1
|
Wang Y, Shi L, He Y, Gong W, Cui Y, Zuo R, Wang Y, Luo Y, Chen L, Liu Z, Chen P, Guo H. OVOL2 induces autophagy-mediated epithelial-mesenchymal transition by the ERK1/2 MAPK signaling in lung adenocarcinoma. iScience 2024; 27:108873. [PMID: 38318371 PMCID: PMC10838806 DOI: 10.1016/j.isci.2024.108873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the leading causes of cancer-related death worldwide. Epithelial-mesenchymal transition (EMT) plays an important role in malignant tumor progression. Recently, accumulating evidence has shown that autophagy is involved in the regulation of EMT-induced migration. Therefore, the exploration of targets to inhibit EMT by targeting autophagy is important. In this study, we found that OVO-like zinc finger 2 (OVOL2) may be a key target for regulating autophagy-induced EMT. Firstly, we found that OVOL2 expression was dramatically downregulated in LUAD. Low expression of OVOL2 is an indicator of poor prognosis in LUAD. In vitro experiments have shown that downregulation of OVOL2 expression induces EMT, thereby promoting malignant biological behavior, such as proliferation, migration, and invasion of LUAD cells. Interestingly, autophagy is a key step in regulating OVOL2 and inducing EMT. Furthermore, OVOL2 regulates autophagy through the MAPK signaling pathway, ultimately inhibiting the malignant progression of LUAD.
Collapse
Affiliation(s)
- Yali Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
- Department of Oncology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia 024000, China
| | - Lin Shi
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
- Department of Oncology, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia 010000, China
| | - Yuchao He
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Wenchen Gong
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yanyan Cui
- Department of Oncology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia 024000, China
| | - Ran Zuo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Yu Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Yi Luo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Liwei Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Zhiyong Liu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Peng Chen
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| |
Collapse
|
2
|
Philipp LM, Yesilyurt UU, Surrow A, Künstner A, Mehdorn AS, Hauser C, Gundlach JP, Will O, Hoffmann P, Stahmer L, Franzenburg S, Knaack H, Schumacher U, Busch H, Sebens S. Epithelial and Mesenchymal-like Pancreatic Cancer Cells Exhibit Different Stem Cell Phenotypes Associated with Different Metastatic Propensities. Cancers (Basel) 2024; 16:686. [PMID: 38398077 PMCID: PMC10886860 DOI: 10.3390/cancers16040686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is mostly diagnosed at advanced or even metastasized stages, limiting the prognoses of patients. Metastasis requires high tumor cell plasticity, implying phenotypic switching in response to changing environments. Here, epithelial-mesenchymal transition (EMT), being associated with an increase in cancer stem cell (CSC) properties, and its reversion are important. Since it is poorly understood whether different CSC phenotypes exist along the EMT axis and how these impact malignancy-associated properties, we aimed to characterize CSC populations of epithelial and mesenchymal-like PDAC cells. Single-cell cloning revealed CSC (Holoclone) and non-CSC (Paraclone) clones from the PDAC cell lines Panc1 and Panc89. The Panc1 Holoclone cells showed a mesenchymal-like phenotype, dominated by a high expression of the stemness marker Nestin, while the Panc89 Holoclone cells exhibited a SOX2-dominated epithelial phenotype. The Panc89 Holoclone cells showed enhanced cell growth and a self-renewal capacity but slow cluster-like invasion. Contrarily, the Panc1 Holoclone cells showed slower cell growth and self-renewal ability but were highly invasive. Moreover, cell variants differentially responded to chemotherapy. In vivo, the Panc1 and Panc89 cell variants significantly differed regarding the number and size of metastases, as well as organ manifestation, leading to different survival outcomes. Overall, these data support the existence of different CSC phenotypes along the EMT axis in PDAC, manifesting different metastatic propensities.
Collapse
Affiliation(s)
- Lisa-Marie Philipp
- Institute for Experimental Cancer Research, Kiel University, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, 23562 Kiel, Germany
| | - Umut-Ulas Yesilyurt
- Institute for Experimental Cancer Research, Kiel University, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, 23562 Kiel, Germany
| | - Arne Surrow
- Institute for Experimental Cancer Research, Kiel University, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, 23562 Kiel, Germany
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, 23538 Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Anne-Sophie Mehdorn
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Charlotte Hauser
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Jan-Paul Gundlach
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Olga Will
- Molecular Imaging North Competence Center, Clinic of Radiology and Neuroradiology, Kiel University, UKSH, Campus Kiel, 24118 Kiel, Germany
| | - Patrick Hoffmann
- Institute for Experimental Cancer Research, Kiel University, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, 23562 Kiel, Germany
| | - Lea Stahmer
- Institute for Experimental Cancer Research, Kiel University, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, 23562 Kiel, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Kiel University, 24118 Kiel, Germany
| | - Hendrike Knaack
- Institute for Experimental Cancer Research, Kiel University, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, 23562 Kiel, Germany
- Academic Affairs Office, Hannover Medical School, 30625 Hannover, Germany
| | - Udo Schumacher
- Department of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, 23538 Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, 23562 Kiel, Germany
| |
Collapse
|
3
|
Iyer AS, Shaik MR, Raufman JP, Xie G. The Roles of Zinc Finger Proteins in Colorectal Cancer. Int J Mol Sci 2023; 24:10249. [PMID: 37373394 DOI: 10.3390/ijms241210249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Despite colorectal cancer remaining a leading worldwide cause of cancer-related death, there remains a paucity of effective treatments for advanced disease. The molecular mechanisms underlying the development of colorectal cancer include altered cell signaling and cell cycle regulation that may result from epigenetic modifications of gene expression and function. Acting as important transcriptional regulators of normal biological processes, zinc finger proteins also play key roles in regulating the cellular mechanisms underlying colorectal neoplasia. These actions impact cell differentiation and proliferation, epithelial-mesenchymal transition, apoptosis, homeostasis, senescence, and maintenance of stemness. With the goal of highlighting promising points of therapeutic intervention, we review the oncogenic and tumor suppressor roles of zinc finger proteins with respect to colorectal cancer tumorigenesis and progression.
Collapse
Affiliation(s)
- Aishwarya S Iyer
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mohammed Rifat Shaik
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Guofeng Xie
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|