1
|
Yang T, Li Y, Zheng Z, Qu P, Shao Z, Wang J, Ding N, Wang W. Comprehensive analysis of lncRNA-mediated ceRNA network in renal cell carcinoma based on GEO database. Medicine (Baltimore) 2024; 103:e39424. [PMID: 39213211 PMCID: PMC11365686 DOI: 10.1097/md.0000000000039424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Renal cell carcinoma (RCC) ranks among the leading causes of cancer-related mortality. Despite extensive research, the precise etiology and progression of RCC remain incompletely elucidated. Long noncoding RNA (lncRNA) has been identified as competitive endogenous RNA (ceRNA) capable of binding to microRNA (miRNA) sites, thereby modulating the expression of messenger RNAs (mRNA) and target genes. This regulatory network is known to exert a pivotal influence on cancer initiation and progression. However, the specific role and functional significance of the lncRNA-miRNA-mRNA ceRNA network in RCC remain poorly understood. The RCC transcriptome data was obtained from the gene expression omnibus database. The identification of differentially expressed long noncoding RNAs (DElncRNAs), differentially expressed miRNAs, and differentially expressed mRNAs (DEmRNAs) between RCC and corresponding paracancer tissues was performed using the "Limma" package in R 4.3.1 software. We employed a weighted gene co-expression network analysis to identify the key DElncRNAs that are most relevant to RCC. Subsequently, we utilized the encyclopedia of RNA interactomes database to predict the interactions between these DElncRNAs and miRNAs, and the miRDB database to predict the interactions between miRNAs and mRNAs. Therefore, key DElncRNAs were obtained to verify the expression of their related genes in the The Cancer Genome Atlas database and to analyze the prognosis. The construction of RCC-specific lncRNA-miRNA-mRNA ceRNA network was carried out using Cytoscape 3.7.0. A total of 286 DElncRNAs, 56 differentially expressed miRNAs, and 2065 DEmRNAs were identified in RCC. Seven key DElncRNAs (GAS6 antisense RNA 1, myocardial infarction associated transcript, long intergenic nonprotein coding RNA 921, MMP25 antisense RNA 1, Chromosome 22 Open Reading Frame 34, MIR34A host gene, MIR4435-2 host gene) were identified using weighted gene co-expression network analysis and encyclopedia of RNA interactomes databases. Subsequently, a network diagram comprising 217 nodes and 463 edges was constructed based on these key DElncRNAs. The functional analysis of DEmRNAs in the ceRNA network was conducted using Kyoto Encyclopedia of Genes and Genomes and gene ontology. We constructed RCC-specific ceRNA networks and identified the crucial lncRNAs associated with RCC using bioinformatics analysis, which will help us further understand the pathogenesis of this disease.
Collapse
Affiliation(s)
- Tianci Yang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Yixuan Li
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Zhouhang Zheng
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Pei Qu
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Zhiang Shao
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Wei Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
2
|
Davis WJH, Drummond CJ, Diermeier S, Reid G. The Potential Links between lncRNAs and Drug Tolerance in Lung Adenocarcinoma. Genes (Basel) 2024; 15:906. [PMID: 39062685 PMCID: PMC11276205 DOI: 10.3390/genes15070906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer patients treated with targeted therapies frequently respond well but invariably relapse due to the development of drug resistance. Drug resistance is in part mediated by a subset of cancer cells termed "drug-tolerant persisters" (DTPs), which enter a dormant, slow-cycling state that enables them to survive drug exposure. DTPs also exhibit stem cell-like characteristics, broad epigenetic reprogramming, altered metabolism, and a mutagenic phenotype mediated by adaptive mutability. While several studies have characterised the transcriptional changes that lead to the altered phenotypes exhibited in DTPs, these studies have focused predominantly on protein coding changes. As long non-coding RNAs (lncRNAs) are also implicated in the phenotypes altered in DTPs, it is likely that they play a role in the biology of drug tolerance. In this review, we outline how lncRNAs may contribute to the key characteristics of DTPs, their potential roles in tolerance to targeted therapies, and the emergence of genetic resistance in lung adenocarcinoma.
