1
|
Franceschini D, Cozzi L, Fogliata A, Marini B, Di Cristina L, Dominici L, Spoto R, Franzese C, Navarria P, Comito T, Reggiori G, Tomatis S, Scorsetti M. Training and validation of a knowledge-based dose-volume histogram predictive model in the optimisation of intensity-modulated proton and volumetric modulated arc photon plans for pleural mesothelioma patients. Radiat Oncol 2022; 17:150. [PMID: 36028862 PMCID: PMC9419376 DOI: 10.1186/s13014-022-02119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate the performance of a narrow-scope knowledge-based RapidPlan (RP) model for optimisation of intensity-modulated proton therapy (IMPT) and volumetric modulated arc therapy (VMAT) plans applied to patients with pleural mesothelioma. Second, estimate the potential benefit of IMPT versus VMAT for this class of patients. METHODS A cohort of 82 patients was retrospectively selected; 60 were used to "train" a dose-volume histogram predictive model; the remaining 22 provided independent validation. The performance of the RP models was benchmarked, comparing predicted versus achieved mean and near-to-maximum dose for all organs at risk (OARs) in the training set and by quantitative assessment of some dose-volume metrics in the comparison of the validation RP-based data versus the manually optimised training datasets. Treatment plans were designed for a prescription dose of 44 Gy in 22 fractions (proton doses account for a fixed relative biological effectiveness RBE = 1.1). RESULTS Training and validation RP-based plans resulted dosimetrically similar for both VMAT and IMPT groups, and the clinical planning aims were met for all structures. The IMPT plans outperformed the VMAT ones for all OARs for the contra-lateral and the mean and low dose regions for the ipsilateral OARs. Concerning the prediction performance of the RP models, the linear regression for the near-to-maximum dose resulted in Dachieved = 1.03Dpredicted + 0.58 and Dachieved = 1.02Dpredicted + 1.46 for VMAT and IMPT, respectively. For the mean dose it resulted: Dachieved = 0.99Dpredicted + 0.34 and Dachieved = 1.05Dpredicted + 0.27 respectively. In both cases, the linear correlation between prediction and achievement is granted with an angular coefficient deviating from unity for less than 5%. Concerning the dosimetric comparison between manual plans in the training cohort and RP-based plans in the validation cohort, no clinical differences were observed for the target volumes in both the VMAT and IMPT groups. Similar consistency was observed for the dose-volume metrics analysed for the OAR. This proves the possibility of achieving the same quality of plans with manual procedures (the training set) or with automated RP-based methods (the validation set). CONCLUSION Two models were trained and validated for VMAT and IMPT plans for pleural mesothelioma. The RP model performance resulted satisfactory as measured by the agreement between predicted and achieved (after full optimisation) dose-volume metrics. The IMPT plans outperformed the VMAT plans for all the OARs (with different intensities for contra- or ipsilateral structures). RP-based planning enabled the automation of part of the optimisation and the harmonisation of the dose-volume results between training and validation. The IMPT data showed a systematic significant dosimetric advantage over VMAT. In general, using an RP-based approach can simplify the optimisation workflow in these complex treatment indications without impacting the quality of plans.
Collapse
Affiliation(s)
- Davide Franceschini
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, IRCSS, Via Manzoni 56, 20089, Milan-Rozzano, Italy
| | - Luca Cozzi
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, IRCSS, Via Manzoni 56, 20089, Milan-Rozzano, Italy.
- Department of Biomedical Sciences, Humanitas University, Milan-Rozzano, Italy.
