1
|
Hellweg L, Pfeifer M, Tarnawski M, Thing-Teoh S, Chang L, Bergner A, Kress J, Hiblot J, Wiedmer T, Superti-Furga G, Reinhardt J, Johnsson K, Leippe P. AspSnFR: A genetically encoded biosensor for real-time monitoring of aspartate in live cells. Cell Chem Biol 2024; 31:1529-1541.e12. [PMID: 38806058 DOI: 10.1016/j.chembiol.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/11/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024]
Abstract
Aspartate is crucial for nucleotide synthesis, ammonia detoxification, and maintaining redox balance via the malate-aspartate-shuttle (MAS). To disentangle these multiple roles of aspartate metabolism, tools are required that measure aspartate concentrations in real time and in live cells. We introduce AspSnFR, a genetically encoded green fluorescent biosensor for intracellular aspartate, engineered through displaying and screening biosensor libraries on mammalian cells. In live cells, AspSnFR is able to precisely and quantitatively measure cytosolic aspartate concentrations and dissect its production from glutamine. Combining high-content imaging of AspSnFR with pharmacological perturbations exposes differences in metabolic vulnerabilities of aspartate levels based on nutrient availability. Further, AspSnFR facilitates tracking of aspartate export from mitochondria through SLC25A12, the MAS' key transporter. We show that SLC25A12 is a rapidly responding and direct route to couple Ca2+ signaling with mitochondrial aspartate export. This establishes SLC25A12 as a crucial link between cellular signaling, mitochondrial respiration, and metabolism.
Collapse
Affiliation(s)
- Lars Hellweg
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany; Heidelberg University, Heidelberg, Germany
| | - Martin Pfeifer
- Novartis Biomedical Research, Discovery Science, Basel, Switzerland
| | - Miroslaw Tarnawski
- Protein Expression and Characterization Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Shao Thing-Teoh
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lena Chang
- Novartis Biomedical Research, Discovery Science, Basel, Switzerland
| | - Andrea Bergner
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Jana Kress
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Julien Hiblot
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jürgen Reinhardt
- Novartis Biomedical Research, Discovery Science, Basel, Switzerland
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany; Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Philipp Leippe
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
2
|
Chen P, Jiang Y, Liang J, Cai J, Zhuo Y, Fan H, Yuan R, Cheng S, Zhang Y. SLC1A5 is a novel biomarker associated with ferroptosis and the tumor microenvironment: a pancancer analysis. Aging (Albany NY) 2023; 15:7451-7475. [PMID: 37566748 PMCID: PMC10457057 DOI: 10.18632/aging.204911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
Solute carrier family 1 member 5 (SLC1A5) is a member of the solute carrier (SLC) superfamily of transporters and plays an important role in tumors as a key transporter of glutamine into cells. However, the relationship between SLC1A5, which is involved in immune regulation, and immune cell infiltration in the tumor microenvironment has not been elucidated, and the relationship between SLC1A5 and ferroptosis is rarely reported. Therefore, we comprehensively analyzed the expression level of SLC1A5 across cancers and compared it with that in normal tissues. Then, the relationship between SLC1A5 expression and the tumor immune microenvironment was analyzed by single-cell analysis, gene set enrichment analysis (GSEA), and Tumor Immune Estimation Resource (TIMER). Next, the correlations of the SLC1A5 expression level with immunotherapy response, immunomodulator expression, tumor mutation burden (TMB) and microsatellite instability (MSI) were evaluated. Finally, in vitro experiments verified that SLC1A5 participates in ferroptosis of glioma cells to regulate tumor progression. Our results indicated that SLC1A5 is aberrantly expressed in most cancer types and closely associated with prognosis. The GSEA results showed that SLC1A5 is involved in immune activation processes and closely related to the infiltration levels of different immune cells in different cancer types. Upon further investigation, we found that SLC1A5 is a suppressor of ferroptosis in glioma, and SLC1A5 knockdown inhibited the proliferation and migration of glioma cells in vitro. In conclusion, we conducted a pancancer analysis of SLC1A5, demonstrated its role as a prognostic biomarker in cancer patients and explored its potential biological functions.
