1
|
Guo X, Zhang S, Lei C, Jia C, Yin R, Zhang M, Liu W, Lu D. Oligotrophic state reduces the time dependence of the observed survival fraction for heavy ion beam-irradiated Saccharomyces cerevisiae and provides new insights into DNA repair. Appl Environ Microbiol 2024; 90:e0111324. [PMID: 39365040 PMCID: PMC11497803 DOI: 10.1128/aem.01113-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024] Open
Abstract
Heavy ion beam (HIB) irradiation is widely utilized in studies of cosmic rays-induced cellular effects and microbial breeding. Establishing an accurate dose-survival relationship is crucial for selecting the optimal irradiation dose. Typically, after irradiating logarithmic-phase cell suspensions with HIB, the survival fraction (SF) is determined by the ratio of clonal-forming units in irradiated versus control groups. However, our findings indicated that SF measurements were time sensitive. For the Saccharomyces cerevisiae model, the observed SF initially declined and subsequently increased in a eutrophic state; conversely, in an oligotrophic state, it remained relatively stable within 120 minutes. This time effect of SF observations in the eutrophic state can be ascribed to HIB-exposed cells experiencing cell cycle arrest, whereas the control proliferated rapidly, resulting in an over-time disproportionate change in viable cell count. Therefore, an alternative involves irradiating oligotrophic cells, determining SF thereafter, and transferring cells to the eutrophic state to facilitate DNA repair-mutation. Transcriptomic comparisons under these two trophic states yield valuable insights into the DNA damage response. Although DNA repair was postponed in an oligotrophic state, cells proactively mobilized specific repair pathways to advance this process. Effective nutritional supplementation should occur within 120 minutes, beyond this window, a decline in SF indicates an irreversible loss of repair capability. Upon transition to the eutrophic state, S. cerevisiae swiftly adapted and completed the repair. This study helps to minimize time-dependent variability in SF observations and to ensure effective damage repair and mutation in microbial breeding using HIB or other mutagens. It also promotes the understanding of microbial responses to complex environments.IMPORTANCEMutation breeding is a vital means of developing excellent microbial resources. Consequently, understanding the mechanisms through which microorganisms respond to complex environments characterized by mutagens and specific physiological-biochemical states holds significant theoretical and practical values. This study utilized Saccharomyces cerevisiae as a microbial model and highly efficient heavy ion beam (HIB) radiation as a mutagen, it revealed the time dependence of observations of survival fractions (SF) in response to HIB radiation and proposed an alternative to avoid the indeterminacy that this variable brings. Meanwhile, by incorporating an oligotrophic state into the alternative, this study constructed a dynamic map of gene expression during the fast-repair and slow-repair stages. It also highlighted the influence of trophic states on DNA repair. The findings apply to the survival-damage repair-mutation effects of single-celled microorganisms in response to various mutagens and contribute to elucidating the biological mechanisms underlying microbial survival in complex environments.
Collapse
Affiliation(s)
- Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Shengli Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chenglin Jia
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Runsheng Yin
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Liu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
2
|
Wu L, Dong J, Fei D, Le T, Xiao L, Liu J, Yu Z. Fructose-1, 6-Bisphosphate Aldolase B Suppresses Glycolysis and Tumor Progression of Gastric Cancer. Dig Dis Sci 2024; 69:3290-3304. [PMID: 39068380 DOI: 10.1007/s10620-024-08568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Gastric cancer (GC) is believed to be one of the most common digestive tract malignant tumors. However, mounting evidence indicates a link between the glycolysis and tumorigenesis, including gastric cancer. METHODS Our research identified 5508 differently expressed mRNAs in gastric cancer. Then, the genes highly associated with tumorigenesis were identified through weighted correlation network analysis (WGCNA). Bioinformatics analysis observed that these hub genes were significantly linked to the regulation of cell cycle, drug metabolism, and glycolysis. Among these hub genes, there is a critical gene involved in glycolysis regulation, namely fructose-bisphosphate B (ALDOB). RESULTS Analysis based on The Cancer Genome Atlas (TCGA) and three Gene Expression Omnibus (GEO) datasets revealed that ALDOB was significantly downregulated in GC compared with normal tissues. In addition, cell viability assay confirmed that ALDOB acted as a tumor suppressor. Finally, drug sensitivity analysis revealed that ALDOB increased the sensitivity of gastric cancer cells to most antitumor drugs, especially talazoparib, XAV939, and FTI-277. Our results showed that the expression of ALDOB was significantly lower in GC tissues than in normal tissues. And ALDOB significantly inhibited proliferation and migration, delayed glycolysis in GC cells. Consequently, our study suggests that ALDOB may be a potential target for the clinical treatment of gastric cancer.