| | - Antonella Fogliata
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, IRCSS, Via Manzoni 56, 20089, Milan-Rozzano, Italy
| | - Beatrice Marini
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, IRCSS, Via Manzoni 56, 20089, Milan-Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Milan-Rozzano, Italy
| | - Luciana Di Cristina
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, IRCSS, Via Manzoni 56, 20089, Milan-Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Milan-Rozzano, Italy
| | - Luca Dominici
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, IRCSS, Via Manzoni 56, 20089, Milan-Rozzano, Italy
| | - Ruggero Spoto
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, IRCSS, Via Manzoni 56, 20089, Milan-Rozzano, Italy
| | - Ciro Franzese
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, IRCSS, Via Manzoni 56, 20089, Milan-Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Milan-Rozzano, Italy
| | - Pierina Navarria
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, IRCSS, Via Manzoni 56, 20089, Milan-Rozzano, Italy
| | - Tiziana Comito
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, IRCSS, Via Manzoni 56, 20089, Milan-Rozzano, Italy
| | - Giacomo Reggiori
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, IRCSS, Via Manzoni 56, 20089, Milan-Rozzano, Italy
| | - Stefano Tomatis
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, IRCSS, Via Manzoni 56, 20089, Milan-Rozzano, Italy
| | - Marta Scorsetti
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, IRCSS, Via Manzoni 56, 20089, Milan-Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Milan-Rozzano, Italy
| |
Collapse
|
2
|
Moore A, Kindler MJ, Allen AM. Use of Continuous Positive Airway Pressure (CPAP) to Limit Diaphragm Motion-A Novel Approach for Definitive Radiation Therapy for Inoperable Pleural Mesothelioma: A Pilot Study. BIOLOGY 2021; 10:biology10080711. [PMID: 34439944 PMCID: PMC8389276 DOI: 10.3390/biology10080711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/11/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022]
Abstract
Simple Summary Radiotherapy is an important part of the multimodality approach to treating malignant pleural mesothelioma. In recent studies there is a new trend to treat patients with intact lungs instead of following surgery. This treatment creates significant concerns regarding lung toxicity. We describe two methods to reduce that toxicity. One is the use of constant pulmonary airway pressure (CPAP) to inflate the lungs during treatment. The second is utilizing a novel method of planning and delivering radiotherapy called volumetric modulated arc therapy (VMAT). Abstract Malignant pleural mesothelioma (MPM) is a deadly disease and radiotherapy (RT) plays an important role in its management. Recent developments in technique have made it is possible to deliver RT to MPM in the intact lung. However, it is imperative to reduce normal lung doses. We present a pilot study examining the use of CPAP and VMAT radiotherapy to reduce toxicity when treating MPM, involving three consecutive patients with MPM, not amenable to surgery, who were treated according to Helsinki committee approval. Patients were simulated using four-dimentional CT simulation with the assistance of CPAP lung inflation, then were treated using both IMRT and VMAT techniques. Radiation lung dose was optimized based on accepted lung dose constraints. Patients were followed for toxicity as well as local control and survival. Results: Three patients were treated with CPAP-based IMRT treatment. These patients tolerated the treatment and DVH constraints were able to be met. The comparison plans among the four VMAT arcs and the IMRT static field treatment were able to accomplish the treatment planning objectives without significant advantages with either technique. The treatment combined with CPAP reduced the normal lung dose in MPM patients with intact lungs. This technique is worthy of further investigation.
Collapse
Affiliation(s)
- Assaf Moore
- Department of Radiotherapy, Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.M.); (M.J.K.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Marc J. Kindler
- Department of Radiotherapy, Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.M.); (M.J.K.)
| | - Aaron Max Allen
- Department of Radiotherapy, Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.M.); (M.J.K.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-39377960
| |
Collapse
|
3
|
Patel NV, Yu NY, Koroulakis A, Diwanji T, Sawant A, Sio TT, Mohindra P. Proton therapy for thoracic malignancies: a review of oncologic outcomes. Expert Rev Anticancer Ther 2021; 21:177-191. [PMID: 33118427 DOI: 10.1080/14737140.2021.1844567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Radiotherapy is an integral component in the treatment of the majority of thoracic malignancies. By taking advantage of the steep dose fall-off characteristic of protons combined with modern optimization and delivery techniques, proton beam therapy (PBT) has emerged as a potential tool to improve oncologic outcomes while reducing toxicities from treatment.Areas covered: We review the physical properties and treatment techniques that form the basis of PBT as applicable for thoracic malignancies, including a brief discussion on the recent advances that show promise to enhance treatment planning and delivery. The dosimetric advantages and clinical outcomes of PBT are critically reviewed for each of the major thoracic malignancies, including lung cancer, esophageal cancer, mesothelioma, thymic cancer, and primary mediastinal lymphoma.Expert opinion: Despite clear dosimetric benefits with PBT in thoracic radiotherapy, the improvement in clinical outcomes remains to be seen. Nevertheless, with the incorporation of newer techniques, PBT remains a promising modality and ongoing randomized studies will clarify its role to determine which patients with thoracic malignancies receive the most benefit. Re-irradiation, advanced disease requiring high cardio-pulmonary irradiation volume and younger patients will likely derive maximum benefit with modern PBT.
