1
|
Shen Z, Song J, Wang S, Tang M, Yang Y, Yu M, Zhang R, Zhou H, Jiang G. Cross-disease drug discovery based on bioinformatics and virtual screening: Study of key genes in Alzheimer's disease and ovarian cancer. Gene 2025; 935:149084. [PMID: 39522660 DOI: 10.1016/j.gene.2024.149084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) and cancer, both age-related diseases, are characterized by abnormal cellular behavior. Epidemiological data indicate an inverse relationship between AD and various cancers. Accordingly, this study seeks to analyze the negatively correlated genes between AD and ovarian cancer and identify closely related compounds through virtual screening technology to explore potential therapeutic drugs. METHODS Microarray data were downloaded from the Gene Expression Omnibus database, and negatively correlated genes between AD and ovarian cancer were identified using bioinformatics analysis. Clinical prognostic and survival analyses were performed to identify genes most negatively associated with these diseases. The top ten compounds with the strongest binding to the target genes were screened from the ChemDiv database using virtual screening technology, considering the blood-brain barrier. Molecular dynamics simulations were used to identify potential sites for the binding of these compounds to the target protein MX1. Additionally, point mutation analysis of the target protein was performed. Finally, the binding site was verified in vitro. RESULTS The MX1 gene was most significantly negatively associated with AD and ovarian cancer. Molecular dynamics simulations revealed intersection sites at Glu-227 and Gly-188, where MX1 binds tightly to the head compound. CONCLUSION This study successfully identified MX1 as being negatively associated with AD and ovarian cancer and assessed the potential drug compounds that bind most closely to it. Our findings provide important rationale and candidate targets for the development of novel therapeutic strategies for AD and ovarian cancer.
Collapse
Affiliation(s)
- Ziyi Shen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological diseases, North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, China
| | - Jinxuan Song
- Fujian Provincial Sperm Bank, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Shenglin Wang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological diseases, North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, China
| | - Ming Tang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological diseases, North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, China
| | - Yang Yang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological diseases, North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, China
| | - Meiling Yu
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological diseases, North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, China
| | - Rong Zhang
- Guang 'an Hospital, Affiliated Hospital of North Sichuan Medical College, Guangan 638500, China
| | - Honggui Zhou
- Department of Gynecology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological diseases, North Sichuan Medical College, 1 South Maoyuan Road, Nanchong 637000, China.
| |
Collapse
|
2
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
3
|
Chuang WY, Lee CW, Fan WL, Liu TT, Lin ZH, Wang KC, Huang PJ, Yeh YM, Lin TC. Wnt-5a-Receptor Tyrosine Kinase-Like Orphan Receptor 2 Signaling Provokes Metastatic Colonization and Angiogenesis in Renal Cell Carcinoma, and Prunetin Supresses the Axis Activation. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1967-1985. [PMID: 39069169 DOI: 10.1016/j.ajpath.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Wnt-5a is a protein encoded by the WNT5A gene and is a ligand for the receptor tyrosine kinase-like orphan receptor 2 (ROR2). However, its biological impact on clear cell renal cell carcinoma (ccRCC) remains unclear. In this study, the prognostic significance of concurrent WNT5A and ROR2 expression levels was observed to predict unfavorable overall survival and disease-specific survival. High Wnt-5a expression was detected in a ccRCC cell line panel but not in HK-2 cells, a normal proximal tubular cell line. Inhibition of DNA methyltransferase by 5-azacytidine in 786-O and Caki-2 cells resulted in Wnt-5a up-regulation, indicating potential epigenetic modification. Furthermore, there was a repression of cell movement in vitro and metastatic colonization in vivo on WNT5A and ROR2 knockdown. Suppressions of angiogenesis in vivo and tubular-like structure formation in endothelial cells in vitro were also observed after silencing WNT5A and ROR2 expression. In addition, alteration in the downstream gene signature of the Wnt-5a-ROR2 signaling was similar to that in metastasis-associated gene 1-β-catenin axis. Moreover, prunetin treatment reversed the gene signature derived from Wnt-5a-ROR2 signaling activation and to abolish ccRCC cell migration and proliferation. Overall, this study demonstrates the clinical and functional significance of the Wnt-5a-ROR2 axis and identifies prunetin as a potential precision medicine for patients with ccRCC harboring aberrant Wnt-5a-ROR2 signaling pathways.
