1
|
Gmamdya H, Souissi MA, Bougrine H, Baaziz M, Noomen Guelmami, Majdi B, Robin N, Bali N. The Positive Impact of Combining Motor Imagery, Action Observation and Coach's Feedback on Archery Accuracy of Young Athletes. Percept Mot Skills 2023; 130:2226-2248. [PMID: 37656001 DOI: 10.1177/00315125231193218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In recent years, learning and motor control researchers have examined, in diverse ways, the practical strategies that enhance motor skill acquisition in sport. In this study we investigated the impact of combining Motor Imagery (MI), Feedback (F), and Action Observation (AO) on the quality of archery longbow shooting at a 10-meter target. We randomly assigned 60 young athletes to (a) a Control group (Control), (b) a Feedback and Motor Imagery group (F + MI), and (c) a Feedback, Motor Imagery, and Action Observation group (F + MI + AO). Over an 8-week intervention period athletes performed two training sessions per week. During each session, all participants engaged in two blocks of ten effective shots. Performance improvement was significantly greater in the F + MI + AO group than in the two other groups, confirming the beneficial impact of combining all three methods of improving archery accuracy. These findings suggest practical recommendations for athletes and trainers for delivering optimal mental training to improve shooting accuracy for these archers.
Collapse
Affiliation(s)
- Hatem Gmamdya
- Research Laboratory in Disability and Social Maladjustment, University of Mannouba, Tunisia
- High Institute of Sport and Physical Education, Sfax University, Sfax, Tunisia
- High Institute of Sport and Physical Education, Gafsa University, Gafsa, Tunisia
| | - Mohamed Abdelkader Souissi
- High Institute of Sport and Physical Education, Gafsa University, Gafsa, Tunisia
- Physical Activity, Sport and Health, Research Unit, UR18JS01, National Observatory of Sport, Tunis, Tunisia
| | - Houda Bougrine
- Physical Activity, Sport and Health, Research Unit, UR18JS01, National Observatory of Sport, Tunis, Tunisia
- High Institute of Sport and Physical Education Ksar-Said, Manouba University, Manouba, Tunisia
| | - Mohamed Baaziz
- High Institute of Sport and Physical Education Ksar-Said, Manouba University, Manouba, Tunisia
| | - Noomen Guelmami
- Higher Institute of Sport and Physical Education of Kef, University of Jendouba, Jendouba, Tunisia
| | - Bouazizi Majdi
- High Institute of Sport and Physical Education, Gafsa University, Gafsa, Tunisia
| | - Nicolas Robin
- Laboratoire ACTES (3596), UFR STAPS, Université des Antilles, Pointe-à-Pitre, France
| | - Naila Bali
- Research Laboratory in Disability and Social Maladjustment, University of Mannouba, Tunisia
- High Institute of Sport and Physical Education Ksar-Said, Manouba University, Manouba, Tunisia
| |
Collapse
|
2
|
al-Naboulsi D, Vilette B. Relations entre bilinguisme, performances scolaires et fonctions exécutives chez des enfants libanais de 8-10 ans. ENFANCE 2021. [DOI: 10.3917/enf2.214.0391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
3
|
Crollen V, Noël MP, Honoré N, Degroote V, Collignon O. Investigating the respective contribution of sensory modalities and spatial disposition in numerical training. J Exp Child Psychol 2019; 190:104729. [PMID: 31726240 DOI: 10.1016/j.jecp.2019.104729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 11/30/2022]
Abstract
Recent studies have suggested that multisensory redundancy may improve cognitive learning. According to this view, information simultaneously available across two or more modalities is highly salient and, therefore, may be learned and remembered better than the same information presented to only one modality. In the current study, we wanted to evaluate whether training arithmetic with a multisensory intervention could induce larger learning improvements than a visual intervention alone. Moreover, because a left-to-right-oriented mental number line was for a long time considered as a core feature of numerical representation, we also wanted to compare left-to-right-organized and randomly organized arithmetic training. Therefore, five training programs were created and called (a) multisensory linear, (b) multisensory random, (c) visual linear, (d) visual random, and (e) control. A total of 85 preschoolers were randomly assigned to one of these five training conditions. Whereas children were trained to solve simple addition and subtraction operations in the first four training conditions, story understanding was the focus of the control training. Several numerical tasks (arithmetic, number-to-position, number comparison, counting, and subitizing) were used as pre- and post-test measures. Although the effect of spatial disposition was not significant, results demonstrated that the multisensory training condition led to a significantly larger performance improvement than the visual training and control conditions. This result was specific to the trained ability (arithmetic) and is discussed in light of the multisensory redundancy hypothesis.
