1
|
Zhang P, Pei B, Yi C, Akanyibah FA, Mao F. The role of suppressor of cytokine signaling 3 in inflammatory bowel disease and its associated colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167578. [PMID: 39571630 DOI: 10.1016/j.bbadis.2024.167578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Inflammatory bowel disease (IBD) and colorectal cancer (CRC), as two of the major human intestinal diseases, provide challenges for the medical field. Suppressor of cytokine signaling 3 (SOCS3), a protein molecule that negatively regulates cytokine signaling through multiple pathways, is involved in the regulation of various inflammatory diseases and tumors. In IBD, SOCS3 acts on a variety of cells to repair mucosal damage and balance the immune response, including epithelial cells, macrophages, dendritic cells, neutrophils, and T cells. In CRC, SOCS3 is inextricably linked to tumor cell proliferation, invasion, metastasis, and drug resistance. Therefore, it is crucial to systematically investigate the pathogenic involvement of SOCS3 in IBD and CRC. This article reviews the mechanisms and pathways by which SOCS3 is involved in the inhibition of IBD and the mitigation of CRC, and details the therapeutic options for targeting SOCS3.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China; Institute of Hematology, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223800, Jiangsu, PR China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang 212028, PR China
| | - Francis Atim Akanyibah
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China
| | - Fei Mao
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China; Institute of Hematology, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
2
|
Zhou L, Yan Z, Yang W, Buckley JA, Al Diffalha S, Benveniste EN, Qin H. Socs3 expression in myeloid cells modulates the pathogenesis of dextran sulfate sodium (DSS)-induced colitis. Front Immunol 2023; 14:1163987. [PMID: 37283760 PMCID: PMC10239850 DOI: 10.3389/fimmu.2023.1163987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Myeloid cells play a critical role in the pathogenesis of Inflammatory Bowel Diseases (IBDs), including Ulcerative Colitis (UC) and Crohn's Disease (CD). Dysregulation of the JAK/STAT pathway is associated with many pathological conditions, including IBD. Suppressors Of Cytokine Signaling (SOCS) are a family of proteins that negatively regulate the JAK/STAT pathway. Our previous studies identified that mice lacking Socs3 in myeloid cells developed a hyper-activated phenotype of macrophages and neutrophils in a pre-clinical model of Multiple Sclerosis. Methods To better understand the function of myeloid cell Socs3 in the pathogenesis of colitis, mice with Socs3 deletion in myeloid cells (Socs3 ΔLysM) were utilized in a DSS-induced colitis model. Results Our results indicate that Socs3 deficiency in myeloid cells leads to more severe colitis induced by DSS, which correlates with increased infiltration of monocytes and neutrophils in the colon and increased numbers of monocytes and neutrophils in the spleen. Furthermore, our results demonstrate that the expression of genes related to the pathogenesis and diagnosis of colitis such as Il1β, Lcn2, S100a8 and S100a9 were specifically enhanced in Socs3-deficient neutrophils localized to the colon and spleen. Conversely, there were no observable differences in gene expression in Ly6C+ monocytes. Depletion of neutrophils using a neutralizing antibody to Ly6G significantly improved the disease severity of DSS-induced colitis in Socs3-deficient mice. Discussion Thus, our results suggest that deficiency of Socs3 in myeloid cells exacerbates DSS-induced colitis and that Socs3 prevents overt activation of the immune system in IBD. This study may provide novel therapeutic strategies to IBD patients with hyperactivated neutrophils.
Collapse
Affiliation(s)
- Lianna Zhou
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhaoqi Yan
- Gladstone Institute of Neurological Disease, San Francisco, CA, United States
| | - Wei Yang
- Division of Gastroenterology and Hepatology, Weill Cornell College of Medicine, New York, NY, United States
| | - Jessica A. Buckley
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sameer Al Diffalha
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Etty N. Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Molecular characterization of visible low-grade dysplastic lesions in patients with inflammatory bowel disease. Hum Pathol 2023; 135:108-116. [PMID: 36754311 DOI: 10.1016/j.humpath.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/08/2023]
Abstract
We studied pathogenic gene mutations and tumor mutation burden (TMB) in visible low-grade dysplastic lesions in patients with inflammatory bowel disease (IBD). The dysplastic lesions with histologically normal mucosa in the background (group 1) were compared with dysplastic lesions occurring either in a background of chronic active colitis (group 2) or associated with synchronous carcinomas regardless of the status of the background mucosa (group 3). The TMB in group 3 was consistently higher in comparison to the group 1 and group 2 lesions, although the difference was not statistically significant. There also seem to be different mutation profiles between the groups, indicating different pathways of tumor pathogenesis. More frequent APC mutations were seen in group 1 as compared to other groups and TP53 mutations were seen in groups 2 and 3, but none in group 1. Molecular characterization could potentially be used as an ancillary prognostic marker in challenging cases to guide the further management of IBD patients with visible dysplastic lesions.
