1
|
Dolatabadi B, Peymani M, Rouhi L, Salehzadeh A, Hushmandi K, Hashemi M. The Prospective role of lapatinib as an adjuvant therapy in prevalent cancers: Insights from in silico analysis targeting EGFR and HER2. Mol Cell Probes 2024; 78:101985. [PMID: 39369912 DOI: 10.1016/j.mcp.2024.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION Various pieces of evidence suggest an elevation in the levels of EGFR and HER2 in different cancers leading to the proliferation, invasion, and metastasis of cancer cells. In this study, we conducted a comprehensive investigation into the expression alterations of these two receptors in various cancers using in silico data. In addition, we investigated the therapeutic potential of lapatinib as an inhibitor of these receptors in various cancer types. METHODS RNAseq data for prevalent cancers were downloaded from The Cancer Genome Atlas (TCGA). After initial preprocessing, expression changes of HER2, EGFR, and candidate genes-identified based on their association with EGFR and HER2 signaling pathways-were examined. Human protein atlas data were utilized to assess the protein expression of HER2 and EGFR. GSE129254 was employed to identify molecular pathways and candidate genes associated with lapatinib. The protein-protein interaction network was used to identify lapatinib-influenced hub genes. Clinical data for common cancers were used to investigate the correlation between the expression of candidate genes and patients' mortality rates by Cox regression test. RESULTS The findings clearly indicated a significant increase in the expression levels of HER2 and EGFR in cancers such as kidney, lung, breast, bladder, pancreas, head and neck, stomach, and endometrial, both at the mRNA and protein levels (p-value <0.01). Additionally, more than 30 % of samples in some cancers showed a twofold increase in HER2 or EGFR expression. The analysis of GSE129254 data revealed that lapatinib reduces the expression of numerous genes associated with cell proliferation. METTL1, LYAR, LTV1, CCND1, NOP2, and DDX21 were identified as hub genes related to the effect of lapatinib. Our results demonstrated that many hub genes exhibited elevated expression in candidate cancers, and the upregulation of some of them was correlated with poor prognosis. CONCLUSION Our results indicate an upregulation in the expression levels of HER2 and EGFR in certain common cancers, suggesting that lapatinib, in addition to breast cancer, could be considered for the treatment of these cancers. Furthermore, we demonstrated that some genes with increased expression in prevalent cancers and associated with poor prognosis have the potential to be modulated by lapatinib.
Collapse
Affiliation(s)
- Behnaz Dolatabadi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Maryam Peymani
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Leila Rouhi
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Wen X, Hou J, Qi T, Cheng X, Liao G, Fang S, Xiao S, Qiu L, Wei W. Anoikis resistance regulates immune infiltration and drug sensitivity in clear-cell renal cell carcinoma: insights from multi omics, single cell analysis and in vitro experiment. Front Immunol 2024; 15:1427475. [PMID: 38953023 PMCID: PMC11215044 DOI: 10.3389/fimmu.2024.1427475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Background Anoikis is a form of programmed cell death essential for preventing cancer metastasis. In some solid cancer, anoikis resistance can facilitate tumor progression. However, this phenomenon is underexplored in clear-cell renal cell carcinoma (ccRCC). Methods Using SVM machine learning, we identified core anoikis-related genes (ARGs) from ccRCC patient transcriptomic data. A LASSO Cox regression model stratified patients into risk groups, informing a prognostic model. GSVA and ssGSEA assessed immune infiltration, and single-cell analysis examined ARG expression across immune cells. Quantitative PCR and immunohistochemistry validated ARG expression differences between immune therapy responders and non-responders in ccRCC. Results ARGs such as CCND1, CDKN3, PLK1, and BID were key in predicting ccRCC outcomes, linking higher risk with increased Treg infiltration and reduced M1 macrophage presence, indicating an immunosuppressive environment facilitated by anoikis resistance. Single-cell insights showed ARG enrichment in Tregs and dendritic cells, affecting immune checkpoints. Immunohistochemical analysis reveals that ARGs protein expression is markedly elevated in ccRCC tissues responsive to immunotherapy. Conclusion This study establishes a novel anoikis resistance gene signature that predicts survival and immunotherapy response in ccRCC, suggesting that manipulating the immune environment through these ARGs could improve therapeutic strategies and prognostication in ccRCC.
