1
|
Jacob Bunu S, Cai H, Wu L, Zhang H, Zhou Z, Xu Z, Shi J, Zhu W. TRIP13 - a potential drug target in cancer pharmacotherapy. Bioorg Chem 2024; 151:107650. [PMID: 39042962 DOI: 10.1016/j.bioorg.2024.107650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
ATPases Associated with Diverse Cellular Activity (AAA+ATPases) are important enzymatic functional proteins in human cells. Thyroid Hormone Receptor Interacting Protein-13 (TRIP13) is a member of this protein superfamily, that partly regulates DNA repair pathways and spindle assembly checkpoints during mitosis. TRIP13 is reported as an oncogene involving multiple pathways in many human malignancies, including multiple myeloma, brain tumors, etc. The structure of TRIP13 reveals the mechanisms for ATP binding and how TRIP13 recognizes the Mitotic Arrest Deficiency-2 (MAD2) protein, with p31comet acting as an adapter protein. DCZ0415, TI17, DCZ5417, and DCZ5418 are the reported small-molecule inhibitors of TRIP13, which have been demonstrated to inhibit TRIP13's biological functions significantly and effective in suppressing various types of malignant cells, indicating that TRIP13 is a significant anticancer drug target. Currently, no systematic reviews are cutting across the functions, structure, and novel inhibitors of TRIP13. This review provides a comprehensive overview of TRIP13's biological functions, its roles in eighteen different cancers, four small molecule inhibitors, different underlying molecular mechanisms, and its functionality as a potential anticancer drug target.
Collapse
Affiliation(s)
- Samuel Jacob Bunu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Haiyan Cai
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Leyun Wu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Hui Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhaoyin Zhou
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jumei Shi
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
2
|
Sinnarasan VSP, Paul D, Das R, Venkatesan A. Gastric Cancer Biomarker Candidates Identified by Machine Learning and Integrative Bioinformatics: Toward Personalized Medicine. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023. [PMID: 37229622 DOI: 10.1089/omi.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gastric cancer (GC) is among the leading causes of cancer-related deaths worldwide. The discovery of robust diagnostic biomarkers for GC remains a challenge. This study sought to identify biomarker candidates for GC by integrating machine learning (ML) and bioinformatics approaches. Transcriptome profiles of patients with GC were analyzed to identify differentially expressed genes between the tumor and adjacent normal tissues. Subsequently, we constructed protein-protein interaction networks so as to find the significant hub genes. Along with the bioinformatics integration of ML methods such as support vector machine, the recursive feature elimination was used to select the most informative genes. The analysis unraveled 160 significant genes, with 88 upregulated and 72 downregulated, 10 hub genes, and 12 features from the variable selection method. The integrated analyses found that EXO1, DTL, KIF14, and TRIP13 genes are significant and poised as potential diagnostic biomarkers in relation to GC. The receiver operating characteristic curve analysis found KIF14 and TRIP13 are strongly associated with diagnosis of GC. We suggest KIF14 and TRIP13 are considered as biomarker candidates that might potentially inform future research on diagnosis, prognosis, or therapeutic targets for GC. These findings collectively offer new future possibilities for precision/personalized medicine research and development for patients with GC.
Collapse
Affiliation(s)
| | - Dahrii Paul
- Department for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rajesh Das
- Department for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Amouda Venkatesan
- Department for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
3
|
Zhang LT, Ke LX, Wu XY, Tian HT, Deng HZ, Xu LY, Li EM, Long L. TRIP13 Induces Nedaplatin Resistance in Esophageal Squamous Cell Carcinoma by Enhancing Repair of DNA Damage and Inhibiting Apoptosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7295458. [PMID: 35601150 PMCID: PMC9115607 DOI: 10.1155/2022/7295458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023]
Abstract
Thyroid hormone receptor interactor 13 (TRIP13) plays a crucial role in poor prognosis and chemotherapy resistance of cancer patients. This present study is aimed at investigating the role of high expression of TRIP13 inducing nedaplatin (NDP) resistance in esophageal squamous cell carcinoma (ESCC) cells. High expression of TRIP13 promoted the proliferation and migration of ESCC cells performed by MTS assay, colony formation assay, wound healing assay, and transwell assay. High TRIP13 expression induced NDP resistance to ESCC based on the cell proliferation promoting/inhibition rate and cell migration promoting/inhibition rate analysis, flow cytometry assay of apoptotic subpopulations with a combination of Annexin V-FITC and propidium iodide, and Western blot analysis downregulating cleaved PARP, γH2A.X, cleaved caspase-3, and Bax and upregulating Bcl-2 expression. This study indicated that high expression of TRIP13 promoted proliferation and migration of ESCC cells and induced NDP resistance via enhancing repair of DNA damage and inhibiting apoptosis. This will provide a preliminary reference for the clinical use of NDP in ESCC treatment.