Collapse
|
4
|
Luo Q, Huang S, Zhao L, Liu J, Ma Q, Wang Y, Dong Y, Li C, Qiu P. Chang qing formula ameliorates colitis-associated colorectal cancer via suppressing IL-17/NF-κB/STAT3 pathway in mice as revealed by network pharmacology study. Front Pharmacol 2022; 13:893231. [PMID: 35991881 PMCID: PMC9382085 DOI: 10.3389/fphar.2022.893231] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
Colitis-associated colorectal cancer (CAC) is a specific type of colorectal cancer (CRC) with high mortality and morbidity, the chronic inflammation in the intestinal mucosal is the characteristic of CAC. Chang Qing formula (CQF) is a Chinese herbal formula used clinically for the treatment of CAC with remarkable clinical efficacy, but its mechanism remains unclear. In the present work, Combined network pharmacology and transcriptomics were used to analyze the potential active ingredients and elucidate molecular mechanism of CQF in treating CAC. Firstly, the constituents migrating to blood of CQF were analyzed and identified by UPLC-Q-TOF-MS/MS, and core genes and pathways were screened by network pharmacology analysis. Encyclopedia of Genes and Genomes (KEGG) analysis showed that the IL-17 signaling pathway involved in CAC may be closely associated with the potential mechanismof action of CQF. Subsequently, the results from animal studies indicated that CQF profoundly reduced tumor numbers and tumor size in AOM/DSS mice. The RNA-seq data was analysed utilizing Ingenuity Pathway Analysis (IPA), and the results supported the idea that CQF exerts a tumour-suppressive effect via the IL-17 signalling pathway. Further studies demonstrated that CQF significantly reduced IL-17A levels, which in turn inhibited NF-κB/IL-6/STAT3 signaling cascade, suppressed MMP9 expression and promoted tumor cell apoptosis. In conclusion, the current study demonstrated that CQF remarkably improved inflammatory tumor microenvironment, and hindered the transformation of inflammation into cancer. These findings may help to design future strategies for the treatment of CAC.
Collapse
Affiliation(s)
- Qihan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lisha Zhao
- Analytical Testing Center, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Jingqun Liu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Ma
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiheng Wang
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Dong
- Analytical Testing Center, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
- *Correspondence: Yu Dong, ; Changyu Li, ; Ping Qiu,
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Yu Dong, ; Changyu Li, ; Ping Qiu,
| | - Ping Qiu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Yu Dong, ; Changyu Li, ; Ping Qiu,
| |
Collapse
|
5
|
Majumder S, Shivaji UN, Kasturi R, Sigamani A, Ghosh S, Iacucci M. Inflammatory bowel disease-related colorectal cancer: Past, present and future perspectives. World J Gastrointest Oncol 2022; 14:547-567. [PMID: 35321275 PMCID: PMC8919014 DOI: 10.4251/wjgo.v14.i3.547] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease-related colorectal cancer (IBD-CRC) is one of the most serious complications of IBD contributing to significant mortality in this cohort of patients. IBD is often associated with diet and lifestyle-related gut microbial dysbiosis, the interaction of genetic and environmental factors, leading to chronic gut inflammation. According to the “common ground hypothesis”, microbial dysbiosis and intestinal barrier impairment are at the core of the chronic inflammatory process associated with IBD-CRC. Among the many underlying factors known to increase the risk of IBD-CRC, perhaps the most important factor is chronic persistent inflammation. The persistent inflammation in the colon results in increased proliferation of cells necessary for repair but this also increases the risk of dysplastic changes due to chromosomal and microsatellite instability. Multiple pathways have been identified, regulated by many positive and negative factors involved in the development of cancer, which in this case follows the ‘inflammation-dysplasia-carcinoma’ sequence. Strategies to lower this risk are extremely important to reduce morbidity and mortality due to IBD-CRC, among which colonoscopic surveillance is the most widely accepted and implemented modality, forming part of many national and international guidelines. However, the effectiveness of surveillance in IBD has been a topic of much debate in recent years for multiple reasons — cost-benefit to health systems, resource requirements, and also because of studies showing conflicting long-term data. Our review provides a comprehensive overview of past, present, and future perspectives of IBD-CRC. We explore and analyse evidence from studies over decades and current best practices followed globally. In the future directions section, we cover emerging novel endoscopic techniques and artificial intelligence that could play an important role in managing the risk of IBD-CRC.
