ankara, Turkey
| | - Mehmet Erdem
- Department of Gynecology and Obstetrics, Gazi University School of Medicine, Ankara, Turkey
| | - Ozlem Erdem
- Department of Pathology, Gazi University School of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Urick ME, Chalapareddy SK, Yu E, Bell DW. Proteomic Changes Associated With Endogenous FBXW7 Mutations in Moderately Differentiated Endometrial Cancer Cells Include Increased TROP2 and Galectin-3 Levels. Cancer Med 2025; 14:e70765. [PMID: 40087851 PMCID: PMC11909011 DOI: 10.1002/cam4.70765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Endometrial cancer (EC) is the fourth most commonly diagnosed cancer among women in the US and the fifth leading cause of cancer death in this population. The FBXW7 tumor suppressor gene is frequently mutated in all molecular subtypes of EC. The encoded protein is part of a ubiquitin ligase complex that targets substrate proteins for ubiquitination and, in most instances, proteasome-mediated degradation. AIMS The purpose of this investigation was to identify the proteomic changes associated with endogenous FBXW7 mutations in EC. MATERIALS & METHODS Quantitative LC-MS/MS was used to identify significant (p < 0.05) differences in the proteomes and phosphoproteomes of two FBXW7-mutated EC cell lines, HEC-1-BFBXW7-R367X and JHUEM-1FBXW7-R505C, as compared to isogenic mutation-corrected cell lines. Western blotting was performed to orthogonally validate a subset of protein changes. RESULTS Analysis of LC-MS/MS results identified 397 total proteins and/or phosphoproteins with significantly different levels in both HEC-1-BFBXW7-R367X and JHUEM-1FBXW7-R505C, as compared to isogenic mutation-corrected cell lines. This protein set included increased levels of TROP2, galectin-3, ASS1, and PLCG2 in both HEC-1-BFBXW7-R367X and JHUEM-1FBXW7-R505C cells; these perturbations orthogonally validated by western blotting. CONCLUSION This study provides novel insights into the proteomic and phosphoproteomic effects of the endogenous FBXW7-R367X and FBXW7-R505C mutations in EC cells, including increased levels of galectin-3, a potentially druggable target, and of TROP2, which is a druggable target in EC.
Collapse
Affiliation(s)
- Mary Ellen Urick
- Reproductive Cancer Genetics Section, Cancer Genetics and Comparative Genomics BranchNational Human Genome Research Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Suresh Kumar Chalapareddy
- Reproductive Cancer Genetics Section, Cancer Genetics and Comparative Genomics BranchNational Human Genome Research Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Eun‐Jeong Yu
- Reproductive Cancer Genetics Section, Cancer Genetics and Comparative Genomics BranchNational Human Genome Research Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Daphne W. Bell
- Reproductive Cancer Genetics Section, Cancer Genetics and Comparative Genomics BranchNational Human Genome Research Institute, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
3
|
Beyer S, Wehrmann M, Meister S, Trillsch F, Ganster F, Schmoeckel E, Corradini S, Mahner S, Jeschke U, Kessler M, Burges A, Kolben T. Expression of Intracellular Galectin-8 and -9 in Endometrial Cancer. Int J Mol Sci 2024; 25:6907. [PMID: 39000016 PMCID: PMC11241125 DOI: 10.3390/ijms25136907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Endometrial cancer (EC) is a common gynecological cancer worldwide. Treatment has been improved in recent years; however, in advanced stages, therapeutic options are still limited. The expression of galectins is increased in several tumor types and that they are involved in important cell processes. Large studies on endometrial cancer are still pending; Specimens of 225 patients with EC were immunohistochemically stained with antibodies for Gal-8 and Gal-9. Expression was correlated with histopathological variables. The cytosolic expression of both galectins is associated with grading and survival. Cytosolic Galectin-8 expression is a positive prognostic factor for overall survival (OS) and progression-free survival (PFS), while nuclear Gal-8 expression correlates only to OS. The cytosolic presence of Galectin-9 is correlated with a better prognosis regarding OS. Our results suggest that expression of both galectins is associated with OS and PFS in EC. Further studies are needed to understand the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Maya Wehrmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Franziska Ganster
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Elisa Schmoeckel
- Institute of Pathology, TUM School of Medicine and Health, Trogerstraße 18, 81675 Munich, Germany;
| | - Stefanie Corradini
- Department of Radiation-Oncology, University Hospital, LMU Munich, 81377 Munich, Germany;
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
- Department of Obstetrics and Gynecology, University Hospital, Universitätsklinikum Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| |
Collapse