Collapse
Affiliation(s)
- Virginie Crollen
- Centre for Mind/Brain Science, University of Trento, 38123 Mattarello (TN), Italy; Institute of Psychology and Institute of Neuroscience, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| | - Marie-Pascale Noël
- Institute of Psychology and Institute of Neuroscience, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Nastasya Honoré
- Institute of Psychology and Institute of Neuroscience, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | | | - Olivier Collignon
- Institute of Psychology and Institute of Neuroscience, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Kim N, Jang S, Cho S. Testing the Efficacy of Training Basic Numerical Cognition and Transfer Effects to Improvement in Children's Math Ability. Front Psychol 2018; 9:1775. [PMID: 30333768 PMCID: PMC6175973 DOI: 10.3389/fpsyg.2018.01775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/03/2018] [Indexed: 01/29/2023] Open
Abstract
The goals of the present study were to test whether (and which) basic numerical abilities can be improved with training and whether training effects transfer to improvement in children's math achievement. The literature is mixed with evidence that does or does not substantiate the efficacy of training basic numerical ability. In the present study, we developed a child-friendly software named "123 Bakery" which includes four training modules; non-symbolic numerosity comparison, non-symbolic numerosity estimation, approximate arithmetic, and symbol-to-numerosity mapping. Fifty-six first graders were randomly assigned to either the training or control group. The training group participated in 6 weeks of training (5 times a week, 30 minutes per day). All participants underwent pre- and post-training assessment of their basic numerical processing ability (including numerosity discrimination acuity, symbolic/non-symbolic magnitude estimation, approximate arithmetic, and symbol-to-numerosity mapping), overall math achievement and intelligence, 6 weeks apart. The acuity for numerosity discrimination (approximate number sense acuity; hereafter ANS acuity) significantly improved after training, but this training effect did not transfer to improvement in symbolic, exact calculation, or any other math ability. We conclude that basic numerical cognition training leads to improvement in ANS acuity, but whether this effect transfers to symbolic math ability remains to be further tested.
Collapse
Affiliation(s)
- Narae Kim
- Department of Psychology, Chung-Ang University, Seoul, South Korea
| | - Selim Jang
- Department of Psychology, Chung-Ang University, Seoul, South Korea
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Soohyun Cho
- Department of Psychology, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
5
|
Honoré N, Noël MP. Improving Preschoolers' Arithmetic through Number Magnitude Training: The Impact of Non-Symbolic and Symbolic Training. PLoS One 2016; 11:e0166685. [PMID: 27875540 PMCID: PMC5119778 DOI: 10.1371/journal.pone.0166685] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/02/2016] [Indexed: 01/29/2023] Open
Abstract
The numerical cognition literature offers two views to explain numerical and arithmetical development. The unique-representation view considers the approximate number system (ANS) to represent the magnitude of both symbolic and non-symbolic numbers and to be the basis of numerical learning. In contrast, the dual-representation view suggests that symbolic and non-symbolic skills rely on different magnitude representations and that it is the ability to build an exact representation of symbolic numbers that underlies math learning. Support for these hypotheses has come mainly from correlative studies with inconsistent results. In this study, we developed two training programs aiming at enhancing the magnitude processing of either non-symbolic numbers or symbolic numbers and compared their effects on arithmetic skills. Fifty-six preschoolers were randomly assigned to one of three 10-session-training conditions: (1) non-symbolic training (2) symbolic training and (3) control training working on story understanding. Both numerical training conditions were significantly more efficient than the control condition in improving magnitude processing. Moreover, symbolic training led to a significantly larger improvement in arithmetic than did non-symbolic training and the control condition. These results support the dual-representation view.
Collapse
Affiliation(s)
- Nastasya Honoré
- Psychological Sciences Research Institute, Université Catholique de Louvain, Louyain-la-Neuve, Belgium
- * E-mail:
| | - Marie-Pascale Noël
- Psychological Sciences Research Institute, Université Catholique de Louvain, Louyain-la-Neuve, Belgium
| |
Collapse
|
6
|
Les compétences numériques chez de jeunes enfants prématurés. ANNEE PSYCHOLOGIQUE 2016. [DOI: 10.4074/s0003503316000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Jang S, Cho S. The Acuity for Numerosity (but Not Continuous Magnitude) Discrimination Correlates with Quantitative Problem Solving but Not Routinized Arithmetic. CURRENT PSYCHOLOGY 2015. [DOI: 10.1007/s12144-015-9354-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
8
|
De Smedt B, Noël MP, Gilmore C, Ansari D. How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children's mathematical skills? A review of evidence from brain and behavior. Trends Neurosci Educ 2013. [DOI: 10.1016/j.tine.2013.06.001] [Citation(s) in RCA: 415] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|