Collapse
MESH Headings
- Humans
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/drug therapy
- Anoikis/drug effects
- Kidney Neoplasms/immunology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Single-Cell Analysis
- Prognosis
- Gene Expression Regulation, Neoplastic
- Drug Resistance, Neoplasm/genetics
- Tumor Microenvironment/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Transcriptome
- Cell Line, Tumor
- Biomarkers, Tumor/genetics
- T-Lymphocytes, Regulatory/immunology
- Gene Expression Profiling
- Male
- Multiomics
Collapse
Affiliation(s)
- Xiangyang Wen
- The Department of Surgery, Shenzhen Longgang Second People’s Hospital, Shenzhen, China
| | - Jian Hou
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| | - Tiantian Qi
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaobao Cheng
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| | - Guoqiang Liao
- The Department of Surgery, Shenzhen Longgang Second People’s Hospital, Shenzhen, China
| | - Shaohong Fang
- The Department of Surgery, Shenzhen Longgang Second People’s Hospital, Shenzhen, China
| | - Song Xiao
- The Department of Surgery, Shenzhen Longgang Second People’s Hospital, Shenzhen, China
| | - Longlong Qiu
- The Department of Surgery, Shenzhen Longgang Second People’s Hospital, Shenzhen, China
| | - Wanqing Wei
- Department of Urology, Lianshui People’s Hospital of Kangda College Affiliated to Nanjing Medical University, Huaian, China
| |
Collapse
|
3
|
Ghafouri-Fard S, Harsij A, Hussen BM, Pourmoshtagh H, Taheri M. A review on the role of FOXD2-AS1 in human disorders. Pathol Res Pract 2024; 254:155101. [PMID: 38211387 DOI: 10.1016/j.prp.2024.155101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) is a long non-coding RNA being transcribed from a locus on chromosome 1p33. This transcript has been found to be up-regulated in tumor samples of almost all types of malignancies in association with a significant increase in malignant features. FOXD2-AS1 can affect activity of PI3K/AKT, AKT/mTOR, Hippo/YAP, Notch, NRf2, Wnt/β-catenin, NF-ƙB and ERK/MAPK pathways. Furthermore, it can enhance stem cell properties in cancer cells and prompt epithelial-mesenchymal transition. It is also involved in induction of resistance to a variety of anticancer agents such as adriamycin, cisplatin, 5-fluorouracil, temozolomide and gemcitabine. This article summarizes the impact of FOXD2-AS1 in diverse human disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Harsij
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq; Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Hasan Pourmoshtagh
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Ghafouri-Fard S, Askari A, Hussen BM, Taheri M, Akbari Dilmaghani N. Role of miR-424 in the carcinogenesis. Clin Transl Oncol 2024; 26:16-38. [PMID: 37178445 PMCID: PMC10761534 DOI: 10.1007/s12094-023-03209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Recent studies have revealed the impact of microRNAs (miRNAs) in the carcinogenic process. miR-424 is a miRNA whose role in this process is being to be identified. Experiments in the ovarian cancer, cervical cancer, hepatocellular carcinoma, neuroblastoma, breast cancer, osteosarcoma, intrahepatic cholangiocarcinoma, prostate cancer, endometrial cancer, non-small cell lung cancer, hemangioma and gastric cancer have reported down-regulation of miR-424. On the other hand, this miRNA has been found to be up-regulated in melanoma, laryngeal and esophageal squamous cell carcinomas, glioma, multiple myeloma and thyroid cancer. Expression of this miRNA is regulated by methylation status of its promoter. Besides, LINC00641, CCAT2, PVT1, LIN00657, LINC00511 and NNT-AS1 are among lncRNAs that act as molecular sponges for miR-424, thus regulating its expression. Moreover, several members of SNHG family of lncRNAs have been found to regulate expression of miR-424. This miRNA is also involved in the regulation of E2F transcription factors. The current review aims at summarization of the role of miR-424 in the process of cancer evolution and its impact on clinical outcome of patients in order to find appropriate markers for malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Ghafouri-Fard S, Hussen BM, Abdullah SR, Dadyar M, Taheri M, Kiani A. A review on the role of HAND2-AS1 in cancer. Clin Exp Med 2023; 23:3179-3188. [PMID: 37204522 PMCID: PMC10618356 DOI: 10.1007/s10238-023-01092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