|
4
|
Matoba Y, Zarrella DT, Pooladanda V, Azimi Mohammadabadi M, Kim E, Kumar S, Xu M, Qin X, Ray LJ, Devins KM, Kumar R, Kononenko A, Eisenhauer E, Veillard IE, Yamagami W, Hill SJ, Sarosiek KA, Yeku OO, Spriggs DR, Rueda BR. Targeting Galectin 3 illuminates its contributions to the pathology of uterine serous carcinoma. Br J Cancer 2024; 130:1463-1476. [PMID: 38438589 PMCID: PMC11058234 DOI: 10.1038/s41416-024-02621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Uterine serous cancer (USC) comprises around 10% of all uterine cancers. However, USC accounts for approximately 40% of uterine cancer deaths, which is attributed to tumor aggressiveness and limited effective treatment. Galectin 3 (Gal3) has been implicated in promoting aggressive features in some malignancies. However, Gal3's role in promoting USC pathology is lacking. METHODS We explored the relationship between LGALS3 levels and prognosis in USC patients using TCGA database, and examined the association between Gal3 levels in primary USC tumors and clinical-pathological features. CRISPR/Cas9-mediated Gal3-knockout (KO) and GB1107, inhibitor of Gal3, were employed to evaluate Gal3's impact on cell function. RESULTS TCGA analysis revealed a worse prognosis for USC patients with high LGALS3. Patients with no-to-low Gal3 expression in primary tumors exhibited reduced clinical-pathological tumor progression. Gal3-KO and GB1107 reduced cell proliferation, stemness, adhesion, migration, and or invasion properties of USC lines. Furthermore, Gal3-positive conditioned media (CM) stimulated vascular tubal formation and branching and transition of fibroblast to cancer-associated fibroblast compared to Gal3-negative CM. Xenograft models emphasized the significance of Gal3 loss with fewer and smaller tumors compared to controls. Moreover, GB1107 impeded the growth of USC patient-derived organoids. CONCLUSION These findings suggest inhibiting Gal3 may benefit USC patients.
Collapse
Affiliation(s)
- Yusuke Matoba
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Dominique T Zarrella
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Venkatesh Pooladanda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Maryam Azimi Mohammadabadi
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Eugene Kim
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Shaan Kumar
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mengyao Xu
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Xingping Qin
- Harvard T.H. Chan School of Public Health, Boston, MA, 02114, USA
| | - Lauren J Ray
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kyle M Devins
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Raj Kumar
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Artem Kononenko
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Eric Eisenhauer
- Harvard Medical School, Boston, MA, 02115, USA
- Division Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Irva E Veillard
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Wataru Yamagami
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Sarah J Hill
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology and Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | | | - Oladapo O Yeku
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - David R Spriggs
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
- Division Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
5
|
Asim F, Clarke L, Donnelly E, Jamal FR, Piccicacchi LM, Qadir M, Raja NT, Samadi C, Then CK, Kiltie AE. How do tumours outside the gastrointestinal tract respond to dietary fibre supplementation? BMJ ONCOLOGY 2023; 2:e000107. [PMID: 39886510 PMCID: PMC11203104 DOI: 10.1136/bmjonc-2023-000107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/19/2023] [Indexed: 02/01/2025]
Abstract
Cancer remains one of the leading causes of death worldwide, despite advances in treatments such as surgery, chemotherapy, radiotherapy and immunotherapy. The role of the gut microbiota in human health and disease, particularly in relation to cancer incidence and treatment response, has gained increasing attention. Emerging evidence suggests that dietary fibre, including prebiotics, can modulate the gut microbiota and influence antitumour effects. In this review, we provide an overview of how dietary fibre impacts the gut-tumour axis through immune and non-immune mechanisms. Preclinical evidence shows that β-glucan or inulin effectively suppress extraintestinal tumour growth via immunomodulation. Other fibres such as resistant starch, modified citrus pectin and rye bran may confer antitumour effects through metabolic regulation, production of metabolites or downregulation of the insulin/insulin-like growth factor 1 axis. Additionally, we highlight the potential for dietary fibre to modify the response to immunotherapy, chemotherapy and radiotherapy, as shown by inulin increasing the abundance of beneficial gut bacteria, such as Bifidobacterium, Akkermansia, Lactobacillus and Faecalibacterium prausnitzii, which have been associated with enhanced immunotherapy outcomes, particularly in melanoma-bearing mice. Furthermore, certain types of dietary fibre, such as psyllium, partially hydrolysed guar gum, hydrolysed rice bran and inulin plus fructooligosaccharide, have been shown to mitigate gastrointestinal toxicities in patients with cancer undergoing pelvic radiotherapy. Despite the proven benefits, it is noteworthy that most adults do not consume enough dietary fibre, underscoring the importance of promoting dietary fibre supplementation in patients with cancer to optimise their treatment responses.
