1
|
Kalaimani K, Balachandran S, Boopathy LK, Roy A, Jayachandran B, Sankaranarayanan S, Arumugam MK. Recent advancements in small interfering RNA based therapeutic approach on breast cancer. Eur J Pharmacol 2024; 981:176877. [PMID: 39128807 DOI: 10.1016/j.ejphar.2024.176877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Breast cancer (BC) is the most common and malignant tumor diagnosed in women, with 2.9 million cases in 2023 and the fifth highest cancer-causing mortality worldwide. Recent developments in targeted therapy options for BC have demonstrated the promising potential of small interfering RNA (siRNA)-based cancer therapeutic approaches. As BC continues to be a global burden, siRNA therapy emerges as a potential treatment strategy to regulate disease-related genes in other types of cancers, including BC. siRNAs are tiny RNA molecules that, by preventing their expression, can specifically silence genes linked to the development of cancer. In order to increase the stability and effectiveness of siRNA delivery to BC cells, minimize off-target effects, and improve treatment efficacy, advanced delivery technologies such as lipid nanoparticles and nanocarriers have been created. Additionally, combination therapies, such as siRNAs that target multiple pathways are used in conjunction with conventional chemotherapy agents, have shown synergistic effects in various preclinical studies, opening up new treatment options for breast cancer that are personalized and precision medicine-oriented. Targeting important genes linked to BC growth, metastasis, and chemo-resistance has been reported in BC research using siRNA-based therapies. This study reviews recent reports on therapeutic approaches to siRNA for advanced treatment of BC. Furthermore, this review evaluates the role and mechanisms of siRNA in BC and demonstrates the potential of exploiting siRNA as a novel target for BC therapy.
Collapse
Affiliation(s)
- Kathirvel Kalaimani
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Shana Balachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Bhuvaneshwari Jayachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Sangamithra Sankaranarayanan
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| |
Collapse
|
2
|
Liu Y, Zhu L, Guo L, Zhao J, Li J, Li W, Li Z, Chen S, Zheng J, Zhao Y. Causal relationship between endometrial cancer and risk of breast cancer: A 2-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38732. [PMID: 38941373 PMCID: PMC11466141 DOI: 10.1097/md.0000000000038732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024] Open
Abstract
Several studies have confirmed the important role of endometrial cancer (EC) in the development and progression of breast cancer (BC), and this study will explore the causal relationship between EC and BC by 2-sample Mendelian randomization analysis. Pooled data from published genome-wide association studies were used to assess the association between EC and BC risk in women using 5 methods, namely, inverse variance weighting (IVW), MR-Egger, weighted median (WME), simple multimaximetry (SM) and weighted multimaximetry (WM) with the EC-associated genetic loci as the instrumental variables (IV) and sensitivity analyses were used to assess the robustness of the results. The statistical results showed a causal association between EC and BC (IVW: OR = 1.07, 95% CI = 1.01-1.32, P = .02; MR-Egger: OR = 1.21, 95% CI = 0.71-1.51, P = .11; weighted median: OR = 1.05, 95% CI = 0.97-1.31, P = .19; simple plurality method: OR = 0.98, 95% CI = 0.81-1.15, P = .78; weighted plurality method: OR = 0.98, 95% CI = 0.81-1.14, P = .75), and the results of the sensitivity analyses showed that there was no significant heterogeneity or multiplicity, and the results were stable. EC is associated with an increased risk of developing BC. The results of this MR analysis can be used as a guideline for screening for BC in women with EC and to help raise awareness of screening for early detection and treatment.
Collapse
Affiliation(s)
- Ye Liu
- Affiliated Hospital of North China University of Science and Technology, Breast Disease Treatment Center, Tangshan, Hebei, China
| | - Lichao Zhu
- Affiliated Hospital of North China University of Science and Technology, Breast Disease Treatment Center, Tangshan, Hebei, China
| | - Lei Guo
- Affiliated Hospital of North China University of Science and Technology, Breast Disease Treatment Center, Tangshan, Hebei, China
| | - Jianhai Zhao
- Affiliated Hospital of North China University of Science and Technology, Breast Disease Treatment Center, Tangshan, Hebei, China
| | - Jiang Li
- Tangshan Maternal and Child Health Centre, General Surgery, Tangshan, Hebei, China
| | - Wenying Li
- Affiliated Hospital of North China University of Science and Technology, Breast Disease Treatment Center, Tangshan, Hebei, China
| | - Ziyun Li
- Affiliated Hospital of North China University of Science and Technology, Breast Disease Treatment Center, Tangshan, Hebei, China
| | - Shuai Chen
- Affiliated Hospital of North China University of Science and Technology, General Surgery, Hebei, China
| | - Jiapeng Zheng
- Affiliated Hospital of North China University of Science and Technology, General Surgery, Hebei, China
| | - Yating Zhao
- Affiliated Hospital of North China University of Science and Technology, Breast Disease Treatment Center, Tangshan, Hebei, China
| |
Collapse
|
3
|