Collapse
Affiliation(s)
- Wen-Yu Chuang
- Department of Pathology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan; Chang Gung Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chao-Wei Lee
- Division of General Surgery, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Lang Fan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tsung-Ta Liu
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Zih-Han Lin
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Kuo-Chih Wang
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Po-Jung Huang
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Wilkinson EJ, Raspin K, Malley RC, Donovan S, Nott LM, Holloway AF, Dickinson JL. WNT5A is a putative epi-driver of prostate cancer metastasis to the bone. Cancer Med 2024; 13:e70122. [PMID: 39164966 PMCID: PMC11335815 DOI: 10.1002/cam4.70122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Current diagnostic tools are unable to distinguish low-grade indolent prostate cancer (PrCa) from that with a propensity to become metastatic and/or lethal. Recent evidence suggests that reprogramming of the transcriptome may drive the metastatic phenotype, and that this reprogramming is controlled, at least in part, by epigenetic changes to the DNA of cancer cells, including methylation. These changes, referred to as 'epigenetic drivers,' have previously been associated with cancer cell survival. METHODS Here, using Illumina Methylation EPIC array data of paired primary PrCa and metastatic bone samples, we identified WNT5A as a putative epi-driver of PrCa metastasis to the bone, which was further validated in vitro. RESULTS Significantly higher WNT5A methylation was observed in primary PrCa samples and 22Rv1 cells compared to metastatic bone samples and PC-3 cells. This higher methylation was associated with significantly lower WNT5A gene expression. CONCLUSION Given the limited effective therapies available for metastatic cancer sufferers, particularly those whose disease has metastasised to the bone, WNT5A presents as a potential putative target for therapy.
Collapse
Affiliation(s)
- Emma J. Wilkinson
- Tasmanian School of MedicineUniversity of TasmaniaHobartTasmaniaAustralia
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - Kelsie Raspin
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - Roslyn C. Malley
- Tasmanian School of MedicineUniversity of TasmaniaHobartTasmaniaAustralia
- Anatomical PathologyRoyal Hobart HospitalHobartTasmaniaAustralia
- Diagnostic ServicesSonic HealthcareHobartTasmaniaAustralia
| | - Shaun Donovan
- Diagnostic ServicesSonic HealthcareHobartTasmaniaAustralia
| | - Louise M. Nott
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
- Icon Cancer CentreHobartTasmaniaAustralia
- Oncology and HaematologyRoyal Hobart HospitalHobartTasmaniaAustralia
| | - Adele F. Holloway
- Tasmanian School of MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Joanne L. Dickinson
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
5
|
Zhang J, Feng S, Chen M, Zhang W, Zhang X, Wang S, Gan X, Zheng Y, Wang G. Identification of potential crucial genes shared in psoriasis and ulcerative colitis by machine learning and integrated bioinformatics. Skin Res Technol 2024; 30:e13574. [PMID: 38303405 PMCID: PMC10835022 DOI: 10.1111/srt.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Mounting evidence suggest that there are an association between psoriasis and ulcerative colitis (UC), although the common pathogeneses are not fully understood. Our study aimed to find potential crucial genes in psoriasis and UC through machine learning and integrated bioinformatics. METHODS The overlapping differentially expressed genes (DEGs) of the datasets GSE13355 and GSE87466 were identified. Then the functional enrichment analysis was performed. The overlapping genes in LASSO, SVM-RFE and key module in WGCNA were considered as potential crucial genes. The receiver operator characteristic (ROC) curve was used to estimate their diagnostic confidence. The CIBERSORT was conducted to evaluate immune cell infiltration. Finally, the datasets GSE30999 and GSE107499 were retrieved to validate. RESULTS 112 overlapping DEGs were identified in psoriasis and UC and the functional enrichment analysis revealed they were closely related to the inflammatory and immune response. Eight genes, including S100A9, PI3, KYNU, WNT5A, SERPINB3, CHI3L2, ARNTL2, and SLAMF7, were ultimately identified as potential crucial genes. ROC curves showed they all had high confidence in the test and validation datasets. CIBERSORT analysis indicated there was a correlation between infiltrating immune cells and potential crucial genes. CONCLUSION In our study, we focused on the comprehensive understanding of pathogeneses in psoriasis and UC. The identification of eight potential crucial genes may contribute to not only understanding the common mechanism, but also identifying occult UC in psoriasis patients, even serving as therapeutic targets in the future.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Dermatologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Shuo Feng
- Department of Dermatologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Minfei Chen
- Department of Dermatologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Wen Zhang
- Department of Dermatologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Xiu Zhang
- Department of Dermatologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Shengbang Wang
- Department of Dermatologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Xinyi Gan
- Department of Dermatologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Yan Zheng
- Department of Dermatologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Guorong Wang
- The First Department of General Surgerythe Third Affiliated Hospital and Shaanxi Provincial People's HospitalXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| |
Collapse
|
6
|
Shi Y, Tian Y, Wu Y, Zhao Y. CircTNPO1 promotes the tumorigenesis of osteosarcoma by sequestering miR-578 to upregulate WNT5A expression. Cell Signal 2023; 111:110858. [PMID: 37633479 DOI: 10.1016/j.cellsig.2023.110858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/05/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
As a type of non-coding RNAs, circular RNAs (circRNAs) have the ability to bind to miRNAs and regulate gene expression. Recent studies have shown that circRNAs are involved in certain pathological events. However, the expression and functional role of circTNPO1 in osteosarcoma (OS) are not yet clear. To investigate circRNAs that are differentially expressed in OS tissues and cells, circRNA microarray analysis combined with qRT-PCR was performed. The in-vitro and in-vivo functions of circTNPO1 were studied by knocking it down or overexpressing it. The binding and regulatory relationships between circTNPO1, miR-578, and WNT5A were evaluated using dual luciferase assays, RNA pull-down and rescue assays, as well as RNA immunoprecipitation (RIP). Furthermore, functional experiments were conducted to uncover the regulatory effect of the circTNPO1/miR-578/WNT5A pathway on OS progression. Cytoplasm was identified as the primary location of circTNPO1, which exhibited higher expression in OS tissues and cells compared to the corresponding controls. The overexpression of circTNPO1 was found to enhance malignant phenotypes in vitro and increase oncogenicity in vivo. Moreover, circTNPO1 was observed to sequester miR-578 in OS cells, resulting in the upregulation of WNT5A and promoting carcinoma progression. These findings indicate that circTNPO1 can contribute to the progression of OS through the miR-578/WNT5A axis. Therefore, targeting the circTNPO1/miR-578/WNT5A axis could be a promising therapeutic strategy for OS.