Collapse
Affiliation(s)
- Fatima Asim
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen Medical School, Aberdeen, UK
| | - Lowenna Clarke
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen Medical School, Aberdeen, UK
| | - Elizabeth Donnelly
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen Medical School, Aberdeen, UK
| | - Fouzia Rahana Jamal
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen Medical School, Aberdeen, UK
| | | | - Mahanoor Qadir
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen Medical School, Aberdeen, UK
| | - Nain Tara Raja
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen Medical School, Aberdeen, UK
| | - Cyrus Samadi
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen Medical School, Aberdeen, UK
| | - Chee Kin Then
- Department of General Medicine, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Anne E Kiltie
- Rowett Institute, University of Aberdeen, Aberdeen, UK
- Aberdeen Cancer Centre, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
6
|
Montero-Calle A, López-Janeiro Á, Mendes ML, Perez-Hernandez D, Echevarría I, Ruz-Caracuel I, Heredia-Soto V, Mendiola M, Hardisson D, Argüeso P, Peláez-García A, Guzman-Aranguez A, Barderas R. In-depth quantitative proteomics analysis revealed C1GALT1 depletion in ECC-1 cells mimics an aggressive endometrial cancer phenotype observed in cancer patients with low C1GALT1 expression. Cell Oncol (Dordr) 2023; 46:697-715. [PMID: 36745330 PMCID: PMC10205863 DOI: 10.1007/s13402-023-00778-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Endometrial cancer (EC) is the most common cancer of the female reproductive organs. Despite the good overall prognosis of most low-grade ECs, FIGO I and FIGO II patients might experience tumor recurrence and worse prognosis. The study of alterations related to EC pathogenesis might help to get insights into underlying mechanisms involved in EC development and progression. METHODS Core tumoral samples were used to investigate the role of C1GALT1 in EC by immunohistochemistry (IHC). ECC-1 cells were used as endometrioid EC model to investigate the effect of C1GALT1 depletion using C1GALT1 specific shRNAs. SILAC quantitative proteomics analyses and cell-based assays, PCR, qPCR, WB, dot-blot and IHC analyses were used to identify, quantify and validate dysregulation of proteins. RESULTS Low C1GALT1 protein expression levels associate to a more aggressive phenotype of EC. Out of 5208 proteins identified and quantified by LC-MS/MS, 100 proteins showed dysregulation (log2fold-change ≥ 0.58 or ≤-0.58) in the cell protein extracts and 144 in the secretome of C1GALT1 depleted ECC-1 cells. Nine dysregulated proteins were validated. Bioinformatics analyses pointed out to an increase in pathways associated with an aggressive phenotype. This finding was corroborated by loss-of-function cell-based assays demonstrating higher proliferation, invasion, migration, colony formation and angiogenesis capacity in C1GALT1 depleted cells. These effects were associated to the overexpression of ANXA1, as demonstrated by ANXA1 transient silencing cell-based assays, and thus, correlating C1GALT and ANXA1 protein expression and biological effects. Finally, the negative protein expression correlation found by proteomics between C1GALT1 and LGALS3 was confirmed by IHC. CONCLUSION C1GALT1 stably depleted ECC-1 cells mimic an EC aggressive phenotype observed in patients and might be useful for the identification and validation of EC markers of progression.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | | | - Marta L Mendes
- Department of Infection and Immunity, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Daniel Perez-Hernandez
- Department of Infection and Immunity, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Irene Echevarría
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain
| | | | - Victoria Heredia-Soto
- Translational Oncology, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
| | - Marta Mendiola
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
| | - David Hardisson
- Department of Pathology, Hospital Universitario La Paz, 28046, Madrid, Spain
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Pablo Argüeso
- Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain.