HAND2 antisense RNA 1 (HAND2-AS1) is a newly recognized lncRNA encoded by a gene on 4q34.1. This lncRNA has 10 exons and is predicted to have a positive effect on expression of certain genes. HAND2-AS1 is mainly considered as a tumor suppressive lncRNA in different tissues. Moreover, HAND2-AS1 has been shown to regulate expression of several targets with possible roles in the carcinogenesis through serving as a sponge for miRNAs. This lncRNA can also influence activity of BMP, TGF-β1, JAK/STAT and PI3K/Akt pathways. Down-regulation of HAND2-AS1 in tumor tissues has been associated with larger tumor size, higher tumor grade, higher chance of metastasis and poor clinical outcome. The present study aims at summarization of the impact of HAND2-AS1 in the carcinogenesis and its potential in cancer diagnosis or prediction of cancer prognosis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Lung Research and Developmental Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Tehran Lung Research and Developmental Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, Iraq
- Tehran Lung Research and Developmental Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Dadyar
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Lung Research and Developmental Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arda Kiani
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Tehran Lung Research and Developmental Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Hussen BM, Hidayat HJ, Abdullah SR, Mohamadtahr S, Rasul MF, Samsami M, Taheri M. Role of long non-coding RNAs and TGF-β signaling in the regulation of breast cancer pathogenesis and therapeutic targets. Cytokine 2023; 170:156351. [PMID: 37657235 DOI: 10.1016/j.cyto.2023.156351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
The cytokine known as transforming growth factor (TGF) is essential for cell development, differentiation, and apoptosis in BC. TGF-β dysregulation can either promote or inhibit tumor development, and it is a key signaling pathway in BC spread. A recently identified family of ncRNAs known as lncRNAs has received a great deal of effort and is an important regulator of many cellular processes, including transcription of genes, chromatin remodeling, progression of the cell cycle, and posttranscriptional processing. Furthermore, both TGF-β signaling and lncRNAs serve as important early-stage biomarkers for BC diagnosis and prognosis and also play a significant role in BC drug resistance. According to recent studies, lncRNAs can regulate TGF-β by modulating its cofactors in BC. However, the particular functions of lncRNAs and the TGF-β pathway in controlling BC progression are not well understood yet. This review explores the lncRNAs' functional properties in BC as tumor suppressors or oncogenes in the regulation of genes, with a focus on dysregulated TGF-β signaling. Further, we emphasize the functional roles of lncRNAs and TGF-β pathway in the progression of BC to discover new treatment strategies and better comprehend the fundamental cellular pathways.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Kurdistan Region 44001, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Sayran Mohamadtahr
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Ghafouri-Fard S, Shoorei H, Hussen BM, Poornajaf Y, Taheri M, Sharifi G. Interaction between SIRT1 and non-coding RNAs in different disorders. Front Genet 2023; 14:1121982. [PMID: 37441551 PMCID: PMC10333929 DOI: 10.3389/fgene.2023.1121982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