Collapse
Affiliation(s)
- Peng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Department of Medical, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - YongAn Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Department of Medical, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - JiaWei Liang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Department of Medical, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - JiaHong Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Department of Medical, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Yi Zhuo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Department of Medical, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - HengYi Fan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - RaoRao Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - ShiQi Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Yan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| |
Collapse
|
3
|
SLC1A5 enhances malignant phenotypes through modulating ferroptosis status and immune microenvironment in glioma. Cell Death Dis 2022; 13:1071. [PMID: 36566214 PMCID: PMC9789994 DOI: 10.1038/s41419-022-05526-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
Glioma is the most common type of primary malignant tumor in the central nervous system with limited treatment satisfaction. Finding new therapeutic targets has remained a major challenge. Ferroptosis is a novel and distinct type of programmed cell death, playing a regulatory role in the progression of tumors. However, the role of ferroptosis or ferroptosis-related genes (FRGs) in glioma progression has not been extensively studied. In our study, a novel ferroptosis-related prognostic model, including 7 genes, was established, in which patients classified into the high-risk group had more immuno-suppressive status and worse prognosis. Among these 7 genes, we screened solute carrier family 1 member 5 (SLC1A5), an FRG, as a possible new target for glioma treatment. Our results showed that the expression of SLC1A5 was significantly upregulated in glioblastoma tissues compared with the low-grade gliomas. In addition, SLC1A5 knockdown could significantly inhibit glioma cell proliferation and invasion, and reduce the sensitivity of ferroptosis via the GPX4-dependent pathway. Furthermore, SLC1A5 was found to be related to immune response and SLC1A5 knockdown decreased the infiltration and M2 polarization of tumor-associated macrophages. Pharmacological inhibition of SLC1A5 by V9302 was confirmed to promote the efficacy of anti-PD-1 therapy. Overall, we developed a novel prognostic model for glioma based on the seven-FRGs signature, which could apply to glioma prognostic and immune status prediction. Besides, SLC1A5 in the model could regulate the proliferation, invasion, ferroptosis and immune state in glioma, and be applied as a prognostic biomarker and potential therapeutic target for glioma.
Collapse
|
4
|
Integrated Analysis of Multiomics Data Identified Molecular Subtypes and Oxidative Stress-Related Prognostic Biomarkers in Glioblastoma Multiforme. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9993319. [PMID: 36193073 PMCID: PMC9526634 DOI: 10.1155/2022/9993319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022]
Abstract
Glioblastoma multiforme (GBM) is a glioma in IV stage, which is one of the most common primary malignant brain tumors in adults. GBM has the characters of high invasiveness, high recurrence rate, and low survival rate and with a poor prognosis. GBM implicates various genetic changes and epigenetic and gene transcription disorders, which are crucial in developing GBM. With the progression and enhancement of high-throughput sequencing technologies, the acquirement and administering approaches of diverse biological omics data on distinctive levels are developing more advanced. However, the research of GBM with multiomics remains largely unknown. We identified GBM-related molecular subtypes by integrated multiomics data and exploring the connections of gene copy number variation (CNV) and methylation gene (MET) change data. The expression of CNV and MET genes was examined through cluster integration analysis. The present study confirmed three clusters (iC1, iC2, and iC3) with distinctive prognosis and molecule peculiarities. We also recognized three oxidative stress protecting molecules (OSMR, IGFBP6, and MYBPH) by contrasting gene expression, MET, and CNV in the three subtypes. OSMR, IGFBP6, and MYBPH were differentially expressed in the clusters, suggesting they might be recognized as characteristic markers for the three clusters in GBM. Through integrative investigation of genomics, epigenomics, and transcriptomics, we offer novel visions into the multilayered molecules of GBM and facilitate the accuracy remedy for GBM sufferers.
Collapse
|
5
|
Freidman NJ, Briot C, Ryan RM. Characterizing unexpected interactions of a glutamine transporter inhibitor with members of the SLC1A transporter family. J Biol Chem 2022; 298:102178. [PMID: 35752361 PMCID: PMC9293768 DOI: 10.1016/j.jbc.2022.102178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022] Open
Abstract
The solute carrier 1A family comprises a group of membrane proteins that act as dual-function amino acid transporters and chloride (Cl-) channels and includes the alanine serine cysteine transporters (ASCTs) as well as the excitatory amino acid transporters. ASCT2 is regarded as a promising target for cancer therapy, as it can transport glutamine and other neutral amino acids into cells and is upregulated in a range of solid tumors. The compound L-γ-glutamyl-p-nitroanilide (GPNA) is widely used in studies probing the role of ASCT2 in cancer biology; however, the mechanism by which GPNA inhibits ASCT2 is not entirely clear. Here, we used electrophysiology and radiolabelled flux assays to demonstrate that GPNA activates the Cl- conductance of ASCT2 to the same extent as a transported substrate, whilst not undergoing the full transport cycle. This is a previously unreported phenomenon for inhibitors of the solute carrier 1A family but corroborates a body of literature suggesting that the structural requirements for transport are distinct from those for Cl- channel formation. We also show that in addition to its currently known targets, GPNA inhibits several of the excitatory amino acid transporters. Together, these findings raise questions about the true mechanisms of its anticancer effects.
