1
|
Elimam H, Abdel Mageed SS, Hatawsh A, Moussa R, Radwan AF, Elfar N, Alhamshry NAA, Abd-Elmawla MA, Mohammed OA, Zaki MB, Doghish AS. Unraveling the influence of LncRNA in gastric cancer pathogenesis: a comprehensive review focus on signaling pathways interplay. Med Oncol 2024; 41:218. [PMID: 39103705 DOI: 10.1007/s12032-024-02455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Gastric cancers (GCs) are among the most common and fatal malignancies in the world. Despite our increasing understanding of the molecular mechanisms underlying GC, further biomarkers are still needed for more in-depth examination, focused prognosis, and treatment. GC is one among the long non-coding RNAs, or lncRNAs, that have emerged as key regulators of the pathophysiology of cancer. This comprehensive review focuses on the diverse functions of long noncoding RNAs (lncRNAs) in the development of GC and their interactions with important intracellular signaling pathways. LncRNAs affect GC-related carcinogenic signaling cascades including pathways for EGFR, PI3K/AKT/mTOR, p53, Wnt/β-catenin, JAK/STAT, Hedgehog, NF-κB, and hypoxia-inducible factor. Dysregulated long non-coding RNA (lncRNA) expression has been associated with multiple characteristics of cancer, such as extended growth, apoptosis resistance, enhanced invasion and metastasis, angiogenesis, and therapy resistance. For instance, lncRNAs such as HOTAIR, MALAT1, and H19 promote the development of GC via altering these pathways. Beyond their main roles, GC lncRNAs exhibit potential as diagnostic and prognostic biomarkers. The overview discusses CRISPR/Cas9 genome-modifying methods, antisense oligonucleotides, small molecules, and RNA interference as potential therapeutic approaches to regulate the expression of long noncoding RNAs (lncRNAs). An in-depth discussion of the intricate functions that lncRNAs play in the development of the majority of stomach malignancies is provided in this review. It provides the groundwork for future translational research in lncRNA-based whole processes toward GC by highlighting their carcinogenic effects, regulatory roles in significant signaling cascades, and practical scientific uses as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, 12588, Giza, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
- Egyptian Drug Authority (EDA), Ministry of Health and Population, Cairo, 11567, Egypt
| | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
2
|
Yuan M, Gu Y, Chen J, Jiang Y, Qian J, Cao S. LINC00665: A Promising Biomarker in Gastrointestinal Tumors. Curr Mol Med 2024; 24:51-59. [PMID: 36464865 DOI: 10.2174/1566524023666221201141443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022]
Abstract
An increasing volume of studies has reported that long non-codingRNAs (lncRNAs) are involved in the carcinogenesis of many different cancers. Especially in gastrointestinal tumors, lncRNAs are found to participate in various physiological and pathological processes. LncRNAs can regulate gene expression at multiple levels, including transcriptional, post-transcription, translational, and post-translational levels. Long intergenic non-protein coding RNA 665(LINC00665), a novel cancer-related lncRNA, is frequently dysregulated in multiple gastrointestinal tumors, including gastric and colorectal cancers, hepatocellular carcinoma, and so on. In this review, we analyzed the expression and prognostic value of LINC00665 in human gastrointestinal tumors, systematically summarized the current literature about the clinical significance of this lncRNA, and explored the regulatory mechanisms of LINC00665 as a competing endogenous RNA (ceRNA) in tumor progression. Consequently, we concluded that LINC00665 might act as a prognostic biomarker and a potential target for gastrointestinal tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Mengping Yuan
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yuyang Gu
- Department of Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Jiawen Chen
- School of Medicine, Huzhou University, Huzhou, 313000, PR China
| | - Yibin Jiang
- School of Medicine, Huzhou University, Huzhou, 313000, PR China
| | - Jing Qian
- School of Medicine, Huzhou University, Huzhou, 313000, PR China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 313000, PR China
| | - Shuguang Cao
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| |
Collapse
|
3
|
Wang J, Shen D, Li S, Li Q, Zuo Q, Lu J, Tang D, Feng Y, Yin P, Chen C, Chen T. LINC00665 activating Wnt3a/β-catenin signaling by bond with YBX1 promotes gastric cancer proliferation and metastasis. Cancer Gene Ther 2023; 30:1530-1542. [PMID: 37563362 DOI: 10.1038/s41417-023-00657-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/16/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Long noncoding RNAs (lncRNAs) play a key role in human cancer development; nevertheless, the effect of lncRNA LINC00665 on the progression of gastric cancer (GC) still unclear. In this study, we found that LINC00665 expression is upregulated in GC than normal gastric mucosa tissues and higher LINC00665 expression is associated with a poor prognosis in GC patients. Downregulated LINC00665 inhibited GC cells proliferation, invasion, and migration in vitro. Pulmonary metastasis animal models showed that downregulated LINC00665 could reduce the lung metastasis of GC in vivo. Tumor organoids were generated from human malignant GC tissues, downregulated LINC00665 could inhibit the growth of the organoids of GC tissues. Mechanistically, downregulated LINC00665 could inhibit GC cells EMT. RNA pulldown, RIP, and RIP-seq studies found that LINC00665 can bind to the transcription factor YBX1 and form a positive feed-forward loop. The luciferase reporter and CHIP results showed that YBX1 could regulate the transcriptional activity of Wnt3a, and downregulation of LINC00665 could block the activation of Wnt/β-catenin signaling. In conclusion, our results identified a feedback loop between LINC00665 and YBX1 that activates Wnt/β-catenin signaling, and it may be a potential therapeutic approach to suppress GC progression.