Collapse
Affiliation(s)
- Yubo Shi
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yunyun Tian
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanqing Wu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yingchun Zhao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
7
|
The Cell Surface Heparan Sulfate Proteoglycan Syndecan-3 Promotes Ovarian Cancer Pathogenesis. Int J Mol Sci 2022; 23:ijms23105793. [PMID: 35628603 PMCID: PMC9145288 DOI: 10.3390/ijms23105793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
Syndecans are transmembrane heparan sulfate proteoglycans that integrate signaling at the cell surface. By interacting with cytokines, signaling receptors, proteases, and extracellular matrix proteins, syndecans regulate cell proliferation, metastasis, angiogenesis, and inflammation. We analyzed public gene expression datasets to evaluate the dysregulation and potential prognostic impact of Syndecan-3 in ovarian cancer. Moreover, we performed functional in vitro analysis in syndecan-3-siRNA-treated SKOV3 and CAOV3 ovarian cancer cells. In silico analysis of public gene array datasets revealed that syndecan-3 mRNA expression was significantly increased 5.8-fold in ovarian cancer tissues (n = 744) and 3.4-fold in metastases (n = 44) compared with control tissue (n = 46), as independently confirmed in an RNAseq dataset on ovarian serous cystadenocarcinoma tissue (n = 374, controls: n = 133, 3.5-fold increase tumor vs. normal). Syndecan-3 siRNA knockdown impaired 3D spheroid growth and colony formation as stemness-related readouts in SKOV3 and CAOV3 cells. In SKOV3, but not in CAOV3 cells, syndecan-3 depletion reduced cell viability both under basal conditions and under chemotherapy with cisplatin, or cisplatin and paclitaxel. While analysis of the SIOVDB database did not reveal differences in Syndecan-3 expression between patients, sensitive, resistant or refractory to chemotherapy, KM Plotter analysis of 1435 ovarian cancer patients revealed that high syndecan-3 expression was associated with reduced survival in patients treated with taxol and platin. At the molecular level, a reduction in Stat3 activation and changes in the expression of Wnt and notch signaling constituents were observed. Our study suggests that up-regulation of syndecan-3 promotes the pathogenesis of ovarian cancer by modulating stemness-associated pathways.
Collapse
|
8
|
Tyagi K, Mandal S, Roy A. Recent advancements in therapeutic targeting of the Warburg effect in refractory ovarian cancer: A promise towards disease remission. Biochim Biophys Acta Rev Cancer 2021; 1876:188563. [PMID: 33971276 DOI: 10.1016/j.bbcan.2021.188563] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
Epithelial ovarian cancer, the most lethal gynecological malignancy, is diagnosed at advanced stage, recurs and displays chemoresistance to standard chemotherapeutic regimen of taxane/platinum drugs. Despite development of recent therapeutic approaches including poly-ADP ribose polymerase inhibitors, this fatal disease is diagnosed at advanced stage and heralds strategies for early detection and improved treatment. Recent literature suggests that high propensity of ovarian cancer cells to consume and metabolize glucose via glycolysis even in the presence of oxygen (the 'Warburg effect') can significantly contribute to disease progression and chemoresistance and hence, it has been exploited as novel drug target. This review focuses on the molecular cues of aberrant glycolysis as drivers of chemo-resistance and aggressiveness of recurrent ovarian cancer. Furthermore, we discuss the status quo of small molecule inhibition of aerobic glycolysis and significance of metabolic coupling between cancer cells and tumor microenvironment as novel therapeutic interventions against this lethal pathology.
Collapse
Affiliation(s)
- Komal Tyagi
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector-125, Noida, Uttar Pradesh 201303, India
| | - Supratim Mandal
- Department of Microbiology, Kalyani University, West Bengal 741235, India
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector-125, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|