| | - Ana Guzman-Aranguez
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain.
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
- Functional Proteomics Unit, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| |
Collapse
|
7
|
Lima T, Perpétuo L, Henrique R, Fardilha M, Leite-Moreira A, Bastos J, Vitorino R. Galectin-3 in prostate cancer and heart diseases: a biomarker for these two frightening pathologies? Mol Biol Rep 2023; 50:2763-2778. [PMID: 36583779 PMCID: PMC10011345 DOI: 10.1007/s11033-022-08207-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
Galectin-3 (Gal-3) belongs to galectin protein family, a type of β-galactose-binding lectin having more than one evolutionarily conserved domain of carbohydrate recognition. Gal-3 is mainly located in the cytoplasm, but it also enters the nucleus and is secreted into the extracellular environment and biological fluids such as urine, saliva, and serum. It plays an important role in many biological functions, such as angiogenesis, apoptosis, cell differentiation, cell growth, fibrosis, inflammation, host defense, cellular modification, splicing of pre-mRNA, and transformation. Many previous studies have shown that Gal-3 can be used as a diagnostic or prognostic biomarker for heart ailments, kidney diseases, and other major illnesses including cancer. Moreover, it may also play a major role in risk stratification in different diseases, and in this review, we have summarized the potential roles and application of Gal-3 as diagnostic, prognostic, and risk stratifying biomarker from previously reported studies in heart diseases and cancer, with special emphasis on prostate cancer.
Collapse
Affiliation(s)
- Tânia Lima
- iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
| | - Luís Perpétuo
- iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, UnIC, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050‑313, Porto, Portugal
| | - Margarida Fardilha
- iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Adelino Leite-Moreira
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, UnIC, Porto, Portugal
| | - Jose Bastos
- iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, UnIC, Porto, Portugal
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
8
|
Lima T, Macedo-Silva C, Felizardo D, Fraga J, Carneiro I, Jerónimo C, Henrique R, Fardilha M, Vitorino R. Gal-3 Protein Expression and Localization in Prostate Tumours. Curr Oncol 2023; 30:2729-2742. [PMID: 36975419 PMCID: PMC10047320 DOI: 10.3390/curroncol30030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Gal-3 plays an important role in cell survival, mRNA splicing, and cell–cell and cell–matrix interactions. Depending on its cellular localization and cancer type, Gal-3 may have tumour-suppressive or tumour-promoting activities. Given the promising diagnostic role of Gal-3 in the urine of PCa patients found in our previous study, its concordant gene and protein expression levels, and its involvement in PCa-related biological processes (e.g., morphogenesis of the prostate gland epithelium), we aimed to investigate this protein immunohistochemically in tumour and normal prostate tissues. Gal-3 protein expression was evaluated in 48 tumour prostate tissues, eight normal prostate tissues and 14 adjacent-normal prostate tissues. Decreased Gal-3 staining was detected in tumour tissues compared with normal tissues. Although Gal-3 staining was decreased in tumour tissues with GS 5-8 and pT2 and pT3 stages compared with normal prostate tissue, no correlation was found between Gal-3 expression and PCa progression. In the present study, the pattern of cellular localization differed between groups, as Gal-3 was predominantly excluded from the nucleus in tumour tissues. Furthermore, Gal-3 had no significant effect on survival and relapse in these PCa patients. This work confirms Gal-3 as a promising marker for PCa diagnosis.