Shinhmar S, Schaf J, Lloyd Jones K, Pardo OE, Beesley P, Williams RSB. Developing a Tanshinone IIA Memetic by Targeting MIOS to Regulate mTORC1 and Autophagy in Glioblastoma. Int J Mol Sci 2024; 25:6586. [PMID: 38928292 PMCID: PMC11204349 DOI: 10.3390/ijms25126586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Tanshinone IIA (T2A) is a bioactive compound that provides promise in the treatment of glioblastoma multiforme (GBM), with a range of molecular mechanisms including the inhibition of the mechanistic target of rapamycin complex 1 (mTORC1) and the induction of autophagy. Recently, T2A has been demonstrated to function through sestrin 2 (SESN) to inhibit mTORC1 activity, but its possible impact on autophagy through this pathway has not been investigated. Here, the model system Dictyostelium discoideum and GBM cell lines were employed to investigate the cellular role of T2A in regulating SESN to inhibit mTORC1 and activate autophagy through a GATOR2 component MIOS. In D. discoideum, T2A treatment induced autophagy and inhibited mTORC1 activity, with both effects lost upon the ablation of SESN (sesn-) or MIOS (mios-). We further investigated the targeting of MIOS to reproduce this effect of T2A, where computational analysis identified 25 novel compounds predicted to strongly bind the human MIOS protein, with one compound (MIOS inhibitor 3; Mi3) reducing cell proliferation in two GBM cells. Furthermore, Mi3 specificity was demonstrated through the loss of potency in the D. discoideum mios- cells regarding cell proliferation and the induction of autophagy. In GBM cells, Mi3 treatment also reduced mTORC1 activity and induced autophagy. Thus, a potential T2A mimetic showing the inhibition of mTORC1 and induction of autophagy in GBM cells was identified.
Collapse
Affiliation(s)
- Sonia Shinhmar
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (S.S.); (J.S.); (K.L.J.); (P.B.)
| | - Judith Schaf
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (S.S.); (J.S.); (K.L.J.); (P.B.)
| | - Katie Lloyd Jones
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (S.S.); (J.S.); (K.L.J.); (P.B.)
| | - Olivier E. Pardo
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK;
| | - Philip Beesley
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (S.S.); (J.S.); (K.L.J.); (P.B.)
| | - Robin S. B. Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (S.S.); (J.S.); (K.L.J.); (P.B.)
| |
Collapse
|
4
|
Al-Hawary SIS, Rodrigues P, Bangali H, Hassan ZF, Elawady A. The role of long noncoding RNA DGCR5 in cancers: Focus on molecular targets. Cell Biochem Funct 2024; 42:e3949. [PMID: 38379219 DOI: 10.1002/cbf.3949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024]
Abstract
Long noncoding RNAs (lncRNAs) are major components of cellular transcripts that are emerging as important players in various biological pathways. Due to their specific expression and functional diversity in a variety of cancers, lncRNAs have promising applications in cancer diagnosis, prognosis, and therapy. Studies have shown that lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) with high specificity and accuracy has the potential to become biomarkers in cancers. LncRNA DGCR5 can be noninvasively extracted from body fluids, tissues, and cells, and can be used as independent or auxiliary biomarkers to improve the accuracy of diagnosis or prognosis. Now, the underlying mechanisms of lncRNAs such as DGCR5 were explored as therapeutic targets, which have been investigated in clinical trials of several cancers. The DGCR5 lacks an appropriate animal model, which is necessary to gain greater knowledge of their functions. While some studies on the uses of DGCR5 have been carried out, the small sample size makes them unreliable. In this review, we presented a compilation of recent publications addressing the potential of lncRNA DGCR5 that could be considered as biomarkers or therapeutic targets, with the hopes of providing promised implications for future cancer therapy.
Collapse
Affiliation(s)
| | - Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | | | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Gupta J, Suliman M, Ali R, Margiana R, Hjazi A, Alsaab HO, Qasim MT, Hussien BM, Ahmed M. Double-edged sword role of miRNA-633 and miRNA-181 in human cancers. Pathol Res Pract 2023; 248:154701. [PMID: 37542859 DOI: 10.1016/j.prp.2023.154701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023]
Abstract
Understanding the function and mode of operation of microRNAs (miRNAs) in cancer is of growing interest. The short non-coding RNAs known as miRNAs, which target mRNA in multicellular organisms, are described as controlling essential cellular processes. The miR-181 family and miR-633 are well-known miRNAs that play a key role in the development and metastasis of tumor cells. They may facilitate either tumor-suppressive or oncogenic function in malignant cells, according to mounting evidence. Metastatic cells that are closely linked to cancer cell migration, invasion, and angiogenesis can be identified by abnormal levels of miR-181 and miR-633. Numerous studies have demonstrated their capacity to control drug resistance, cell growth, apoptosis, and the epithelial-mesenchymal transition (EMT) and metastasis process. Interestingly, the levels of miR-181 and miR-633 and their potential target genes in the basic cellular process can vary depending on the type of cancer cells and their gene expression profile. Such miRNAs' interactions with other non-coding RNAs such as long non-coding RNAs and circular RNAs can influence tumor behaviors. Herein, we concentrated on the multifaceted roles of miR-181 and miR-633 and potential targets in human tumorigenesis, ranging from cell growth and metastasis to drug resistance.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India.
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Rida Ali
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhja Ahmed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|