Collapse
Affiliation(s)
- William J. H. Davis
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.J.H.D.); (C.J.D.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 1023, New Zealand
| | - Catherine J. Drummond
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.J.H.D.); (C.J.D.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 1023, New Zealand
| | - Sarah Diermeier
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
- Amaroq Therapeutics, Auckland 1010, New Zealand
| | - Glen Reid
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.J.H.D.); (C.J.D.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, Auckland 1023, New Zealand
| |
Collapse
|
3
|
Shao H, Yao L, Tao Y, Huang X. Identification and verification of an exosome-related gene risk model to predict prognosis and evaluate immune infiltration for colorectal cancer. Medicine (Baltimore) 2023; 102:e35365. [PMID: 37800824 PMCID: PMC10553194 DOI: 10.1097/md.0000000000035365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor that severely endangers human health. Exosomes show great potential in tumor immunotherapy. Increasingly studies have shown that exosome-related genes are effective prognostic biomarkers. Clinical information and gene expression data of CRC patients were obtained from gene expression omnibus and the cancer genome atlas. The data were then classified into training and independent validation sets. In the training set, exosome-related genes with a prognostic value were selected by univariate Cox analysis, least absolute shrinkage and selection operator Cox regression model, and stepwise Cox regression analysis. Risk scores were calculated based on the selected genes to stratify patients. The selected exosome-related genes were applied to establish a risk model. Based on 11 exosome-related genes, a prognostic risk model, which could stratify the risk both in the training and validation sets, was established. According to the survival curves, the prognoses of the high- and low-risk groups were significantly different. The AUCs of the risk model for prognostic prediction were 0.735 and 0.784 in the training and validation sets, respectively. A nomogram was constructed to predict the survival of CRC patients. Single-sample gene set enrichment analysis and ESTIMATE algorithms revealed that the risk model was related to immune cell infiltration. The value of the risk model in predicting immunotherapeutic outcomes was also confirmed. An exosome-related gene risk model was constructed to predict prognosis, evaluate microenvironment immune cell infiltration levels and bring a new perspective to CRC patient treatment.
Collapse
Affiliation(s)
- Huan Shao
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Li Yao
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Ye Tao
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xuan Huang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
4
|
Chen Q, Zhou L, Ma D, Hou J, Lin Y, Wu J, Tao M. LncRNA GAS6-AS1 facilitates tumorigenesis and metastasis of colorectal cancer by regulating TRIM14 through miR-370-3p/miR-1296-5p and FUS. J Transl Med 2022; 20:356. [PMID: 35962353 PMCID: PMC9373365 DOI: 10.1186/s12967-022-03550-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are essential regulators of tumorigenesis and the development of colorectal cancer (CRC). Here, we aimed to investigate the role of lncRNA GAS6-AS1 in CRC and its potential mechanisms. Methods Bioinformatics analyses evaluated the level of GAS6-AS1 in colon cancer, its correlation with clinicopathological factors, survival curve and diagnostic value. qRT-PCR were performed to detect the GAS6-AS1 level in CRC samples and cell lines. The CCK8, EdU, scratch healing, transwell assays and animal experiments were conducted to investigate the function of GAS6-AS1 in CRC. RNA immunoprecipitation (RIP) and dual-luciferase reporter gene analyses were carried out to reveal interaction between GAS6-AS1, TRIM14, FUS, and miR-370-3p/miR-1296-5p. Results GAS6-AS1 was greatly elevated in CRC and positively associated with unfavorable prognosis of CRC patients. Functionally, GAS6-AS1 positively regulates CRC proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and induces CRC growth and metastasis in vivo. Moreover, GAS6-AS1 exerted oncogenic function by competitively binding to miR-370-3p and miR-1296-5p, thereby upregulating TRIM14. Furthermore, we verified that GAS6-AS1 and TRIM14 both interact with FUS and that GAS6-AS1 stabilized TRIM14 mRNA by recruiting FUS. Besides, rescue experiments furtherly demonstrated that GAS6-AS1 facilitate progression of CRC by regulating TRIM14. Conclusion Collectively, these findings demonstrate that GAS6-AS1 promotes TRIM14-mediated cell proliferation, migration, invasion, and EMT of CRC via ceRNA network and FUS-dependent manner, suggesting that GAS6-AS1 could be utilized as a novel biomarker and therapeutic target for CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03550-0.