Collapse
Affiliation(s)
- Tânia Lima
- Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Correspondence:
| | - Catarina Macedo-Silva
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
| | - Diana Felizardo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - João Fraga
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Isa Carneiro
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), 4050-513 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), 4050-513 Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Li R, Dong F, Zhang L, Ni X, Lin G. Role of adipocytokines in endometrial cancer progression. Front Pharmacol 2022; 13:1090227. [PMID: 36578551 PMCID: PMC9791063 DOI: 10.3389/fphar.2022.1090227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Endometrial cancer is considered a significant barrier to increasing life expectancy and remains one of the most common malignant cancers among women in many countries worldwide. The increasing mortality rates are potentially proportional to the increasing obesity incidence. Adipose tissue secretes numerous adipocytokines, which may play important roles in endometrial cancer progression. In this scenario, we describe the role of adipocytokines in cell proliferation, cell invasion, cell adhesion, inflammation, angiogenesis, and anti-apoptotic action. A better understanding of the mechanisms of these adipocytokines may open up new therapeutic avenues for women with endometrial cancer. In the future, larger prospective studies focusing on adipocytokines and specific inhibitors should be directed at preventing the rapidly increasing prevalence of gynecological malignancies.
Collapse
Affiliation(s)
- Ran Li
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Fang Dong
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Ling Zhang
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Xiuqin Ni
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Guozhi Lin
- Department of Obstetrics and Gynecology, Second Affiliated Hospital to Shandong First Medical University, Taian, China,*Correspondence: Guozhi Lin,
| |
Collapse
|
10
|
Cocks MM, Mills AM. The Immune Checkpoint Inhibitor LAG-3 and Its Ligand GAL-3 in Vulvar Squamous Neoplasia. Int J Gynecol Pathol 2022; 41:113-121. [PMID: 33782343 DOI: 10.1097/pgp.0000000000000782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Vulvar squamous cell carcinoma (vSCC), although rare, carries significant morbidity and a high rate of recurrence. Treatment options beyond surgical excision remain limited. Lymphocyte activation gene-3 (LAG-3) and its binding partner galectin-3 (GAL-3) are an immuno-inhibitory checkpoint pair that represent potential immunotherapy targets for the treatment of vSCC. This study examined the expression of LAG-3 and GAL-3 alongside programmed cell death ligand-1 expression in invasive SCC and vulvar intraepithelial neoplasia (VIN) by immunohistochemical analysis of formalin-fixed paraffin-embedded tissue. A total of 35 cases were selected for evaluation: 13 VIN3 [human papillomavirus (HPV)-associated VIN/usual-type VIN], 2 differentiated VIN (dVIN), 16 HPV-associated vSCC, and 4 dVIN-associated vSCC. LAG-3+ tumor-infiltrating lymphocytes were identified in 91% (32/35) of cases of vulvar squamous neoplasia. Tumor cells were positive for GAL-3 in 71% of the vulvar neoplasia cases. HPV-associated vSCC was more likely to demonstrate GAL-3 tumoral positivity when compared with dVIN-associated vSCC (24/29 vs. 1/6, P=0.004). We observed co-expression of all 3 immunomarkers in 40% (14/35) of cases evaluated. In light of these findings, use of immunomodulatory drugs that target the LAG-3/GAL-3 pathway may be potentially beneficial in vSCC and efficacy may be increased when combined with anti-programmed cell death ligand-1 therapy.
