1
|
Zhang F, Xu Y, Lin J, Pan H, Giuliano AE, Cui X, Cui Y. Reciprocal regulation of forkhead box C1 and L1 cell adhesion molecule contributes to triple-negative breast cancer progression. Breast Cancer Res Treat 2024; 204:465-474. [PMID: 38183514 PMCID: PMC10959774 DOI: 10.1007/s10549-023-07177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/04/2023] [Indexed: 01/08/2024]
Abstract
PURPOSE The potential of targeting forkhead box C1 (FOXC1) as a therapeutic approach for triple-negative breast cancer (TNBC) is promising. However, a comprehensive understanding of FOXC1 regulation, particularly upstream factors, remains elusive. Expression of the L1 cell adhesion molecule (L1CAM), a transmembrane glycoprotein associated with brain metastasis, was observed to be positively associated with FOXC1 transcripts. Thus, this study aims to investigate their relationship in TNBC progression. METHODS Publicly available FOXC1 and L1CAM transcriptomic data were obtained, and their corresponding proteins were analyzed in four TNBC cell lines. In BT549 cells, FOXC1 and L1CAM were individually silenced, while L1CAM was overexpressed in BT549-shFOXC1, MDA-MB-231, and HCC1937 cells. CCK-8, transwell, and wound healing assays were performed in these cell lines, and immunohistochemical staining was conducted in tumor samples. RESULTS A positive correlation between L1CAM and FOXC1 transcripts was observed in publicly available datasets. In BT549 cells, knockdown of FOXC1 led to reduced L1CAM expression at both the transcriptional and protein levels, and conversely, silencing of L1CAM decreased FOXC1 protein levels, but interestingly, FOXC1 transcripts remained largely unaffected. Overexpressing L1CAM resulted in increased FOXC1 protein expression without significant changes in FOXC1 mRNA levels. This trend was also observed in BT549-shFOXC1, MDA-MB-231-L1CAM, and HCC1937-L1CAM cells. Notably, alterations in FOXC1 or L1CAM levels corresponded to changes in cell proliferation, migration, and invasion capacities. Furthermore, a positive correlation between L1CAM and FOXC1 protein expression was detected in human TNBC tumors. CONCLUSION FOXC1 and L1CAM exhibit co-regulation at the protein level, with FOXC1 regulating at the transcriptional level and L1CAM regulating at the post-transcriptional level, and together they positively influence cell proliferation, migration, and invasion in TNBC.
Collapse
Affiliation(s)
- Fan Zhang
- Oncology Research Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yue Xu
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiediao Lin
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hongchao Pan
- Oncology Research Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Armando E Giuliano
- Department of Surgery, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Xiaojiang Cui
- Department of Surgery, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Yukun Cui
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
2
|
Zhou M, Chen H, Zeng Y, Lv Z, Hu X, Tong Y, Wang P, Zhao M, Mu R, Yu J, Chen Y, Wei L, Gu J, Lan Q, Zhen X, Han L. DH5α Outer Membrane-Coated Biomimetic Nanocapsules Deliver Drugs to Brain Metastases but not Normal Brain Cells via Targeting GRP94. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300403. [PMID: 37104822 DOI: 10.1002/smll.202300403] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Receptor-mediated vesicular transport has been extensively developed to penetrate the blood-brain barrier (BBB) and has emerged as a class of powerful brain-targeting delivery technologies. However, commonly used BBB receptors such as transferrin receptor and low-density lipoprotein receptor-related protein 1, are also expressed in normal brain parenchymal cells and can cause drug distribution in normal brain tissues and subsequent neuroinflammation and cognitive impairment. Here, the endoplasmic reticulum residing protein GRP94 is found upregulated and relocated to the cell membrane of both BBB endothelial cells and brain metastatic breast cancer cells (BMBCCs) by preclinical and clinical investigations. Inspired by that Escherichia coli penetrates the BBB via the binding of its outer membrane proteins with GRP94, avirulent DH5α outer membrane protein-coated nanocapsules (Omp@NCs) are developed to cross the BBB, avert normal brain cells, and target BMBCCs via recognizing GRP94. Embelin (EMB)-loaded Omp@EMB specifically reduce neuroserpin in BMBCCs, which inhibits vascular cooption growth and induces apoptosis of BMBCCs by restoring plasmin. Omp@EMB plus anti-angiogenic therapy prolongs the survival of mice with brain metastases. This platform holds the translational potential to maximize therapeutic effects on GRP94-positive brain diseases.