Collapse
Affiliation(s)
- Lin-Ting Zhang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041 Guangdong Province, China
| | - Li-Xin Ke
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041 Guangdong Province, China
| | - Xin-Yi Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041 Guangdong Province, China
| | - Hui-Ting Tian
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041 Guangdong Province, China
| | - Hua-Zhen Deng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041 Guangdong Province, China
| | - Li-Yan Xu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041 Guangdong Province, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041 Guangdong Province, China
- Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, 515041 Guangdong Province, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041 Guangdong Province, China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041 Guangdong Province, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041 Guangdong Province, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041 Guangdong Province, China
| | - Lin Long
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041 Guangdong Province, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041 Guangdong Province, China
- Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, 515041 Guangdong Province, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041 Guangdong Province, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041 Guangdong Province, China
| |
Collapse
|
4
|
Gu Y, Desai A, Corbett KD. Evolutionary Dynamics and Molecular Mechanisms of HORMA Domain Protein Signaling. Annu Rev Biochem 2022; 91:541-569. [PMID: 35041460 DOI: 10.1146/annurev-biochem-090920-103246] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Controlled assembly and disassembly of multi-protein complexes is central to cellular signaling. Proteins of the widespread and functionally diverse HORMA family nucleate assembly of signaling complexes by binding short peptide motifs through a distinctive safety-belt mechanism. HORMA proteins are now understood as key signaling proteins across kingdoms, serving as infection sensors in a bacterial immune system and playing central roles in eukaryotic cell cycle, genome stability, sexual reproduction, and cellular homeostasis pathways. Here, we describe how HORMA proteins' unique ability to adopt multiple conformational states underlies their functions in these diverse contexts. We also outline how a dedicated AAA+ ATPase regulator, Pch2/TRIP13, manipulates HORMA proteins' conformational states to activate or inactivate signaling in different cellular contexts. The emergence of Pch2/TRIP13 as a lynchpin for HORMA protein action in multiple genome-maintenance pathways accounts for its frequent misregulation in human cancers and highlights TRIP13 as a novel therapeutic target. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yajie Gu
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, USA;
| | - Arshad Desai
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, USA; .,Section of Cell & Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, USA.,Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California, USA
| | - Kevin D Corbett
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Liu X, Shen X, Zhang J. TRIP13 exerts a cancer-promoting role in cervical cancer by enhancing Wnt/β-catenin signaling via ACTN4. ENVIRONMENTAL TOXICOLOGY 2021; 36:1829-1840. [PMID: 34061428 DOI: 10.1002/tox.23303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Increasing evidence has indicated that thyroid hormone receptor interacting protein 13 (TRIP13) exerts a cancer-promoting role in a broad spectrum of cancers. However, the detailed relevance and function of TRIP13 in cervical cancer remain undefined. The goal of this work was to evaluate the functional significance and mechanism of TRIP13 in cervical cancer. Our data demonstrated that TRIP13 expression was markedly increased in cervical cancer tissue, and high expression of TRIP13 predicted a low survival rate in cervical cancer patients. Knockdown of TRIP13 caused a significant reduction in the proliferation and invasion of cervical cancer cells. By contrast, over-expression of TRIP13 accelerated the proliferation and invasion of cervical cancer cells. Further data revealed that TRIP13 enhanced the activation of Wnt/β-catenin signaling associated with modulation of α-Actinin-4 (ACTN4). Knockdown of ACTN4 markedly reversed TRIP13-mediated activation of Wnt/β-catenin signaling. In addition, inhibition of Wnt/β-catenin signaling reversed TRIP13-induced cancer-promoting effects in cervical cancer cells. Knockdown of TRIP13 markedly retarded the tumor formation and growth of cervical cells in vivo in nude mice. Taken together, the data of this work indicate that TRIP13 accelerates the proliferation and invasion of cervical cancer by enhancing Wnt/β-catenin signaling via regulation of ACTN4. These findings underscore a relevance of the TRIP13/ACTN4/Wnt/β-catenin signaling axis in the progression of cervical cancer and suggest TRIP13 as a potential target for treatment of cervical cancer.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Xin Shen
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Jing Zhang
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| |
Collapse
|
6
|
Bourova-Flin E, Derakhshan S, Goudarzi A, Wang T, Vitte AL, Chuffart F, Khochbin S, Rousseaux S, Aminishakib P. The combined detection of Amphiregulin, Cyclin A1 and DDX20/Gemin3 expression predicts aggressive forms of oral squamous cell carcinoma. Br J Cancer 2021; 125:1122-1134. [PMID: 34290392 PMCID: PMC8505643 DOI: 10.1038/s41416-021-01491-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Background Large-scale genetic and epigenetic deregulations enable cancer cells to ectopically activate tissue-specific expression programmes. A specifically designed strategy was applied to oral squamous cell carcinomas (OSCC) in order to detect ectopic gene activations and develop a prognostic stratification test. Methods A dedicated original prognosis biomarker discovery approach was implemented using genome-wide transcriptomic data of OSCC, including training and validation cohorts. Abnormal expressions of silent genes were systematically detected, correlated with survival probabilities and evaluated as predictive biomarkers. The resulting stratification test was confirmed in an independent cohort using immunohistochemistry. Results A specific gene expression signature, including a combination of three genes, AREG, CCNA1 and DDX20, was found associated with high-risk OSCC in univariate and multivariate analyses. It was translated into an immunohistochemistry-based test, which successfully stratified patients of our own independent cohort. Discussion The exploration of the whole gene expression profile characterising aggressive OSCC tumours highlights their enhanced proliferative and poorly differentiated intrinsic nature. Experimental targeting of CCNA1 in OSCC cells is associated with a shift of transcriptomic signature towards the less aggressive form of OSCC, suggesting that CCNA1 could be a good target for therapeutic approaches.