Collapse
|
11
|
Boutas I, Kontogeorgi A, Dimitrakakis C, Kalantaridou SN. The expression of Galectin-3 in endometrial cancer: a systematic review of the literature. Mol Biol Rep 2021; 48:5699-5705. [PMID: 34241773 DOI: 10.1007/s11033-021-06536-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Galectin-3 is part of a protein group called lectins and acts as a multifunctional glycoprotein due to its expression location. Galectin-3 is expressed by different human tissues. It plays a significant role in carcinogenesis and the selection of tumor-related physiological and pathological activities. Galectin-3 has been utilized through the years as a diagnostic and prognostic marker for various types of cancers. METHODS AND RESULTS This review describes the outcomes of some studies on the matter that were selected appropriately through a review of the existing literature. These studies examined the levels of Galectin-3 expression in endometrial carcinomas, the outcomes, and the prognosis of these carcinomas. Two of the studies concluded that high expression of Galectin-3 is associated with a tumor's histological grade, type and depth. This enhanced nuclear Galectin-3 expression might assist in progression to atypia and neoplasia. The other three on the contrary concluded that malignant tumors had a decreased expression of Galectin-3 and that Galectin-3 played a suppressive role in tumor growth. CONCLUSIONS The part Galectin-3 might potentially have in metastasis of cancers and the offering of a better prognosis for patients is of high importance. To date, there is minimal literature regarding the effects of Galectin-3 and more research is required.
Collapse
Affiliation(s)
- Ioannis Boutas
- 3rd Department of Obstetrics and Gynecology, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462, Athens, Greece.
| | - Adamantia Kontogeorgi
- 3rd Department of Obstetrics and Gynecology, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462, Athens, Greece
| | - Constantine Dimitrakakis
- 1st Department of Obstetrics and Gynecology, Alexandra Hospital, National and Kaposdistrian University of Athens, Athens, Greece
| | - Sophia N Kalantaridou
- 3rd Department of Obstetrics and Gynecology, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462, Athens, Greece
| |
Collapse
|
12
|
Abstract
LAG-3 is an immunosuppressive checkpoint molecule expressed on T cells. One of its ligands, GAL-3, can promote the progression of malignancy and has been identified on tumor cells. Both LAG-3 and GAL-3 are the targets of emerging immunotherapies, but have not been well-studied in endometrial carcinomas. LAG-3, CD3, and GAL-3 immunohistochemistry was performed on 75 endometrial cancers (25 nonmethylated mismatch repair-deficient, 25 MLH1-hypermethylated mismatch repair-deficient, and 25 mismatch repair-intact). LAG-3 and CD3 lymphocytes were averaged per high-power field. Tumoral GAL-3 expression was semiquantitatively scored. Tumor-infiltrating lymphocyte expression of LAG-3 and CD3 were positively correlated (Spearman ρ=0.521, P<0.001) and greater in mismatch repair-deficient compared with mismatch repair-intact tumors (LAG-3: P<0.001; CD3: P<0.001). The majority (64%) of endometrial carcinomas demonstrated ≥1% tumoral GAL-3 expression, with higher rates in mismatch repair-deficient versus intact tumors at the ≥1% (80% vs. 32%, P<0.001) and the ≥5% thresholds (52% vs. 16%, P=0.003). At the ≥5% threshold, nonmethylated mismatch repair-deficient cancers were more likely than intact tumors carcinomas to express GAL-3 (60% vs. 4/25 16%, P=0.003). LAG-3 lymphocytes were positively correlated with GAL-3 expression in nonmethylated mismatch repair-deficient endometrial carcinomas only (Spearman ρ=0.461, P=0.020). LAG-3 tumor-associated lymphocytes and GAL-3 neoplastic cells are common in endometrial carcinomas, particularly in nonmethylated mismatch repair-deficient cancers. This supports a role for immunotherapies targeting LAG-3 and/or GAL-3 in a subset of endometrial carcinomas, potentially in concert with other checkpoint inhibitors.
