1
|
Karthikeyan S, Casey PJ, Wang M. RAB4A is a master regulator of cancer cell stemness upstream of NUMB-NOTCH signaling. Cell Death Dis 2024; 15:778. [PMID: 39463384 PMCID: PMC11514220 DOI: 10.1038/s41419-024-07172-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Cancer stem cells (CSCs) are a group of specially programmed tumor cells that possess the characteristics of perpetual cell renewal, increased invasiveness, and often, drug resistance. Hence, eliminating CSCs is a major challenge for cancer treatment. Understanding the cellular programs that maintain CSCs, and identifying the critical regulators for such programs, are major undertakings in both basic and translational cancer research. Recently, we have reported that RAB4A is a major regulator of epithelial-to-mesenchymal transition (EMT) and it does so mainly through regulating the activation of RAC1 GTPase. In the current study, we have delineated a new signaling circuitry through which RAB4A transmits its control of cancer stemness. Using in vitro and in vivo studies, we show that RAB4A, as the upstream regulator, relays signal stepwise to NUMB, NOTCH1, RAC1, and then SOX2 to control the self-renewal property of multiple cancer cells of diverse tissue origins. Knockdown of NUMB, or overexpression of NICD (the active fragment NOTCH1) or SOX2, rescued the in vitro sphere-forming and in vivo tumor-forming abilities that were lost upon RAB4A knockdown. Furthermore, we discovered that the chain of control is mostly through transcriptional regulation at every step of the pathway. The discovery of the novel signaling axis of RAB4A-NUMB-NOTCH-SOX2 opens the path for further expansion of the signaling chain and for the identification of new regulators and interacting proteins important for CSC functions, which can be explored to develop new and effective therapies.
Collapse
Affiliation(s)
| | - Patrick J Casey
- Program in Cancer Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Mei Wang
- Program in Cancer Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Wang Y, Ma X, Xu E, Huang Z, Yang C, Zhu K, Dong Y, Zhang C. Identifying squalene epoxidase as a metabolic vulnerability in high-risk osteosarcoma using an artificial intelligence-derived prognostic index. Clin Transl Med 2024; 14:e1586. [PMID: 38372422 PMCID: PMC10875711 DOI: 10.1002/ctm2.1586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Osteosarcoma (OSA) presents a clinical challenge and has a low 5-year survival rate. Currently, the lack of advanced stratification models makes personalized therapy difficult. This study aims to identify novel biomarkers to stratify high-risk OSA patients and guide treatment. METHODS We combined 10 machine-learning algorithms into 101 combinations, from which the optimal model was established for predicting overall survival based on transcriptomic profiles for 254 samples. Alterations in transcriptomic, genomic and epigenomic landscapes were assessed to elucidate mechanisms driving poor prognosis. Single-cell RNA sequencing (scRNA-seq) unveiled genes overexpressed in OSA cells as potential therapeutic targets, one of which was validated via tissue staining, knockdown and pharmacological inhibition. We characterized changes in multiple phenotypes, including proliferation, colony formation, migration, invasion, apoptosis, chemosensitivity and in vivo tumourigenicity. RNA-seq and Western blotting elucidated the impact of squalene epoxidase (SQLE) suppression on signalling pathways. RESULTS The artificial intelligence-derived prognostic index (AIDPI), generated by our model, was an independent prognostic biomarker, outperforming clinicopathological factors and previously published signatures. Incorporating the AIDPI with clinical factors into a nomogram improved predictive accuracy. For user convenience, both the model and nomogram are accessible online. Patients in the high-AIDPI group exhibited chemoresistance, coupled with overexpression of MYC and SQLE, increased mTORC1 signalling, disrupted PI3K-Akt signalling, and diminished immune infiltration. ScRNA-seq revealed high expression of MYC and SQLE in OSA cells. Elevated SQLE expression correlated with chemoresistance and worse outcomes in OSA patients. Therapeutically, silencing SQLE suppressed OSA malignancy and enhanced chemosensitivity, mediated by cholesterol depletion and suppression of the FAK/PI3K/Akt/mTOR pathway. Furthermore, the SQLE-specific inhibitor FR194738 demonstrated anti-OSA effects in vivo and exhibited synergistic effects with chemotherapeutic agents. CONCLUSIONS AIDPI is a robust biomarker for identifying the high-risk subset of OSA patients. The SQLE protein emerges as a metabolic vulnerability in these patients, providing a target with translational potential.