Collapse
Affiliation(s)
- Nirav V Patel
- Department of Radiation Oncology, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Antony Koroulakis
- Department of Radiation Oncology, University of Maryland School of Medicine and Maryland Proton Treatment Center, Baltimore, MD, USA
| | - Tejan Diwanji
- Department of Radiation Oncology, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine and Maryland Proton Treatment Center, Baltimore, MD, USA
| | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Pranshu Mohindra
- Department of Radiation Oncology, University of Maryland School of Medicine and Maryland Proton Treatment Center, Baltimore, MD, USA
| |
Collapse
|
4
|
Lazarev S, Rosenzweig K, Samstein R, Salgado LR, Hasan S, Press RH, Sharma S, Powell CA, Hirsch FR, Simone CB. Where are we with proton beam therapy for thoracic malignancies? Current status and future perspectives. Lung Cancer 2020; 152:157-164. [PMID: 33421922 DOI: 10.1016/j.lungcan.2020.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/12/2020] [Accepted: 12/19/2020] [Indexed: 12/25/2022]
Abstract
Radiation therapy (RT) plays an important role in the curative treatment of a variety of thoracic malignancies. However, delivery of tumoricidal doses with conventional photon-based RT to thoracic tumors often presents unique challenges. Extraneous dose deposited along the entrance and exit paths of the photon beam increases the likelihood of significant acute and delayed toxicities in cardiac, pulmonary, and gastrointestinal structures. Furthermore, safe dose-escalation, delivery of concomitant systemic therapy, or reirradiation of a recurrent disease are frequently not feasible with photon RT. In contrast, protons have distinct physical properties that allow them to deposit a high irradiation dose in the target, while leaving a negligible exit dose in the adjacent organs at risk. Proton beam therapy (PBT), therefore, can reduce toxicities with similar antitumor effect or allow for dose escalation and enhanced antitumor effect with the same or even lower risk of adverse events, thus potentially improving the therapeutic ratio of the treatment. For thoracic malignancies, this favorable dose distribution can translate to decreases in treatment-related morbidities, provide more durable disease control, and potentially prolong survival. This review examines the evolving role of PBT in the treatment of thoracic malignancies and evaluates the data supporting its use.
Collapse
Affiliation(s)
- Stanislav Lazarev
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Kenneth Rosenzweig
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert Samstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lucas Resende Salgado
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | | | - Sonam Sharma
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Charles A Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fred R Hirsch
- Center for Thoracic Oncology, The Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | |
Collapse
|
5
|
Zeng J, Badiyan SN, Garces YI, Wong T, Zhang X, Simone CB, Chang JY, Knopf AC, Mori S, Iwata H, Meijers A, Li H, Bues M, Liu W, Schild SE, Rengan R. Consensus Statement on Proton Therapy in Mesothelioma. Pract Radiat Oncol 2020; 11:119-133. [PMID: 32461036 DOI: 10.1016/j.prro.2020.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/26/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Radiation therapy for mesothelioma remains challenging, as normal tissue toxicity limits the amount of radiation that can be safely delivered to the pleural surfaces, especially radiation dose to the contralateral lung. The physical properties of proton therapy result in better sparing of normal tissues when treating the pleura, both in the postpneumonectomy setting and the lung-intact setting. Compared with photon radiation, there are dramatic reductions in dose to the contralateral lung, heart, liver, kidneys, and stomach. However, the tissue heterogeneity in the thorax, organ motion, and potential for changing anatomy during the treatment course all present challenges to optimal irradiation with protons. METHODS The clinical data underlying proton therapy in mesothelioma are reviewed here, including indications, advantages, and limitations. RESULTS The Particle Therapy Cooperative Group Thoracic Subcommittee task group provides specific guidelines for the use of proton therapy for mesothelioma. CONCLUSIONS This consensus report can be used to guide clinical practice, insurance approval, and future research.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington.