Collapse
|
13
|
Cymbaluk-Płoska A, Gargulińska P, Kwiatkowski S, Pius-Sadowska E, Machaliński B. Could Galectin 3 Be a Good Prognostic Factor in Endometrial Cancer? Diagnostics (Basel) 2020; 10:diagnostics10090635. [PMID: 32859099 PMCID: PMC7554825 DOI: 10.3390/diagnostics10090635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
Galectin 3 is a modulator of several basic biological functions. It may be involved in the development of obesity and type 2 diabetes—risk factors of endometrial cancer. The study involved 144 patients, after abrasion due to postmenopausal bleeding. Galectin 3 concentrations were quantified in serum by multiplex fluorescent bead-based immunoassays. Median serum galectin 3 concentrations revealed significant differences between FIGO III and IV vs. FIGO I and II patients. Statistically higher concentrations were reported for patients with lymph node metastases compared to patients without it (p = 0.001) as well as in patients with lymphovascular space invasion compared to patients without LVSI (p = 0.02). No statistically significant differences were observed for median of galectin 3 levels depending on the surgical procedure (laparoscopy vs. laparotomy, p = 0.0608). Patients with galectin 3 levels exceeding the median value were characterized by overall survival being shorter by 11.9 months. High levels of galectin 3 were correlated with shorter disease-free survival, the difference is up to 14.8 months. Galectin 3 can be an independent prognostic factor in patients with endometrial cancer. Among the recognized prognostic factors and the concentrations of the galectin 3 marker at the adopted time points, the univariate analysis showed a significant effect of staging, grading, and cutoff galectin 3 on the OS. For multivariate analysis, the galectin 3 cutoff point had the greatest significant impact on OS.
Collapse
Affiliation(s)
- Aneta Cymbaluk-Płoska
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
- Correspondence:
| | - Paula Gargulińska
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Sebastian Kwiatkowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Ewa Pius-Sadowska
- General Pathology Department, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (E.P.-S.); (B.M.)
| | - Bogusław Machaliński
- General Pathology Department, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (E.P.-S.); (B.M.)
| |
Collapse
|
14
|
Hu WM, Yang YZ, Zhang TZ, Qin CF, Li XN. LGALS3 Is a Poor Prognostic Factor in Diffusely Infiltrating Gliomas and Is Closely Correlated With CD163+ Tumor-Associated Macrophages. Front Med (Lausanne) 2020; 7:182. [PMID: 32528967 PMCID: PMC7254797 DOI: 10.3389/fmed.2020.00182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Glioma, the most common brain tumor, is a heterogeneous group of glia-derived tumors, the majority of which have characteristics of diffuse infiltration and immunosuppression. The LGALS protein family is a large class of sugar-binding proteins. Among them, LGALS3 has been reported to promote tumor development and progression in some cancers. However, the clinical significance and biological functions of LGALS3 in glioma remain virtually unknown. The purpose of our research is to detect LGALS3 expression and its prognostic value in glioma and reveal the relationship between its expression and the clinico/molecular-pathological features of patients and immune cell infiltration. Methods: LGALS3 protein expression was examined by immunohistochemistry. The mRNA expression data of LGALS3 was downloaded and analyzed from TCGA and Rembrandt datasets. The association between LGALS3 and glioma clinically relevant diagnostic/molecular markers (IDH, 1p19q, ATRX, MGMT, and TERT) was examined using the Chi-Squared (χ2) test. The correlation between LGALS3 expression and the infiltration of multiple intra-tumoral immune cell types, including B cells (CD20), T cells (CD4 and CD8), macrophages (CD68), and M2 tumor-associated macrophages (CD163), was evaluated by Spearman correlation analysis. Kaplan-Meier analysis and the Cox regression analysis were applied to evaluate the prognostic value of LGALS3 in glioma. The log-rank test was used to evaluate Kaplan-Meier results for significance. Results: Out of all 304 glioma cases, LGALS3 protein was expressed in 125 glioma cases (41.1%, 125/304), with 69.2% (9/13) in WHO I, 9.8% (8/82) in WHO II, 34.2% (26/76) in WHO III, and 61.7% (82/133) in WHO IV. The expression of LGALS3 was correlated with patient age, WHO grade, PHH3 (mitosis), Ki67 index, IDH, 1p/19q codeletion, and TERT promoter status. LGALS3 was an independent poor prognostic marker in diffusely infiltrating gliomas and was positively correlated with immune cell infiltration, particularly CD163+ tumor-associated macrophages in the TCGA dataset, Rembrandt dataset, and our SYSUCC cohort (R = 0.419, 0.627, and 0.724). Conclusion: LGALS3 was highly expressed in pilocytic astrocytoma, GBM, and IDH wild-type LGG. It served as a poor prognostic marker in diffusely infiltrating gliomas. Based on its prognostic significance and strong correlation with CD163+ TAMs, it may act as an important therapeutic target for human glioma.