Collapse
Affiliation(s)
- Liping Wu
- The Department of Science and Education, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Jinliang Dong
- Department of General Surgery, Zhoushan Hospital, Wenzhou Medical University, No. 739 Dingshen Road, Lincheng New District, Zhoushan, Zhejiang, China
| | - Dailiang Fei
- Department of General Surgery, Zhoushan Hospital, Wenzhou Medical University, No. 739 Dingshen Road, Lincheng New District, Zhoushan, Zhejiang, China
| | - Ting Le
- The Laboratory of Cytobiology and Molecular Biology, Zhoushan Hospital, Wenzhou Medical University, No. 739 Dingshen Road, Lincheng New District, Zhoushan, Zhejiang, China
| | - Liang Xiao
- The Department of Surgery and Oncology, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Jia Liu
- School of Agriculture, Sun Yat-Sen University, No. 66 Gongchang Road, Guangming District, Shenzhen, Guangdong, China
- Shenzhen Zhongjia Bio-Medical Technology Co., Ltd, No. 66 Gongchang Road, Guangming District, Shenzhen, Guangdong, China
| | - Ze Yu
- Department of General Surgery, Zhoushan Hospital, Wenzhou Medical University, No. 739 Dingshen Road, Lincheng New District, Zhoushan, Zhejiang, China.
- The Laboratory of Cytobiology and Molecular Biology, Zhoushan Hospital, Wenzhou Medical University, No. 739 Dingshen Road, Lincheng New District, Zhoushan, Zhejiang, China.
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Tang F, Cui Q. Diverse roles of aldolase enzymes in cancer development, drug resistance and therapeutic approaches as moonlighting enzymes. Med Oncol 2024; 41:224. [PMID: 39120781 DOI: 10.1007/s12032-024-02470-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Aldolase enzymes, particularly ALDOA, ALDOB, and ALDOC, play a crucial role in the development and progression of cancer. While the aldolase family is mainly known for its involvement in the glycolysis pathway, these enzymes also have various pathological and physiological functions through distinct signaling pathways such as Wnt/β-catenin, EGFR/MAPK, Akt, and HIF-1α. This has garnered increased attention in recent years and shed light on other sides of this enzyme. Potential therapeutic strategies targeting aldolases include using siRNA, inhibitors like naphthol AS-E phosphate and TX-2098, and natural compounds such as HDPS-4II and L-carnosine. Additionally, anticancer peptides derived from ALDOA, like P04, can potentially increase cancer cells' sensitivity to chemotherapy. Aldolases also affect cancer drug resistance by different approaches, making them good therapeutic targets. In this review, we extensively explore the role of aldolase enzymes in various types of cancers in proliferation, invasion, migration, and drug resistance; we also significantly explore the possible treatment considering aldolase function.
Collapse
Affiliation(s)
- Fan Tang
- General Surgery Department, Xinhua Hospital of Yili Kazak Autonomous Prefecture, YiLi, 835000, China
| | - Qingyang Cui
- Department of Interventional Oncology, Xinhua Hospital of Yili Kazak Autonomous Prefecture, YiLi, 835000, China.