Collapse
Affiliation(s)
- Jie Wang
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China
| | - Dongxiao Shen
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
| | - Shichao Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, 646000, Luzhou, China
| | - Qiuying Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
| | - Qingsong Zuo
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
| | - Jiahao Lu
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China
| | - Donghao Tang
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China
| | - Yuejiao Feng
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China
| | - Peihao Yin
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China
| | - Chao Chen
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China.
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China.
| | - Teng Chen
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China.
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 200062, Shanghai, China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, 230022, Anhui, China.
| |
Collapse
|
4
|
Li Q, Yin LK. Comprehensive analysis of disulfidptosis related genes and prognosis of gastric cancer. World J Clin Oncol 2023; 14:373-399. [PMID: 37970110 PMCID: PMC10631345 DOI: 10.5306/wjco.v14.i10.373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common malignant tumor of the digestive system. Disulfidptosis is a new programmed cell death mechanism, although its specific mechanism in GC is incompletely understood. AIM In this study, we used bioinformatics analysis to explore a disulfidptosis-based predictive model related to GC prognosis and to identify potential therapeutic targets and sensitive drugs for GC. METHODS We extracted GC-related data from The Cancer Genome Atlas and Gene Expression Omnibus databases. R software (version 4.2.1) was used for correlation analysis. RESULTS Through the above analysis, we found that the disulfidptosis related gene may be related to the prognosis of GC. Six genes, namely, PLS3, GRP, APOD, SGCE, COL8A1, and VAMP7, were found to constitute a predictive model for GC prognosis. APOD is a potential therapeutic target for treating GC. Bosutinib and other drugs are sensitive for the treatment of GC. CONCLUSION The results of this study indicate that disulfidptosis is related to the prognosis and treatment of GC, while APOD represents a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Qian Li
- Department of Oncology, Fushun Hospital of Traditional Chinese Medicine, Zigong 643200, Sichuan Province, China
| | - Long-Kuan Yin
- Department of Gastrointestinal Surgery, Fushun People’s Hospital, Zigong 643200, Sichuan Province, China
| |
Collapse
|
5
|
Matsuoka T, Yashiro M. The Role of the Transforming Growth Factor-β Signaling Pathway in Gastrointestinal Cancers. Biomolecules 2023; 13:1551. [PMID: 37892233 PMCID: PMC10605301 DOI: 10.3390/biom13101551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Transforming growth factor-β (TGF-β) has attracted attention as a tumor suppressor because of its potent growth-suppressive effect on epithelial cells. Dysregulation of the TGF-β signaling pathway is considered to be one of the key factors in carcinogenesis, and genetic alterations affecting TGF-β signaling are extraordinarily common in cancers of the gastrointestinal system, such as hereditary nonpolyposis colon cancer and pancreatic cancer. Accumulating evidence suggests that TGF-β is produced from various types of cells in the tumor microenvironment and mediates extracellular matrix deposition, tumor angiogenesis, the formation of CAFs, and suppression of the anti-tumor immune reaction. It is also being considered as a factor that promotes the malignant transformation of cancer, particularly the invasion and metastasis of cancer cells, including epithelial-mesenchymal transition. Therefore, elucidating the role of TGF-β signaling in carcinogenesis, cancer invasion, and metastasis will provide novel basic insight for diagnosis and prognosis and the development of new molecularly targeted therapies for gastrointestinal cancers. In this review, we outline an overview of the complex mechanisms and functions of TGF-β signaling. Furthermore, we discuss the therapeutic potentials of targeting the TGF-β signaling pathway for gastrointestinal cancer treatment and discuss the remaining challenges and future perspectives on targeting this pathway.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan;
| |
Collapse
|
6
|