SIRT1 is a member of the sirtuin family functioning in the process of removal of acetyl groups from different proteins. This protein has several biological functions and is involved in the pathogenesis of metabolic diseases, malignancy, aging, neurodegenerative disorders and inflammation. Several long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) have been found to interact with SIRT1. These interactions have been assessed in the contexts of sepsis, cardiomyopathy, heart failure, non-alcoholic fatty liver disease, chronic hepatitis, cardiac fibrosis, myocardial ischemia/reperfusion injury, diabetes, ischemic stroke, immune-related disorders and cancers. Notably, SIRT1-interacting non-coding RNAs have been found to interact with each other. Several circRNA/miRNA and lncRNA/miRNA pairs that interact with SIRT1 have been identified. These axes are potential targets for design of novel therapies for different disorders. In the current review, we summarize the interactions between three classes of non-coding RNAs and SIRT1.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Taheri M, Askari A, Behzad Moghadam K, Hussen BM, Ghafouri-Fard S, Kiani A. A review on the role of NCK1 Antisense RNA 1 (NCK1-AS1) in diverse disorders. Pathol Res Pract 2023; 245:154451. [PMID: 37028107 DOI: 10.1016/j.prp.2023.154451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
NCK1 Antisense RNA 1 (NCK1-AS1), alternatively named as NCK1-DT, is a long non-coding RNA (lncRNA) with important roles in the carcinogenesis. Multiple studies verified its oncogenic role in different types of cancer, including gastric cancer, non-small cell lung cancer, glioma, prostate cancer and cervical cancer. NCK1-AS1 functions as a sponge for several microRNAs, including miR-137, miR-22-3p, miR-526b-5p, miR-512-5p, miR-138-2-3p and miR-6857. In this review we present an outline of NCK1-AS1 function in malignant conditions as well as atherosclerosis.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arda Kiani
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Tehran Lung Research and Developmental Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Ghafouri-Fard S, Safarzadeh A, Hussen BM, Rasul MF, Taheri M, Akbari Dilmaghani N. A review on the role of LINC00173 in human cancers. Pathol Res Pract 2023; 243:154351. [PMID: 36774758 DOI: 10.1016/j.prp.2023.154351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Long intergenic non-protein coding RNA 173 (LINC00173) is a long non-coding RNA with especial function in the tumorigenic process. Studies in different types of cancers support an oncogenic role for LINC00173 except for studies in B-cell precursor acute lymphoblastic leukemia, cervical cancer, pancreatic cancer and gastric cancer. In breast and lung cancers, both oncogenic and tumor suppressor roles have been reported for LINC00173. LINC00173 can serve as a molecular sponge for miRNAs. miR-218/Etk, miR-511-5p/VEGFA, miR-182-5p/AGER, miR-765/NUTF2, miR-765/PLP2, miR-182-5p/FBXW7, miR-338-3p/Rab25, miR‑641/RAB14 and miR-1275/BCL2 are examples of the miRNA/mRNA axes being regulated by LINC00173 in the context of cancer. The current review provides a summary of different studies on the role of LINC00173 in these cancers.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Ghafouri-Fard S, Pourtavakoli A, Hussen BM, Taheri M, Kiani A. A review on the importance of LINC-ROR in human disorders. Pathol Res Pract 2023; 244:154420. [PMID: 36989849 DOI: 10.1016/j.prp.2023.154420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Long Intergenic Non-Protein Coding RNA, Regulator Of Reprogramming (LINC-ROR) is a long non-coding RNA with diverse physiological functions. The gene encoding this transcript resides on 18q21.31. Expression levels of LINC-ROR have been reported to be dysregulated in patients with diverse disorders, including cancer, autoimmune disorders and neurodegenerative and neurodevelopmental disorders. Moreover, polymorphisms within this lncRNA have been shown to be associated with a variety of disorders, such as some kinds of cancer and some aspects of systemic lupus erythematous. Abnormal expression of LINC-ROR in some other human disorders is not yet understood. Emerging evidence suggests that LINC-ROR exerts pivotal roles in most types of human disorders as an oncogene. Differentially expressed LINC-ROR contributes in the development of diseases by changing the expression of genes that control the cell cycle. It can also exert its role by affecting the activity of some cancer-related signaling pathways and sponging tumor suppressor miRNAs. Expanding our understanding of LINC-ROR functions will pave the way for developing efficient therapeutic strategies against cancer and related disorders. The current review aims at providing a concise overview of the role of LINC-ROR in diverse human disorders through providing a summary of association studies and expression assays.