| |
Collapse
|
4
|
Tan M, Pan Q, Wu Q, Li J, Wang J. Aldolase B attenuates clear cell renal cell carcinoma progression by inhibiting CtBP2. Front Med 2023; 17:503-517. [PMID: 36790589 DOI: 10.1007/s11684-022-0947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/28/2022] [Indexed: 02/16/2023]
Abstract
Aldolase B (ALDOB), a glycolytic enzyme, is uniformly depleted in clear cell renal cell carcinoma (ccRCC) tissues. We previously showed that ALDOB inhibited proliferation through a mechanism independent of its enzymatic activity in ccRCC, but the mechanism was not unequivocally identified. We showed that the corepressor C-terminal-binding protein 2 (CtBP2) is a novel ALDOB-interacting protein in ccRCC. The CtBP2-to-ALDOB expression ratio in clinical samples was correlated with the expression of CtBP2 target genes and was associated with shorter survival. ALDOB inhibited CtBP2-mediated repression of multiple cell cycle inhibitor, proapoptotic, and epithelial marker genes. Furthermore, ALDOB overexpression decreased the proliferation and migration of ccRCC cells in an ALDOB-CtBP2 interaction-dependent manner. Mechanistically, our findings showed that ALDOB recruited acireductone dioxygenase 1, which catalyzes the synthesis of an endogenous inhibitor of CtBP2, 4-methylthio 2-oxobutyric acid. ALDOB functions as a scaffold to bring acireductone dioxygenase and CtBP2 in close proximity to potentiate acireductone dioxygenase-mediated inhibition of CtBP2, and this scaffolding effect was independent of ALDOB enzymatic activity. Moreover, increased ALDOB expression inhibited tumor growth in a xenograft model and decreased lung metastasis in vivo. Our findings reveal that ALDOB is a negative regulator of CtBP2 and inhibits tumor growth and metastasis in ccRCC.
Collapse
Affiliation(s)
- Mingyue Tan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Urology Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qi Pan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qi Wu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, 323000, China
| | - Jianfa Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jun Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Urology Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, 323000, China.
| |
Collapse
|
5
|
Hou Y, Park JH, Dan X, Chu X, Yang B, Hussain M, Croteau DL, Bohr VA. RecQ dysfunction contributes to social and depressive-like behavior and affects aldolase activity in mice. Neurobiol Dis 2023; 180:106092. [PMID: 36948261 PMCID: PMC10106417 DOI: 10.1016/j.nbd.2023.106092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023] Open
Abstract
RecQ helicase family proteins play vital roles in maintaining genome stability, including DNA replication, recombination, and DNA repair. In human cells, there are five RecQ helicases: RECQL1, Bloom syndrome (BLM), Werner syndrome (WRN), RECQL4, and RECQL5. Dysfunction or absence of RecQ proteins is associated with genetic disorders, tumorigenesis, premature aging, and neurodegeneration. The biochemical and biological roles of RecQ helicases are rather well established, however, there is no systematic study comparing the behavioral changes among various RecQ-deficient mice including consequences of exposure to DNA damage. Here, we investigated the effects of ionizing irradiation (IR) on three RecQ-deficient mouse models (RecQ1, WRN and RecQ4). We find abnormal cognitive behavior in RecQ-deficient mice in the absence of IR. Interestingly, RecQ dysfunction impairs social ability and induces depressive-like behavior in mice after a single exposure to IR, suggesting that RecQ proteins play roles in mood and cognition behavior. Further, transcriptomic and metabolomic analyses revealed significant alterations in RecQ-deficient mice, especially after IR exposure. In particular, pathways related to neuronal and microglial functions, DNA damage repair, cell cycle, and reactive oxygen responses were downregulated in the RecQ4 and WRN mice. In addition, increased DNA damage responses were found in RecQ-deficient mice. Notably, two genes, Aldolase Fructose-Bisphosphate B (Aldob) and NADPH Oxidase 4 (Nox4), were differentially expressed in RecQ-deficient mice. Our findings suggest that RecQ dysfunction contributes to social and depressive-like behaviors in mice, and that aldolase activity may be associated with these changes, representing a potential therapeutic target.