Collapse
Affiliation(s)
- Natasha J Freidman
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Chelsea Briot
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Renae M Ryan
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Hu G, Huang X, Zhang B, Gao P, Wu W, Wang J. Identify an innovative ferroptosis-related gene in hepatocellular carcinoma. J Clin Lab Anal 2022; 36:e24632. [PMID: 35908779 PMCID: PMC9459242 DOI: 10.1002/jcla.24632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 12/29/2022] Open
Abstract
Background SLC1A5 has been demonstrated to be associated with the progression of other tumors; however, studies are lacking in hepatocellular carcinoma (HCC). Here, we identify SLC1A5, as a novel ferroptosis factor, for HCC patients. Methods The core biomarkers were identified by univariate and multivariate Cox regression analysis, and the genes present in liver cancer were validated using the public database. Then, gene set enrichment analysis (GSEA) was performed to explore the underlying molecular mechanisms. In addition, we explore the relationship between SLC1A5 and clinical factors. Finally, we determine the effect of SLC1A5 on HCC cells using real‐time PCR, cell scratch analysis, transwell analysis, and CCK8 analysis in molecular biology experiments. Results Cox regression model shows that SLC1A5 was an independent risk factor for HCC patients. GSEA results indicated high expression of SLC1A5 related to the fatty acid metabolism pathway. Clinical correlation analysis demonstrates that alpha‐fetoprotein (AFP) expression was positively correlated with SLC1A5 (p = 8e−05), and the higher tumor stage means the higher expression of SLC1A5 (p = .02). In addition, SLC1A5 expression was also positively correlated with vascular infiltration of HCC (p = .04). Furthermore, the SLC1A5 function deficiency experiment explored its underlying impact on the biological function of HCC. qPCR, also called quantitative polymerase chain reaction, confirmed that SLC1A5 was highly expressed in liver cancer when compared with normal tissues. Studies have also shown that downregulation of SLC1A5 can inhibit wound healing, invasion, and proliferation of HCC cells. Conclusion In conclusion, ferroptosis factor SLC1A5 is a new therapeutic target for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Gangfeng Hu
- Department of General Surgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Xia Huang
- Department of General Surgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Bo Zhang
- Department of General Surgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Pingfa Gao
- Department of General Surgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Wei Wu
- Department of General Surgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Jun Wang
- Department of General Surgery, Xinhua Hospital Chongming Branch, Shanghai, China
| |
Collapse
|
7
|
Duan Z, Zhou Z, Lu F, Zhang Y, Guo X, Gui C, Zhang H. Antitumor activity of mianserin (a tetracyclic antidepressant) primarily driven by the inhibition of SLC1A5-mediated glutamine transport. Invest New Drugs 2022; 40:977-989. [PMID: 35834041 DOI: 10.1007/s10637-022-01284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022]
Abstract
Targeting tumor metabolic vulnerabilities such as "glutamine addiction" has become an attractive approach for the discovery of novel antitumor agents. Among various mechanisms explored, SLC1A5, a membrane transporter that plays an important role in glutamine cellular uptake, represents a viable target to interfere with tumor's ability to acquire critical nutrients during proliferation. In the present study, a stably transfected HEK293 cell line with human SLC1A5 (HEK293-SLC1A5) was established for the screening and identification of small molecule SLC1A5 inhibitors. This in vitro system, in conjunction with direct measurement of SLC1A5-mediated L-glutamine-2,3,3,4,4-D5 (substrate) uptake, was practical and efficient in ensuring the specificity of SLC1A5 inhibition. Among a group of diverse compounds tested, mianserin (a tetracyclic antidepressant) demonstrated a marked inhibition of SLC1A5-mediated glutamine uptake. Subsequent investigations using SW480 cells demonstrated that mianserin was capable of inhibiting SW480 tumor growth both in vitro and in vivo, and the in vivo antitumor efficacy was correlated to the reduction of glutamine concentrations in tumor tissues. Computational analysis revealed that hydrophobic interactions between SLC1A5 and its inhibitors could be a critical factor in drug design. Taken together, the current findings confirmed the feasibility of targeting SLC1A5-mediated glutamine uptake as a novel approach for antitumor intervention. It is anticipated that structural insights obtained based on homology modeling would lead to the discovery of more potent and specific SLC1A5 inhibitors for clinical development.