Collapse
Affiliation(s)
- Snehali Majumder
- Department of Clinical Research, Narayana Health, Bangalore 560099, Karnataka, India
| | - Uday Nagesh Shivaji
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham, Birmingham B15 2TH, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TH, United Kingdom
| | - Rangarajan Kasturi
- Department of Gastroenterology, Narayana Health, Bangalore 560099, India
| | - Alben Sigamani
- Department of Clinical Research, Narayana Health, Bangalore 560099, Karnataka, India
| | - Subrata Ghosh
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham, Birmingham B15 2TH, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TH, United Kingdom
| | - Marietta Iacucci
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham, Birmingham B15 2TH, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TH, United Kingdom
| |
Collapse
|
6
|
Tong Xie Yao Fang: A Classic Chinese Medicine Prescription with Potential for the Treatment of Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5548764. [PMID: 34211567 PMCID: PMC8208878 DOI: 10.1155/2021/5548764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/05/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
The prescription of Tong Xie Yao Fang (TXYF) was derived from the Yuan dynasty “Dan Brook Heart Law,” which was a representative formula for treating liver-spleen disharmony, diarrhea, and abdominal pain. The prescription is composed of four herbs for soothing the liver and strengthening the spleen. TXYF is reportedly capable of eliminating discomfort in ulcerative colitis (UC). This classic formula has been widely used for regulating gastrointestinal motor dysfunction and repairing colon mucosa. This review aims to provide current information on the pharmacology and clinical research of TXYF in the treatment of UC, and to critically appraise that information, in order to guide the future clinical use and experimental study of TXYF in the treatment of UC. We searched online databases including PubMed, CNKI, and Google Scholar for research published between 2010 and 2020 on TXYF and its efficacy in the treatment of UC. The findings indicated that TXYF has anti-inflammatory and immunomodulatory effects, regulates cell signal transduction, brain-gut axis, and intestinal flora in UC, and may promote targeting of bone mesenchymal stem cells (BMSCs) to the colonic mucosa and accelerate healing of the colonic mucosal barrier. In addition, the results of clinical studies showed that TXYF has good efficacy and few adverse reactions in the treatment of UC. Although it has achieved some success, the research is limited by deficiencies; there is a lack of unified standards for the construction of UC animal models and for administration regimen. In addition, the dosage of TXYF is not consistent and lacks pharmacological verification, and clinical trial data are not detailed or sufficiently rigorous. Therefore, a more rigorous, comprehensive, and in-depth study of TXYF in the treatment of UC is needed.
Collapse
|
7
|
Regulatory Effect of Mesenchymal Stem Cells on T Cell Phenotypes in Autoimmune Diseases. Stem Cells Int 2021; 2021:5583994. [PMID: 33859701 PMCID: PMC8024100 DOI: 10.1155/2021/5583994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Research on mesenchymal stem cells (MSCs) starts from the earliest assumption that cells derived from the bone marrow have the ability to repair tissues. Several scientists have since documented the crucial role of bone marrow-derived MSCs (BM-MSCs) in processes such as embryonic bone and cartilage formation, adult fracture and tissue repair, and immunomodulatory activities in therapeutic applications. In addition to BM-MSCs, several sources of MSCs have been reported to possess tissue repair and immunoregulatory abilities, making them potential treatment options for many diseases. Therefore, the therapeutic potential of MSCs in various diseases including autoimmune conditions has been explored. In addition to an imbalance of T cell subsets in most patients with autoimmune diseases, they also exhibit complex disease manifestations, overlapping symptoms among diseases, and difficult treatment. MSCs can regulate T cell subsets to restore their immune homeostasis toward disease resolution in autoimmune conditions. This review summarizes the role of MSCs in relieving autoimmune diseases via the regulation of T cell phenotypes.
Collapse
|