Collapse
Affiliation(s)
- Yongjie Wang
- Department of Orthopaedic SurgeryShanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
- Institute of Bone Tumor Affiliated to Tongji University School of MedicineShanghaiP. R. China
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Xiaolong Ma
- Department of Orthopaedic SurgeryShanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
- Institute of Bone Tumor Affiliated to Tongji University School of MedicineShanghaiP. R. China
| | - Enjie Xu
- Department of Orthopaedic SurgeryShanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
- Institute of Bone Tumor Affiliated to Tongji University School of MedicineShanghaiP. R. China
| | - Zhen Huang
- Department of Orthopaedic SurgeryShanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
- Institute of Bone Tumor Affiliated to Tongji University School of MedicineShanghaiP. R. China
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Kunpeng Zhu
- Department of Orthopaedic SurgeryShanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
- Institute of Bone Tumor Affiliated to Tongji University School of MedicineShanghaiP. R. China
| | - Yang Dong
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Chunlin Zhang
- Department of Orthopaedic SurgeryShanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
- Institute of Bone Tumor Affiliated to Tongji University School of MedicineShanghaiP. R. China
| |
Collapse
|
3
|
Bourdon E, Swierczewski T, Goujon M, Boukrout N, Fellah S, Van der Hauwaert C, Larrue R, Lefebvre B, Van Seuningen I, Cauffiez C, Pottier N, Perrais M. MUC1 Drives the Progression and Chemoresistance of Clear Cell Renal Carcinomas. Cancers (Basel) 2024; 16:391. [PMID: 38254882 PMCID: PMC10814283 DOI: 10.3390/cancers16020391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
While the transmembrane glycoprotein mucin 1 (MUC1) is clustered at the apical borders of normal epithelial cells, with transformation and loss of polarity, MUC1 is found at high levels in the cytosol and is uniformly distributed over the entire surface of carcinoma cells, where it can promote tumor progression and adversely affects the response to therapy. Clear cell renal cell carcinoma (ccRCC), the main histotype of kidney cancer, is typically highly resistant to conventional and targeted therapies for reasons that remain largely unknown. In this context, we investigated whether MUC1 also plays a pivotal role in the cellular and molecular events driving ccRCC progression and chemoresistance. We showed, using loss- and gain-of-function approaches in ccRCC-derived cell lines, that MUC1 not only influences tumor progression but also induces a multi-drug-resistant profile reminiscent of the activation of ABC drug efflux transporters. Overall, our results suggest that targeting MUC1 may represent a novel therapeutic approach to limit ccRCC progression and improve drug sensitivity.
Collapse
Affiliation(s)
- Emma Bourdon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Thomas Swierczewski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Marine Goujon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Nihad Boukrout
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Sandy Fellah
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Cynthia Van der Hauwaert
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Romain Larrue
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
- CHU Lille, Service de Toxicologie et Génopathies, F-59000 Lille, France
| | - Bruno Lefebvre
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR-S1172, Neuroscience & Cognition, Alzheimer & Tauopathies, F-59000 Lille, France;
| | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Christelle Cauffiez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Nicolas Pottier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR-S1172, Neuroscience & Cognition, Alzheimer & Tauopathies, F-59000 Lille, France;
| | - Michaël Perrais
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| |
Collapse
|
4
|
Gamal H, Tawfik W, El-Sayyad HI, Emam AN, Fahmy HM, El-Ghaweet HA. A new vision of photothermal therapy assisted with gold nanorods for the treatment of mammary cancers in adult female rats. NANOSCALE ADVANCES 2023; 6:170-187. [PMID: 38125593 PMCID: PMC10729923 DOI: 10.1039/d3na00595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
Over the past decade, the therapeutic landscape has markedly changed for patients with breast cancers (BCs), yet few studies have evaluated the power of the photothermal therapy (PTT) technique. The present study aimed to assess the potency of 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary cancer treatment with this technique. In total, forty-two adult virgin female Wistar rats were categorized into seven groups, negative control, polyvinylpyrrolidone-capped gold nanorods (PVP-AuNRs) positive control (400 μL per rat ∼ 78 ppm), NIR laser irradiation 808 nm positive control with an intensity of (808 nm NIR CW diode laser, 200 mW cm-2 for 5 min), DMBA-treatment, DMBA-induced mammary cancer group treated with polyvinylpyrrolidone-capped gold nanorods, DMBA-induced mammary cancer group treated with NIR laser irradiation, and DMBA-induced mammary cancer group treated with polyvinylpyrrolidone-capped gold nanorods and NIR laser irradiation. Treatment with polyvinylpyrrolidone-capped gold nanorods and/or NIR laser irradiation was performed after three weeks of DMBA-induced mammary cancer. The mammary tumor lesions in the rat model induced with DMBA are highly invasive. Synthesis and characterization of gold nanorods (AuNRs) with an aspect ratio ranging from 2.8 to 3 were employed to validate the nanostructure and polyvinylpyrrolidone capping and their stability in absorbing near-infrared light. As a result, the therapy strategy, DMBA + PVP-AuNRs + NIR, effectively treated the tumor and halted its growth. The mammary glands were dissected and subjected to biochemical analysis for serum and tissue. Our treatment technique improved the histological aspects of mammary cancer in various forms of mammary cancer detected. Immuno-histochemical localization and TEM images supported these results reflecting the efficacy of this technique. Finally, our findings uncover for the first time the revolutionary effect of the PTT strategy using PVP-capped AuNRs in selectively destroying mammary cancer cells in rats.
Collapse
Affiliation(s)
- Hend Gamal
- Department of Zoology, Faculty of Science, Mansoura University Mansoura Egypt
| | - Walid Tawfik
- National Institute of Laser Enhanced Sciences (NILES), Cairo University Cairo Egypt
| | - Hassan Ih El-Sayyad
- Department of Zoology, Faculty of Science, Mansoura University Mansoura Egypt
| | - Ahmed N Emam
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre (NRC) El Bohouth St. Dokki Cairo Egypt
- Nanomedicine & Tissue Engineering Research Lab, Medical Research Centre of Excellence, National Research Centre El Bohouth St., Dokki 12622 Cairo Egypt
| | - Heba Mohamed Fahmy
- Department of Biophysics, Faculty of Science Cairo University Cairo Egypt
| | - Heba A El-Ghaweet
- Department of Zoology, Faculty of Science, Mansoura University Mansoura Egypt
| |
Collapse
|