Collapse
Affiliation(s)
- Yujun Hou
- DNA Repair Section, National Institute on Aging, Baltimore, MD 21224, USA; Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Jae-Hyeon Park
- DNA Repair Section, National Institute on Aging, Baltimore, MD 21224, USA
| | - Xiuli Dan
- DNA Repair Section, National Institute on Aging, Baltimore, MD 21224, USA
| | - Xixia Chu
- DNA Repair Section, National Institute on Aging, Baltimore, MD 21224, USA
| | - Beimeng Yang
- DNA Repair Section, National Institute on Aging, Baltimore, MD 21224, USA
| | - Mansoor Hussain
- DNA Repair Section, National Institute on Aging, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- DNA Repair Section, National Institute on Aging, Baltimore, MD 21224, USA; Computational Biology & Genomics Core, National Institute on Aging, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- DNA Repair Section, National Institute on Aging, Baltimore, MD 21224, USA; Danish Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
6
|
Zhao N, Xu H. Pan-cancer analysis of aldolase B gene as a novel prognostic biomarker for human cancers. Medicine (Baltimore) 2023; 102:e33577. [PMID: 37083815 PMCID: PMC10118374 DOI: 10.1097/md.0000000000033577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
Aldolase B (ALDOB) gene is essential for the process of glycolysis and differentially expressed in cancers. The aims of this study were to explore the potential role of ALDOB in pan-cancer, in order to deepen the research on the pathological mechanism of cancer. Hence, we used several online tools (TIMER2, GEPIA2, UALCAN, cBioPortal, and MXPRESS) and R language to identify the correlation between the ALDOB expression and survival analysis, genetic alteration, DNA methylation, and immune cell infiltration based on The Cancer Genome Atlas project. The results showed that ALDOB was lowly expressed in pan-cancer. Survival analysis revealed that low expression of ALDOB was markedly related with poor clinical prognosis, while the genetic alteration within ALDOB changed along with the difference of overall survival (OS) and disease-free survival (DFS) prognosis in several cancers. A possible relationship between DNA methylation and ALDOB expression for several tumors was found. Besides, ALDOB expression was confirmed to be associated with tumor immune cell infiltration, especially in breast invasive carcinoma (BRCA), esophageal carcinoma (ESCA), and testicular germ cell tumors (TGCT) cases. Further, the enrichment analysis demonstrated that metabolic pathway was closely related to ALDOB expression. Our results provide a comprehensive pan-cancer analysis and suggest ALDOB could act as a promising tumor predictive biomarker for human cancer.
Collapse
Affiliation(s)
- Nannan Zhao
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Haixu Xu
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, China
| |
Collapse
|
7
|
Marcucci F, Rumio C. On the Role of Glycolysis in Early Tumorigenesis-Permissive and Executioner Effects. Cells 2023; 12:cells12081124. [PMID: 37190033 DOI: 10.3390/cells12081124] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/26/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Reprogramming energy production from mitochondrial respiration to glycolysis is now considered a hallmark of cancer. When tumors grow beyond a certain size they give rise to changes in their microenvironment (e.g., hypoxia, mechanical stress) that are conducive to the upregulation of glycolysis. Over the years, however, it has become clear that glycolysis can also associate with the earliest steps of tumorigenesis. Thus, many of the oncoproteins most commonly involved in tumor initiation and progression upregulate glycolysis. Moreover, in recent years, considerable evidence has been reported suggesting that upregulated glycolysis itself, through its enzymes and/or metabolites, may play a causative role in tumorigenesis, either by acting itself as an oncogenic stimulus or by facilitating the appearance of oncogenic mutations. In fact, several changes induced by upregulated glycolysis have been shown to be involved in tumor initiation and early tumorigenesis: glycolysis-induced chromatin remodeling, inhibition of premature senescence and induction of proliferation, effects on DNA repair, O-linked N-acetylglucosamine modification of target proteins, antiapoptotic effects, induction of epithelial-mesenchymal transition or autophagy, and induction of angiogenesis. In this article we summarize the evidence that upregulated glycolysis is involved in tumor initiation and, in the following, we propose a mechanistic model aimed at explaining how upregulated glycolysis may play such a role.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| |