Collapse
Affiliation(s)
- Mengyuan Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
- MJiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Haiyan Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yuteng Zeng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Ziyan Lv
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Xiaoxiao Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yang Tong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Pan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Mei Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Rui Mu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Ju Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, P. R. China
| | - Yanming Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, P. R. China
| | - Lin Wei
- MJiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
- School of Life Science, Anhui Medical University, Hefei, 230032, P. R. China
| | - Jiang Gu
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215004, P. R. China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
3
|
Organotropism of breast cancer metastasis: A comprehensive approach to the shared gene network. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
Qi M, Fan S, Huang M, Pan J, Li Y, Miao Q, Lyu W, Li X, Deng L, Qiu S, Liu T, Deng W, Chu X, Jiang C, He W, Xia L, Yang Y, Hong J, Qi Q, Yin W, Liu X, Shi C, Chen M, Ye W, Zhang D. Targeting FAPα-expressing hepatic stellate cells overcomes resistance to antiangiogenics in colorectal cancer liver metastasis models. J Clin Invest 2022; 132:e157399. [PMID: 35951441 PMCID: PMC9525122 DOI: 10.1172/jci157399] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Vessel co-option has been demonstrated to mediate colorectal cancer liver metastasis (CRCLM) resistance to antiangiogenic therapy. The current mechanisms underlying vessel co-option have mainly focused on "hijacker" tumor cells, whereas the function of the "hijackee" sinusoidal blood vessels has not been explored. Here, we found that the occurrence of vessel co-option in bevacizumab-resistant CRCLM xenografts was associated with increased expression of fibroblast activation protein α (FAPα) in the co-opted hepatic stellate cells (HSCs), which was dramatically attenuated in HSC-specific conditional Fap-knockout mice bearing CRCLM allografts. Mechanistically, bevacizumab treatment induced hypoxia to upregulate the expression of fibroblast growth factor-binding protein 1 (FGFBP1) in tumor cells. Gain- or loss-of-function experiments revealed that the bevacizumab-resistant tumor cell-derived FGFBP1 induced FAPα expression by enhancing the paracrine FGF2/FGFR1/ERK1/-2/EGR1 signaling pathway in HSCs. FAPα promoted CXCL5 secretion in HSCs, which activated CXCR2 to promote the epithelial-mesenchymal transition of tumor cells and the recruitment of myeloid-derived suppressor cells. These findings were further validated in tumor tissues derived from patients with CRCLM. Targeting FAPα+ HSCs effectively disrupted the co-opted sinusoidal blood vessels and overcame bevacizumab resistance. Our study highlights the role of FAPα+ HSCs in vessel co-option and provides an effective strategy to overcome the vessel co-option-mediated bevacizumab resistance.
Collapse
Affiliation(s)
- Ming Qi
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Shuran Fan
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Maohua Huang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jinghua Pan
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yong Li
- College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and
| | - Qun Miao
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wenyu Lyu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaobo Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Lijuan Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Shenghui Qiu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tongzheng Liu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Weiqing Deng
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaodong Chu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chang Jiang
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenzhuo He
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liangping Xia
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jian Hong
- School of Medicine, Jinan University, Guangzhou, China
| | - Qi Qi
- School of Medicine, Jinan University, Guangzhou, China
| | - Wenqian Yin
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiangning Liu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Changzheng Shi
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Minfeng Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and
| |
Collapse
|
5
|
Karpathiou G, Hamlat M, Dridi M, Forest F, Papoudou-Bai A, Dumollard JM, Peoc'h M. Autophagy and immune microenvironment in craniopharyngioma and ameloblastoma. Exp Mol Pathol 2021; 123:104712. [PMID: 34655574 DOI: 10.1016/j.yexmp.2021.104712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Craniopharyngiomas and ameloblastomas show remarkable histologic and molecular similarities. The immune microenvironment of craniopharyngiomas has been recently studied showing interesting findings, while its composition in ameloblastomas is unknown. Similarly, some evidence of autophagic activity, a process of cellular constituents' degradation has been found in ameloblastomas, but no studies exist in craniopharyngiomas. Thus, the aim of the study is to compare factors of the immune microenvironment and the autophagic apparatus between these two tumor types. METHODS 26 craniopharyngiomas and 14 ameloblastomas were immunohistochemically studied for PD-L1, CD8, CD20, S100, CD163, MECA-79, LC3B and p62. RESULTS Craniopharyngiomas showed higher LC3B tumor cell expression, higher CD8+ T cells and higher CD163+ macrophages in comparison to ameloblastomas. LC3B tumor cell expression was associated with overall survival in craniopharyngioma patients and p62 nuclear expression was associated with overall survival in ameloblastoma patients. CONCLUSION This is the first study showing the presence of autophagic markers in craniopharyngiomas and describing the immune microenvironment of ameloblastomas.
Collapse
Affiliation(s)
| | - Mehdi Hamlat
- Pathology Department, University Hospital of Saint-Etienne, France
| | - Maroa Dridi
- Pathology Department, University Hospital of Saint-Etienne, France
| | - Fabien Forest
- Pathology Department, University Hospital of Saint-Etienne, France
| | | | | | - Michel Peoc'h
- Pathology Department, University Hospital of Saint-Etienne, France
| |
Collapse
|