Collapse
|
11
|
Ghafouri-Fard S, Safarzadeh A, Hussen BM, Taheri M, Mokhtari M. Contribution of CRNDE lncRNA in the development of cancer and the underlying mechanisms. Pathol Res Pract 2023; 244:154387. [PMID: 36893710 DOI: 10.1016/j.prp.2023.154387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
Colorectal Neoplasia Differentially Expressed (CRNDE) is an lncRNA with crucial roles in cancer development. It is located on chromosome 16 on the opposite strand to the adjacent IRX5 gene, implying the presence of a shared bidirectional promoter for these two genes. Expression of CRNDE has been assessed in a diverse array of hematological malignancies and solid tumors, representing its potential as a therapeutic target in these conditions. This lncRNA has a regulatory effect on activity of several pathways and axes that are involved in the regulation of cell apoptosis, immune responses and tumorigenesis. The current review is an updated review about the role of CRNDE in the development of cancers.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Mokhtari
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Ghafouri-Fard S, Safarzadeh A, Hussen BM, Taheri M, Samsami M. A review on the role of ncRNAs in the pathogenesis of cholangiocarcinoma. Int J Biol Macromol 2023; 225:809-821. [PMID: 36400211 DOI: 10.1016/j.ijbiomac.2022.11.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Cholangiocarcinoma is a rare tumor but a challenging cancer in terms of pathological changes, clinical manifestations and therapeutic options. Recent studies have provided evidence for participation of non-coding RNAs in the carcinogenic process of cholangiocarcinoma. We demonstrate the role of long non-coding RNAs, microRNAs and circular RNAs in the pathogenesis of cholangiocarcinoma and highlight their significant position as therapeutic targets and biomarkers for this type of cancer. We also list a number of molecular axes comprising these non-coding RNAs that represent potential targets for therapeutic options in cholangiocarcinoma, based on their significant roles in the regulation of cell proliferation, differentiation and apoptosis of these cells.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Kashyap D, Sharma R, Goel N, Buttar HS, Garg VK, Pal D, Rajab K, Shaikh A. Coding roles of long non-coding RNAs in breast cancer: Emerging molecular diagnostic biomarkers and potential therapeutic targets with special reference to chemotherapy resistance. Front Genet 2023; 13:993687. [PMID: 36685962 PMCID: PMC9852779 DOI: 10.3389/fgene.2022.993687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/07/2022] [Indexed: 01/08/2023] Open
Abstract
Dysregulation of epigenetic mechanisms have been depicted in several pathological consequence such as cancer. Different modes of epigenetic regulation (DNA methylation (hypomethylation or hypermethylation of promotor), histone modifications, abnormal expression of microRNAs (miRNAs), long non-coding RNAs, and small nucleolar RNAs), are discovered. Particularly, lncRNAs are known to exert pivot roles in different types of cancer including breast cancer. LncRNAs with oncogenic and tumour suppressive potential are reported. Differentially expressed lncRNAs contribute a remarkable role in the development of primary and acquired resistance for radiotherapy, endocrine therapy, immunotherapy, and targeted therapy. A wide range of molecular subtype specific lncRNAs have been assessed in breast cancer research. A number of studies have also shown that lncRNAs may be clinically used as non-invasive diagnostic biomarkers for early detection of breast cancer. Such molecular biomarkers have also been found in cancer stem cells of breast tumours. The objectives of the present review are to summarize the important roles of oncogenic and tumour suppressive lncRNAs for the early diagnosis of breast cancer, metastatic potential, and chemotherapy resistance across the molecular subtypes.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Riya Sharma
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Harpal S. Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, ON, Canada
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali, India,*Correspondence: Vivek Kumar Garg, ; Asadullah Shaikh,
| | - Deeksha Pal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Khairan Rajab
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| | - Asadullah Shaikh
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia,*Correspondence: Vivek Kumar Garg, ; Asadullah Shaikh,
| |
Collapse
|
14
|
A review on the role of LINC00152 in different disorders. Pathol Res Pract 2023; 241:154274. [PMID: 36563561 DOI: 10.1016/j.prp.2022.154274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
LINC00152 is an important lncRNA in human disorders. It is mainly regarded as a tumor-promoting lncRNA. Mechanistically, LINC00152 serves as a molecular sponge for miR-143a-3p, miR-125a-5p, miR-139, miR-215, miR-193a/b-3p, miR-16-5p, miR-206, miR-195, miR-138, miR-185-5p, miR-103, miR-612, miR-150, miR-107, miR-205-5p and miR-153-3p. In addition, it can regulate activity of mTOR, EGFR/PI3K/AKT, ERK/MAPK, Wnt/β-Catenin, EGFR, NF-κB, HIF-1 and PTEN. In this review, we provide a concise but comprehensive explanation about the role of LINC00152 in tumor development and progression as well as its role in the pathology of non-malignant conditions with the aim of facilitating the clinical implementation of this lncRNA as a diagnostic or prognostic tumor marker and therapeutic target.