Collapse
|
8
|
Xia H, Wang J, Guo X, Lv Z, Liu J, Yan Q, Liu M, Wang J. Identification of a Hypoxia-Related Gene Signature for Predicting Systemic Metastasis in Prostate Cancer. Front Cell Dev Biol 2021; 9:696364. [PMID: 34722497 PMCID: PMC8548828 DOI: 10.3389/fcell.2021.696364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Systemic metastasis is the main cause of death in patients with prostate cancer. It is necessary to establish a more accurate model to distinguish and predict patients with a high risk of metastasis to optimize individualized treatment. Methods: In this study, it was determined that hypoxia could affect the metastasis-free survival of patients with prostate cancer, and a hypoxia-related gene signature composed of seven genes for predicting metastasis was established and verified in different cohorts. The study further evaluated the effects of ALDOB expression on the proliferation and invasion of the LNCaP and DU145 cell lines under hypoxia and finally constructed a nomogram containing specific clinical characteristics of prostate cancer combined with the hypoxia gene signature to quantify the metastasis risk of individual patients. Results: The hypoxia-related gene signature was identified as an independent risk factor for metastasis-free survival in patients with prostate cancer. The expression of ALDOB increased under hypoxia and promoted the proliferation and invasion of LNCaP and DU145 cells. In addition, patients with a high risk score showed therapeutic resistance and immunosuppression. Compared with other parameters, the nomogram had the strongest predictive power and net clinical benefit. Conclusion: The study established a hypoxia-related gene signature and a nomogram to distinguish and predict patients with a high risk of prostate cancer metastasis, which may help to optimize individualized treatment and explore possible therapeutic targets.
Collapse
Affiliation(s)
- Haoran Xia
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianlong Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxiao Guo
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengtong Lv
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingchao Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiuxia Yan
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Fifth School of Clinical Medicine, Peking University, Beijing, China
| | - Ming Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianye Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Li H, Zimmerman SE, Weyemi U. Genomic instability and metabolism in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:241-265. [PMID: 34507785 DOI: 10.1016/bs.ircmb.2021.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genomic instability and metabolic reprogramming are among the key hallmarks discriminating cancer cells from normal cells. The two phenomena contribute to the robust and evasive nature of cancer, particularly when cancer cells are exposed to chemotherapeutic agents. Genomic instability is defined as the increased frequency of mutations within the genome, while metabolic reprogramming is the alteration of metabolic pathways that cancer cells undergo to adapt to increased bioenergetic demand. An underlying source of these mutations is the aggregate product of damage to the DNA, and a defective repair pathway, both resulting in the expansion of genomic lesions prior to uncontrolled proliferation and survival of cancer cells. Exploitation of DNA damage and the subsequent DNA damage response (DDR) have aided in defining therapeutic approaches in cancer. Studies have demonstrated that targeting metabolic reprograming yields increased sensitivity to chemo- and radiotherapies. In the past decade, it has been shown that these two key features are interrelated. Metabolism impacts DNA damage and DDR via regulation of metabolite pools. Conversely, DDR affects the response of metabolic pathways to therapeutic agents. Because of the interplay between genomic instability and metabolic reprogramming, we have compiled findings which more selectively highlight the dialog between metabolism and DDR, with a particular focus on glucose metabolism and double-strand break (DSB) repair pathways. Decoding this dialog will provide significant clues for developing combination cancer therapies.