Collapse
Affiliation(s)
- Ekaterina Bourova-Flin
- CNRS UMR 5309/INSERM U1209/University Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Samira Derakhshan
- Oral and Maxillofacial Pathology Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Goudarzi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tao Wang
- CNRS UMR 5309/INSERM U1209/University Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Anne-Laure Vitte
- CNRS UMR 5309/INSERM U1209/University Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Florent Chuffart
- CNRS UMR 5309/INSERM U1209/University Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Saadi Khochbin
- CNRS UMR 5309/INSERM U1209/University Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Sophie Rousseaux
- CNRS UMR 5309/INSERM U1209/University Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France.
| | - Pouyan Aminishakib
- Oral and Maxillofacial Pathology Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran. .,Cancer Institute Hospital, IKHC, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Ye H, Mulmi Shrestha S, Zhu J, Ding Y, Shi R. Long non‑coding RNA LINC00491 promotes proliferation and inhibits apoptosis in esophageal squamous cell carcinoma. Int J Mol Med 2021; 47:33. [PMID: 33537830 PMCID: PMC7891827 DOI: 10.3892/ijmm.2021.4866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor in the human digestive system, which affects the physical and mental health of the patient. Long non-coding (lnc)RNAs have been revealed to play an important role in human malignant tumors. Moreover, long intergenic non-protein coding RNA 491 (LINC00491) is a newly discovered lncRNA that can affect the prognosis of cancer. The present study aimed to explore the expression of LINC00491 in ESCC tissues and cells. The reverse transcription-quantitative PCR results suggested that LINC00491 was upregulated in ESCC tissues and cells. LINC00491 expression in esophageal squamous cell carcinoma cells were knocked down. Cell Counting Kit-8, wound healing, Transwell and apoptosis assays were performed to detect the effects of LINC00491 knockdown on cell biological behavior. The results showed that lower expression of LINC00491 resulted in decreased cell proliferation and migration and increased the apoptosis rate. Therefore, the present results indicated that lncRNA LINC00491 promoted the biological processes of ESCC, and thus LINC00491 may be a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Hui Ye
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | | | - Jie Zhu
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yan Ding
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ruihua Shi
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
8
|
TRIP13 promotes the proliferation and invasion of lung cancer cells via the Wnt signaling pathway and epithelial-mesenchymal transition. J Mol Histol 2020; 52:11-20. [PMID: 33128167 DOI: 10.1007/s10735-020-09919-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023]
Abstract
Thyroid hormone receptor interactor 13 (TRIP13) is an ATPase that has been found to be overexpressed in many tumors. The aim of this study was to investigate the role of TRIP13 and its mechanism of action in lung cancer. The expression of TRIP13 was examined in lung cancer tissues and corresponding normal lung tissues by western blotting. TRIP13 was overexpressed or knocked down by transient transfection or siRNA interference in lung cancer cells, respectively. The expression of key proteins associated with the Wnt signaling pathway and epithelial-mesenchymal transition (EMT) was assessed. The interaction between TRIP13 and low-density lipoprotein receptor-related protein 6 (LRP6) was examined by co-immunoprecipitation and laser confocal immunofluorescence. Moreover, this study determined the proliferative and invasive ability of cells through colony formation, cell proliferation, and Matrigel invasion assays. The expression of TRIP13 was higher in lung cancer tissues than in normal lung tissues (p = 0.002), and this correlated with poor patient prognosis (p < 0.001). In addition, overexpression of TRIP13 enhanced the levels of active β-catenin and target proteins of the Wnt signaling pathways (p < 0.05). This study found that TRIP13 can co-localize and bind with LRP6. Furthermore, overexpression of TRIP13 caused the upregulation of N-cadherin, Snail, and vimentin, and the downregulation of E-cadherin (p < 0.05). The aforementioned results were reversed after knocking down the expression of TRIP13 (p < 0.05). TRIP13 is highly expressed in lung cancers, indicating poor prognosis. overexpression of TRIP13 promotes the proliferative and invasive ability of lung cancer cells via the activation of Wnt signaling pathway and EMT.
Collapse
|