Collapse
|
15
|
Wang Y, Jia L, Hu T, Yang Z, Yang C, Lin H, Zhang F, Yu K, Qu F, Guo W. Hollow Nanooxidase Enhanced Phototherapy Against Solid Tumors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56597-56612. [PMID: 36512413 DOI: 10.1021/acsami.2c17862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although phototherapy has attracted extensive attention in antitumor field in recent years, its therapeutic effect is usually unsatisfactory because of the complexity and variability of the tumor microenvironment (TME). Herein, we report novel CoSn(OH)6@CoOOH hollow carriers with oxidase properties that can enhance phototherapy. Hollow CoSn(OH)6@CoOOH nanocubes (NCs) with a particle size of ∼160 nm were synthesized via a two-step process of coprecipitation and etching. These NCs can react with O2 to generate singlet oxygen without hydrogen peroxide and consume glutathione, and their hollow structure can be utilized to carry drug molecules. After loading indocyanine green (ICG) and 1,2-bis(2-(4,5-dihydro-1H-imidazol-2-yl)propan-2-yl) diazene dihydrochloride (AIPH), the resulting nanosystem (HCIA) exhibited enhanced phototherapy effects through the catalytic activity of oxidase, production of alkyl radicals, and consumption of glutathione. Cell and mouse experiments showed that HCIA combined with near-infrared laser irradiation significantly inhibited the growth of 4T1 tumors. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that PI3K-Akt and MAPK signaling pathways were highly relevant to this therapeutic system. Such hollow NCs with oxidase activity have considerable potential for the design of multifunctional drug delivery vehicles for tumor therapy.
Collapse
Affiliation(s)
- Yuzhu Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Lu Jia
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Tingting Hu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Zhuoran Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Chunyu Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Kai Yu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Wei Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| |
Collapse
|
16
|
Hussen BM, Kheder RK, Abdullah ST, Hidayat HJ, Rahman HS, Salihi A, Taheri M, Ghafouri-Fard S. Functional interplay between long non-coding RNAs and Breast CSCs. Cancer Cell Int 2022; 22:233. [PMID: 35864503 PMCID: PMC9306174 DOI: 10.1186/s12935-022-02653-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) represents aggressive cancer affecting most women’s lives globally. Metastasis and recurrence are the two most common factors in a breast cancer patient's poor prognosis. Cancer stem cells (CSCs) are tumor cells that are able to self-renew and differentiate, which is a significant factor in metastasis and recurrence of cancer. Long non-coding RNAs (lncRNAs) describe a group of RNAs that are longer than 200 nucleotides and do not have the ability to code for proteins. Some of these lncRNAs can be mainly produced in various tissues and tumor forms. In the development and spread of malignancies, lncRNAs have a significant role in influencing multiple signaling pathways positively or negatively, making them promise useful diagnostic and prognostic markers in treating the disease and guiding clinical therapy. However, it is not well known how the interaction of lncRNAs with CSCs will affect cancer development and progression. Here, in this review, we attempt to summarize recent findings that focus on lncRNAs affect cancer stem cell self-renewal and differentiation in breast cancer development and progression, as well as the strategies and challenges for overcoming lncRNA's therapeutic resistance.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil , Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq.,Medical Laboratory Science, College of Science, University of Raparin, Rania, KGR, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Republic of Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|