Jin Z, Meng YJ, Xu YS, Wang MM, Chen D, Jiang X, Xiong ZF. Prognostic and clinicopathological values of LINC00665 in cancers: a systematic review and China population-based meta-analysis. Clin Exp Med 2023; 23:1475-1487. [PMID: 36219365 DOI: 10.1007/s10238-022-00912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/01/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recent studies have uncovered that the aberrant expression of LINC00665 contributes to the malignant pathological process of various cancers and is closely related to the unfavorable prognosis of patients with cancer. However, a systematic analysis of the prognostic and clinicopathologic values of LINC00665 in cancers has not been conducted. OBJECTIVE We aim to clarify the association of LINC00665 expression with patient survival and clinicopathologic phenotypes in cancers. METHODS An electronic search of PubMed, Embase and Web of Science was performed to select eligible literature. Pooled hazard ratio (HR) and odds ratio (OR) were calculated to assess the clinical importance of LINC00665. The fixed-effects model was used to analyze the combined HR values and 95% CI when the studies had no significant heterogeneity (P > 0.1 for the Chi-square test or I2 < 50%). Begg's test and sensitivity analysis were also conducted. This study was registered in The International Prospective Register of Systematic Reviews (PROSPERO registration number: CRD42021290123). RESULTS A total of 710 patients from 10 eligible studies were enrolled in this meta-analysis, which was based on China population. The pooled results of this analysis revealed that high-level expression of LINC00665 was notably correlated with poor overall survival (HR = 2.08, 95% CI = 1.57-2.75) and recurrence-free survival (HR = 2.49, 95% CI = 1.63-3.80) in human cancers. Elevated LINC00665 expression was also correlated with more advanced clinical stage, earlier lymph node metastasis, lower tumor differentiation, earlier distant metastasis and larger tumor size. CONCLUSION LINC00665 expression was critically related to the cancer prognosis, which has important prognostic implications for clinical prediction.
Collapse
Affiliation(s)
- Ze Jin
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Jun Meng
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Shuang Xu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Meng Wang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Chen
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jiang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Fan Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Hu Z, Liu Y, Liu M, Zhang Y, Wang C. Roles of TGF‑β signalling pathway‑related lncRNAs in cancer (Review). Oncol Lett 2023; 25:107. [PMID: 36817052 PMCID: PMC9932718 DOI: 10.3892/ol.2023.13693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNAs that are >200 nucleotides in length that do not have the ability to be translated into protein but are associated with numerous diseases, including cancer. The involvement of lncRNAs in the signalling of certain signalling pathways can promote tumour progression; these pathways include the transforming growth factor (TGF)-β signalling pathway, which is related to tumour development. The expression of lncRNAs in various tumour tissues is specific, and their interaction with the TGF-β signalling pathway indicates that they may serve as new tumour markers and therapeutic targets. The present review summarized the role of TGF-β pathway-associated lncRNAs in regulating tumorigenesis in different types of cancer and their effects on the TGF-β signalling pathway.
Collapse
Affiliation(s)
- Zhizhong Hu
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yitong Liu
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Meiqi Liu
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yang Zhang
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China,Correspondence to: Dr Yang Zhang or Dr Chengkun Wang, Cancer Research Institute, Medical School, University of South China, 28 Chang Sheng Xi Avenue, Hengyang, Hunan 421001, P.R. China, E-mail:
| | - Chengkun Wang
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China,Correspondence to: Dr Yang Zhang or Dr Chengkun Wang, Cancer Research Institute, Medical School, University of South China, 28 Chang Sheng Xi Avenue, Hengyang, Hunan 421001, P.R. China, E-mail:
| |
Collapse
|
8
|