Collapse
Affiliation(s)
- Wan-Ming Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center and State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuan-Zhong Yang
- Department of Pathology, Sun Yat-sen University Cancer Center and State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tian-Zhi Zhang
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chang-Fei Qin
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xue-Nong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Elevated Soluble Galectin-3 as a Marker of Chemotherapy Efficacy in Breast Cancer Patients: A Prospective Study. Int J Breast Cancer 2020; 2020:4824813. [PMID: 32231800 PMCID: PMC7097759 DOI: 10.1155/2020/4824813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 01/25/2020] [Accepted: 02/25/2020] [Indexed: 02/08/2023] Open
Abstract
Purpose Galectin-3 (Gal-3) is a glycan-binding lectin with a debated role in cancer progression due to its various functions and patterns of expression. The current study investigates the relationship between breast cancer prognosis and secreted Gal-3. Methods Breast cancer patients with first time cancer diagnosis and no prior treatment (n = 88) were placed in either adjuvant or neoadjuvant setting based on their treatment modality. Stromal and plasma Gal-3 levels were measured in each patient at the time of diagnosis and then throughout treatment using immunohistochemistry (IHC) and ELISA, respectively. Healthy women (>18 years of age, n = 63) were used to establish baseline levels of plasma Gal-3. Patients were followed for 84 months for disease-free survival analysis. Results Enhanced levels of plasma (adjuvant) and stromal (neoadjuvant) Gal-3 were found to be markers of chemotherapy efficacy. The patients with chemotherapy-induced increase in extracellular Gal-3 had longer disease-free interval and significantly lower rate of recurrence during 84-month follow-up compared to patients with unchanged or decreased secretion. Conclusion The findings support the use of plasma Gal-3 as a marker for chemotherapy efficacy when no residual tumor is visible through imaging. Furthermore, stromal levels in any remaining tumors postchemotherapy can also be used to predict long-term prognosis in patients.
Collapse
|
16
|
Chetry M, Thapa S, Hu X, Song Y, Zhang J, Zhu H, Zhu X. The Role of Galectins in Tumor Progression, Treatment and Prognosis of Gynecological Cancers. J Cancer 2018; 9:4742-4755. [PMID: 30588260 PMCID: PMC6299382 DOI: 10.7150/jca.23628] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 09/13/2018] [Indexed: 02/06/2023] Open
Abstract
Galectins are the member of soluble proteins that bind with β-galactoside containing glycans. These proteins have been considered to be associated in various important events such as different types of cancers. It has been found that galectins could contribute to neoplastic transformation or regulate cell growth, cell apoptosis, and immune cells, causing tumor invasion, progression, metastasis and angiogenesis. Somehow, galectins are also found to exert a protective effect on cancer in a tissue-dependent way. These glycans binding proteins have been shown to be involved in the regulation of different tumor suppressor genes and oncogenes with their possible roles in human cancers. Objective of the current review is to summarize the role of galectin-1, -3 -7, and -9 in tumorigenesis of gynecological cancers. Galectin protein may be a potential therapeutic target in gynecological malignancies due to reported radio- and chemo- sensitivities, immunotherapeutic, anti-angiogenic and anti-proliferative activities. This review considers the evidence for the future research that how galectins may be important in the progression and treatment of gynecological cancers along with its potent use as a novel prognostic marker.
Collapse
Affiliation(s)
- Mandika Chetry
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Saroj Thapa
- MD, Department of Internal Medicine, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Xiaoli Hu
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Yizuo Song
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Jianan Zhang
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Haiyan Zhu
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| | - Xueqiong Zhu
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University. Wenzhou 325027, China
| |
Collapse
|