Collapse
Affiliation(s)
- Haojian Li
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Susan E Zimmerman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Urbain Weyemi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
10
|
Wang X, Wu K, Li X, Jin J, Yu Y, Sun H. Additional Value of PET/CT-Based Radiomics to Metabolic Parameters in Diagnosing Lynch Syndrome and Predicting PD1 Expression in Endometrial Carcinoma. Front Oncol 2021; 11:595430. [PMID: 34055595 PMCID: PMC8152935 DOI: 10.3389/fonc.2021.595430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 04/12/2021] [Indexed: 01/13/2023] Open
Abstract
Purpose We aim to compare the radiomic features and parameters on 2-deoxy-2-[fluorine-18] fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) between patients with endometrial cancer with Lynch syndrome and those with endometrial cancer without Lynch syndrome. We also hope to explore the biologic significance of selected radiomic features. Materials and Methods We conducted a retrospective cohort study, first using the 18F-FDG PET/CT images and clinical data from 100 patients with endometrial cancer to construct a training group (70 patients) and a test group (30 patients). The metabolic parameters and radiomic features of each tumor were compared between patients with and without Lynch syndrome. An independent cohort of 23 patients with solid tumors was used to evaluate the value of selected radiomic features in predicting the expression of the programmed cell death 1 (PD1), using 18F-FDG PET/CT images and RNA-seq genomic data. Results There was no statistically significant difference in the standardized uptake values on PET between patients with endometrial cancer with Lynch syndrome and those with endometrial cancer without Lynch syndrome. However, there were significant differences between the 2 groups in metabolic tumor volume and total lesion glycolysis (p < 0.005). There was a difference in the radiomic feature of gray level co-occurrence matrix entropy (GLCMEntropy; p < 0.001) between the groups: the area under the curve was 0.94 in the training group (sensitivity, 82.86%; specificity, 97.14%) and 0.893 in the test group (sensitivity, 80%; specificity, 93.33%). In the independent cohort of 23 patients, differences in GLCMEntropy were related to the expression of PD1 (rs =0.577; p < 0.001). Conclusions In patients with endometrial cancer, higher metabolic tumor volumes, total lesion glycolysis values, and GLCMEntropy values on 18F-FDG PET/CT could suggest a higher risk for Lynch syndrome. The radiomic feature of GLCMEntropy for tumors is a potential predictor of PD1 expression.
Collapse
Affiliation(s)
- Xinghao Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Medical Imaging Department of Radiology, Shenyang, China
| | - Ke Wu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Medical Imaging Department of Radiology, Shenyang, China
| | - Xiaoran Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Medical Imaging Department of Radiology, Shenyang, China
| | - Junjie Jin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Medical Imaging Department of Radiology, Shenyang, China
| | - Yang Yu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Medical Imaging Department of Radiology, Shenyang, China
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Medical Imaging Department of Radiology, Shenyang, China
| |
Collapse
|
11
|
Yue FR, Wei ZB, Yan RZ, Guo QH, Liu B, Zhang JH, Li Z. SMYD3 promotes colon adenocarcinoma (COAD) progression by mediating cell proliferation and apoptosis. Exp Ther Med 2020; 20:11. [PMID: 32934676 PMCID: PMC7472017 DOI: 10.3892/etm.2020.9139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Colon adenocarcinoma (COAD) is a type of common malignant tumor originating in the digestive tract. Recently, targeted therapy has had significant effects on the treatment of COAD. However, more effective molecular targets need to be developed. SET and MYND domain-containing protein 3 (SMYD3) is a type of methyltransferase which methylates histone and non-histone proteins. The effects of SMYD3 on cancer progression and metastasis have been widely revealed. However, its possible role in COAD remains unclear. The current study demonstrated that SMYD3 expression was upregulated in human COAD tissues via analyzing the The Cancer Genome Atlas (TCGA) database and the immunohistochemical assays. Furthermore, the expression of SMYD3 was correlated with prognosis and tumor stage (P=0.038) in patients with COAD. Colony formation, MTT, FCM assays and animal assays indicated SMYD3 affected the proliferation, apoptosis and the cell cycle of COAD cells in vitro and promoted tumor growth in mice in vivo. In summary, the results demonstrated the effects of SMYD3 on COAD progression and we hypothesized that SMYD3 is a novel molecular target for COAD treatment.
Collapse
Affiliation(s)
- Fu-Ren Yue
- Department of Clinical Laboratory, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Zhi-Bin Wei
- Department of Clinical Laboratory, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Rui-Zhen Yan
- Department of Clinical Laboratory, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Qiu-Hong Guo
- Department of Clinical Laboratory, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Bing Liu
- Department of Clinical Laboratory, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Jing-Hui Zhang
- Department of Clinical Laboratory, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Zheng Li
- Department of Clinical Laboratory, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| |
Collapse
|