miRNA-223-3p regulates ECT2 to promote proliferation, invasion, and metastasis of gastric cancer through the Wnt/β-catenin signaling pathway. J Cancer Res Clin Oncol 2023; 149:121-134. [PMID: 36355210 DOI: 10.1007/s00432-022-04453-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE Expression of the guanine nucleotide exchange factor epithelial cell transforming 2 (ECT2) is elevated in gastric cancer (GC) but its biological function in GC is poorly understood. MicroRNAs (miRNAs) have great potential as therapeutic targets for GC through their ability to modulate gene expression. In the present study, we sought to identify potential miRNA-mRNA-protein regulatory pathways that might control ECT2 expression and function in GC. METHODS ECT2 expression was examined in clinical GC specimens by immunohistochemical staining, and protein levels were correlated with clinicopathological features and prognosis. TargetScan was used to identify potential ECT2 mRNA-complementary miRNAs, and the roles of ECT2 and miRNA-223-3p (miR-223-3p) in GC cell biology and signaling pathway activation were examined by targeted knockdown (KD) or overexpression (OE) of ECT2 and miR-223-3p in GC cell lines. A murine GC xenograft model was developed to explore the impact of ECT2 OE on tumor growth in vivo. RESULTS ECT2 expression was significantly elevated in GC specimens compared with normal gastric tissues and the level correlated positively with depth of invasion, ulceration, vascular tumor thrombus, neural invasion, and lymph node metastasis (p < 0.05). ECT2 was an independent prognostic factor for overall survival of GC patients (high ECT2 expression v.s. low ECT2 expression: χ2 = 29.831, p < 0.001). ECT2 KD or miR-223-3p OE markedly suppressed the proliferation, migration, and invasion of GC cells in vitro, whereas ECT2 OE had the opposite effects. ECT2 OE also promoted the growth of GC tumors in vivo. Tumor expression of Wnt2, β-catenin, and several downstream target proteins in GC cells were decreased by ECT2 KD or miR-223-3p OE but increased by ECT2 OE. CONCLUSIONS miR-223-3p regulates ECT2 expression to promote tumorigenic behavior of GC via activation of the Wnt/β-catenin signaling pathway, suggesting that ECT2 and miR-223-3p as potential therapeutic targets for GC.
Collapse
|
9
|
A Concise Review on Dysregulation of LINC00665 in Cancers. Cells 2022; 11:cells11223575. [PMID: 36429005 PMCID: PMC9688310 DOI: 10.3390/cells11223575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Long Intergenic Non-Protein Coding RNA 665 (LINC00665) is an RNA gene located on the minus strand of chromosome 19. This lncRNA acts as a competing endogenous RNA for miR-4458, miR-379-5p, miR-551b-5p, miR-3619-5p, miR-424-5p, miR-9-5p, miR-214-3p, miR-126-5p, miR-149-3p, miR-379-5p, miR-665, miR-34a-5p, miR-186-5p, miR-138-5p, miR-181c-5p, miR-98, miR-195-5p, miR-224-5p, miR-3619, miR-708, miR-101, miR-1224-5p, miR-34a-5p, and miR-142-5p. Via influencing expression of these miRNAs, it can enhance expression of a number of oncogenes. Moreover, LINC00665 can influence activity of Wnt/β-Catenin, TGF-β, MAPK1, NF-κB, ERK, and PI3K/AKT signaling. Function of this lncRNA has been assessed through gain-of-function tests and/or loss-of-function studies. Furthermore, diverse research groups have evaluated its expression levels in tissue samples using microarray and RT-qPCR techniques. In this manuscript, we have summarized the results of these studies and categorized them in three sections, i.e., cell line studies, animal studies, and investigations in clinical samples.
Collapse
|
10
|
Feng YN, Li BY, Wang K, Li XX, Zhang L, Dong XZ. Epithelial-mesenchymal transition-related long noncoding RNAs in gastric carcinoma. Front Mol Biosci 2022; 9:977280. [PMCID: PMC9605205 DOI: 10.3389/fmolb.2022.977280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
As an evolutionarily phenotypic conversion program, the epithelial-mesenchymal transition (EMT) has been implicated in tumour deterioration and has facilitated the metastatic ability of cancer cells via enhancing migration and invasion. Gastric cancer (GC) remains a frequently diagnosed non-skin malignancy globally. Most GC-associated mortality can be attributed to metastasis. Recent studies have shown that EMT-related long non-coding RNAs (lncRNAs) play a critical role in GC progression and GC cell motility. In addition, lncRNAs are associated with EMT-related transcription factors and signalling pathways. In the present review, we comprehensively described the EMT-inducing lncRNA molecular mechanisms and functional perspectives of EMT-inducing lncRNAs in GC progression. Taken together, the statements of this review provided a clinical implementation in identifying lncRNAs as potential therapeutic targets for advanced GC.