Collapse
Affiliation(s)
- Zelin Duan
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zhiyun Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Feifei Lu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yawen Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xvqin Guo
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Chunshan Gui
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hongjian Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
8
|
Li Q, Zhong X, Yao W, Yu J, Wang C, Li Z, Lai S, Qu F, Fu X, Huang X, Zhang D, Liu Y, Li H. Inhibitor of glutamine metabolism V9302 promotes ROS-induced autophagic degradation of B7H3 to enhance antitumor immunity. J Biol Chem 2022; 298:101753. [PMID: 35189139 PMCID: PMC8968643 DOI: 10.1016/j.jbc.2022.101753] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Abstract
Despite the enormous successes of anti-PD-1/PD-L1 immunotherapy in multiple other cancer types, the overall response rates of breast cancer remain suboptimal. Therefore, exploring additional immune checkpoint molecules for potential cancer treatment is crucial. B7H3, a T-cell coinhibitory molecule, is specifically overexpressed in breast cancer compared with normal breast tissue and benign lesions, making it an attractive therapeutic target. However, the mechanism by which B7H3 contributes to the cancer phenotype is unclear. Here we show that the expression of B7H3 is negatively related to the number of CD8+ T cells in breast tumor sites. In addition, analysis of the differentially expressed B7H3 reveals that it is inversely correlated to autophagic flux both in breast cancer cell lines and clinical tumor tissues. Furthermore, block of autophagy by bafilomycin A1 (Baf A1) increases B7H3 levels and attenuates CD8+ T cell activation, while promotion of autophagy by V9302, a small-molecule inhibitor of glutamine metabolism, decreases B7H3 expression and enhances granzyme B (GzB) production of CD8+ T cells via regulation of reactive oxygen species (ROS) accumulation. We demonstrate that combined treatment with V9302 and anti-PD-1 monoclonal antibody (mAb) enhances antitumor immunity in syngeneic mouse models. Collectively, our findings unveil the beneficial effect of V9302 in boosting antitumor immune response in breast cancer and illustrate that anti-PD-1 together with V9302 treatment may provide synergistic effects in the treatment of patients insensitive to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Qian Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Breast Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaofang Zhong
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Breast Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weicheng Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junli Yu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Breast Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zongyan Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shengqing Lai
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Breast Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fanli Qu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Breast Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Fu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Breast Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaojia Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Breast Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dawei Zhang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Yujie Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Haiyan Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Breast Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Glutamine-Derived Aspartate Biosynthesis in Cancer Cells: Role of Mitochondrial Transporters and New Therapeutic Perspectives. Cancers (Basel) 2022; 14:cancers14010245. [PMID: 35008407 PMCID: PMC8750728 DOI: 10.3390/cancers14010245] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary In recent years, aspartate has been increasingly acknowledged as a critical player in the metabolism of cancer cells which use this metabolite for nucleotide and protein synthesis and for redox homeostasis. Most intracellular aspartate derives from the mitochondrial catabolism of glutamine. To date at least four mitochondrial transporters have been involved in this metabolic pathway. Their involvement appears to be cancer type-specific and dependent on glutamine availability. Targeting these mitochondrial transporters may represent a new attractive strategy to fight cancer. The aim of this review is to dissect the role of each of these transporters in relation to the type of cancer and the availability of nutrients in the tumoral microenvironment. Abstract Aspartate has a central role in cancer cell metabolism. Aspartate cytosolic availability is crucial for protein and nucleotide biosynthesis as well as for redox homeostasis. Since tumor cells display poor aspartate uptake from the external environment, most of the cellular pool of aspartate derives from mitochondrial catabolism of glutamine. At least four transporters are involved in this metabolic pathway: the glutamine (SLC1A5_var), the aspartate/glutamate (AGC), the aspartate/phosphate (uncoupling protein 2, UCP2), and the glutamate (GC) carriers, the last three belonging to the mitochondrial carrier family (MCF). The loss of one of these transporters causes a paucity of cytosolic aspartate and an arrest of cell proliferation in many different cancer types. The aim of this review is to clarify why different cancers have varying dependencies on metabolite transporters to support cytosolic glutamine-derived aspartate availability. Dissecting the precise metabolic routes that glutamine undergoes in specific tumor types is of upmost importance as it promises to unveil the best metabolic target for therapeutic intervention.
Collapse
|