Collapse
Affiliation(s)
- Qing Chen
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu, China.,Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lin Zhou
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - De Ma
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu, China
| | - Juan Hou
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu, China
| | - Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jie Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China. .,Department of Oncology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Samadian M. A review on the role of MCM3AP-AS1 in the carcinogenesis and tumor progression. Cancer Cell Int 2022; 22:225. [PMID: 35790972 PMCID: PMC9258118 DOI: 10.1186/s12935-022-02644-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Minichromosome Maintenance Complex Component 3 Associated Protein Antisense 1 (MCM3AP-AS1) is an RNA gene located on 21q22.3. The sense transcript from this locus has dual roles in the pathogenesis of solid tumors and hematological malignancies. MCM3AP-AS1 has been shown to sequester miR-194-5p, miR-876-5p, miR-543-3p, miR-28-5p, miR-93, miR-545, miR-599, miR‐193a‐5p, miR-363-5p, miR-204-5p, miR-211-5p, miR-15a, miR-708-5p, miR-138, miR-138-5p, miR-34a, miR-211, miR‐340‐5p, miR-148a, miR-195-5p and miR-126. Some cancer-related signaling pathway, namely PTEN/AKT, PI3K/AKT and ERK1/2 are influenced by this lncRNA. Cell line studies, animal studies and clinical studies have consistently reported oncogenic role of MCM3AP-AS1 in different tissues except for cervical cancer in which this lncRNA has tumor suppressor role. In the current manuscript, we collected evidence from these three sources of evidence to review the impact of MCM3AP-AS1 in the carcinogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Zhang X, Hong H, Wang X, Xie Q, Miao L, Zhang L. Serum Gas6 contributes to clinical outcome after aneurysmal subarachnoid hemorrhage: A prospective cohort study. Clin Chim Acta 2022; 533:96-103. [PMID: 35752306 DOI: 10.1016/j.cca.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Growth-arrest-specific protein 6 (Gas6) exerts nervous protective effects on acute brain injury. We endeavored to ascertain whether serum Gas6 concentrations are associated with severity, delayed cerebral ischemia (DCI) and prognosis following aneurysmal subarachnoid hemorrhage (aSAH). METHODS We measured serum Gas6 concentrations of 124 aSAH patients. The Hunt-Hess scale and modified Fisher grading scale were used to evaluate illness severity. Multivariate analysis was utilized to determine relationships between serum Gas6 concentrations and severity, DCI plus 90-day unfavorable outcome (Glasgow outcome scale score of 1-3). RESULTS Patients with unfavorable outcome or DCI had significantly higher serum Gas6 concentrations than other remainders (median, 35.0 vs 23.3 ng/ml; 36.1 vs 25.3 ng/ml; both P < 0.001). Serum Gas6 concentrations displayed independent correlations with Hunt-Hess scores (t = 5.518, P < 0.001) and modified Fisher scores (t = 3.531, P = 0.001). Serum Gas6 concentrations were independently associated with unfavorable outcome (OR: 1.125; 95% CI, 1.063-1.190; P = 0.014) and DCI (OR: 1.104; 95% CI, 1.041-1.170; P = 0.010) as well as exhibited AUCs of 0.786 (95% CI, 0.703-0.854) and 0.753 (95% CI, 0.668-0.826) for predicting unfavorable outcome and DCI respectively. Its discriminatory ability for risk of unfavorable outcome or DCI was similar to those of Hunt-Hess scores and modified Fisher scores (all P > 0.05). CONCLUSIONS Serum Gas6 concentrations are independently associated with stroke severity and worse clinical outcome after aSAH, indicating serum Gas6 may be a potential prognostic biomarker for aSAH.
Collapse
Affiliation(s)
- Xiaole Zhang
- Department of Neurosurgery, Hangzhou Ninth People's Hospital, 98 Yilong Road, Hangzhou 311225, Zhejiang Province, China
| | - Huayong Hong
- Department of Neurosurgery, Hangzhou Ninth People's Hospital, 98 Yilong Road, Hangzhou 311225, Zhejiang Province, China
| | - Xiaofeng Wang
- Department of Neurosurgery, Hangzhou Ninth People's Hospital, 98 Yilong Road, Hangzhou 311225, Zhejiang Province, China
| | - Qin Xie
- Department of Neurosurgery, Hangzhou Ninth People's Hospital, 98 Yilong Road, Hangzhou 311225, Zhejiang Province, China
| | - Liming Miao
- Department of Neurosurgery, Hangzhou Ninth People's Hospital, 98 Yilong Road, Hangzhou 311225, Zhejiang Province, China
| | - Lixin Zhang
- Department of Neurosurgery, Hangzhou Ninth People's Hospital, 98 Yilong Road, Hangzhou 311225, Zhejiang Province, China.
| |
Collapse
|