Collapse
|
11
|
Zhang C, Xu SN, Li K, Chen JH, Li Q, Liu Y. The Biological and Molecular Function of LINC00665 in Human Cancers. Front Oncol 2022; 12:886034. [PMID: 35664776 PMCID: PMC9161781 DOI: 10.3389/fonc.2022.886034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are more than 200 nucleotides in length and are implicated in the development of human cancers, without protein-coding function. Mounting evidence indicates that cancer initiation and progression are triggered by lncRNA dysregulation. Recently, a growing number of studies have found that LINC00665, a long intergenic non-protein coding RNA, may be associated with various cancers, including gastrointestinal tumors, gynecological tumors, and respiratory neoplasms. LINC00665 was reported to be significantly dysregulated in cancers and has an important clinical association. It participates in cell proliferation, migration, invasion, and apoptosis through different biological pathways. In this review, we summarize the current findings on LINC00665, including its biological roles and molecular mechanisms in various cancers. LINC00665 may be a potential prognostic biomarker and novel therapeutic target for cancers.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Shu-Ning Xu
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ke Li
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jing-Hong Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Qun Li
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ying Liu
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
12
|
LINC00665: An Emerging Biomarker for Cancer Diagnostics and Therapeutics. Cells 2022; 11:cells11091540. [PMID: 35563845 PMCID: PMC9102468 DOI: 10.3390/cells11091540] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Long intergenic noncoding RNA 00665 (LINC00665) is located on human chromosome 19q13.12. LINC00665 was upregulated in eighteen cancers and downregulated in two cancers. LINC00665 not only inhibits 25 miRNAs but also directly affects the stability of ten protein-coding genes. Notably, LINC00665 also encodes a micro-peptide CIP2A-BP that promotes triple-negative breast cancer progression. LINC00665 can participate in five signaling pathways to regulate cancer progression, including the Wnt/β-catenin signaling pathway, TGF-β signaling pathway, NF-κB signaling pathway, PI3K/AKT signaling pathway, and MAPK signaling pathway. Aberrant expression of LINC00665 in breast cancer, gastric cancer, and hepatocellular carcinoma can be used for disease diagnosis. In addition, aberrant expression of LINC00665 is closely associated with clinicopathological features and poor prognosis of various cancers. LINC00665 is closely associated with the effects of anticancer drugs, including gefitinib and cisplatin in non-small cell lung cancer, gemcitabine in cholangiocarcinoma, and cisplatin-paclitaxel in breast cancer. This work systematically summarizes the diagnostic and prognostic values of LINC00665 in various tumors, and comprehensively analyzes the molecular regulatory mechanism related to LINC00665, which is expected to provide clear guidance for future research.
Collapse
|
13
|
Xiao X, Cheng W, Zhang G, Wang C, Sun B, Zha C, Kong F, Jia Y. Long Noncoding RNA: Shining Stars in the Immune Microenvironment of Gastric Cancer. Front Oncol 2022; 12:862337. [PMID: 35402261 PMCID: PMC8989925 DOI: 10.3389/fonc.2022.862337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is a kind of malignant tumor disease that poses a serious threat to human health. The GC immune microenvironment (TIME) is a very complex tumor microenvironment, mainly composed of infiltrating immune cells, extracellular matrix, tumor-associated fibroblasts, cytokines and chemokines, all of which play a key role in inhibiting or promoting tumor development and affecting tumor prognosis. Long non-coding RNA (lncRNA) is a non-coding RNA with a transcript length is more than 200 nucleotides. LncRNAs are expressed in various infiltrating immune cells in TIME and are involved in innate and adaptive immune regulation, which is closely related to immune escape, migration and invasion of tumor cells. LncRNA-targeted therapeutic effect prediction for GC immunotherapy provides a new approach for clinical research on the disease.
Collapse
Affiliation(s)
- Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen Cheng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guixing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaoran Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Binxu Sun
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chunyuan Zha
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
14
|
Zhu J, Zhang Y, Chen X, Bian Y, Li J, Wang K. The Emerging Roles of LINC00665 in Human Cancers. Front Cell Dev Biol 2022; 10:839177. [PMID: 35356290 PMCID: PMC8959703 DOI: 10.3389/fcell.2022.839177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs that have more than 200 nucleotides and can participate in the regulation of gene expression in various ways. An increasing number of studies have shown that the dysregulated expression of lncRNAs is related to the occurrence and progression of human cancers. LINC00665 is a novel lncRNA, which is abnormally expressed in various human cancers, such as lung cancer, breast cancer, prostate cancer, and glioma. LINC00665 functions in many biological processes of tumor cells, such as cell proliferation, migration, invasion, angiogenesis, and metabolism, and is related to the clinicopathological characteristics of cancer patients. LINC00665 can play biological functions as a ceRNA, directly binding and interacting with proteins, and as an upstream molecule regulating multiple signaling pathways. In this review, we comprehensively summarize the expression level, function, and molecular mechanisms of LINC00665 in different human cancers and emphasize that LINC00665 is a promising new diagnostic, prognostic biomarker, and therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | - Juan Li
- *Correspondence: Keming Wang, ; Juan Li,
| | | |
Collapse
|