| | - Shahed N Badiyan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Yolanda I Garces
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, Minnesota
| | - Tony Wong
- Seattle Cancer Care Alliance Proton Therapy Center, Seattle, Washington
| | - Xiaodong Zhang
- Department of Radiation Physics, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Joe Y Chang
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Antje C Knopf
- Division of Radiotherapy, University of Groningen, Groningen, Netherlands
| | - Shinichiro Mori
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
| | - Arturs Meijers
- Division of Radiotherapy, University of Groningen, Groningen, Netherlands
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, Maryland
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Ramesh Rengan
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | | |
Collapse
|
6
|
Nicolini F, Bocchini M, Bronte G, Delmonte A, Guidoboni M, Crinò L, Mazza M. Malignant Pleural Mesothelioma: State-of-the-Art on Current Therapies and Promises for the Future. Front Oncol 2020; 9:1519. [PMID: 32039010 PMCID: PMC6992646 DOI: 10.3389/fonc.2019.01519] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare, aggressive cancer of the pleural surface associated with asbestos exposure. The median survival of MPM patients is a mere 8-14 months, and there are few biomarkers and no cure available. It is hoped that, eventually, the incidence of MPM will drop and remain low and constant, given that most nations have banned the use of asbestos, but in the meantime, the incidence in Europe is still growing. The exact molecular mechanisms that explain the carcinogenicity of asbestos are not known. Standard therapeutic strategies for MPM include surgery, often coupled with chemotherapy and/or radiotherapy, in a small percentage of eligible patients and chemotherapy in tumors considered unresectable with or without adjuvant radiotherapy. In recent years, several new therapeutic avenues are being explored. These include angiogenesis inhibitors, synthetic lethal treatment, miRNA replacement, oncoviral therapies, and the fast-growing field of immunotherapy alone or in combination with chemotherapy. Of particular promise are the multiple options offered by immunotherapy: immune checkpoint inhibitors, tumor vaccines, and therapies taking advantage of tumor-specific antigens, such as specific therapeutic antibodies or advanced cell-based therapies exemplified by the CAR-T cells. This review comprehensively presents both old and new therapeutic options in MPM, focusing on the results of the numerous recent and on-going clinical trials in the field, including the latest data presented at international meetings (AACR, ASCO, and ESMO) this year, and concludes that more work has to be done in the framework of tailored therapies to identify reliable targets and novel biomarkers to impact MPM management.
Collapse
Affiliation(s)
- Fabio Nicolini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Martine Bocchini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giuseppe Bronte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Angelo Delmonte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Massimo Guidoboni
- Immunotherapy and Cell Therapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Lucio Crinò
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Massimiliano Mazza
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
7
|
Dosimetric Comparison of Lung-Sparing Radiation Therapy between Volumetric Arc Therapy and Helical Tomotherapy for Unresectable Malignant Pleural Mesothelioma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4568958. [PMID: 31930123 PMCID: PMC6942749 DOI: 10.1155/2019/4568958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Objective To compare volumetric arc therapy (VMAT) and helical tomotherapy (HT) plans in terms of dosimetric parameters in positron emission tomography- (PET-) computerized tomography- (CT-) based radiation therapy planning in unresectable malignant pleural mesothelioma (MPM). Methods CT and coregistered PET-CT data from seven patients with histologically-proven MPM were utilized for VMAT and HT plans. Target volumes and organs at risk (OARs) were delineated. The prescription doses for planning target volume 1 (PTV1) and PTV2 were 45.0 Gy and 54 Gy in 1.8 Gy/fr, respectively. Each technique was evaluated in terms of target volume coverage and OAR doses. Findings Although the maximum (p=0.001) and mean (p < 0.001) doses of PTV1, and PTV2 (p < 0.001 for maximum and p=0.001 for mean doses) favored the HT technique over VMAT, both techniques efficiently covered the target volumes. Additionally, HT also provided more homogeneous dose distribution (p < 0.001) and numerically lower doses received by most OARs, but again both rotational techniques were successful in keeping the OAR doses below the universally accepted limits. The major disadvantage of the HT technique was the requirement for longer treatment times (7.4 versus 2.5 minutes/fr; p < 0.001) to accomplish the intended treatment. Conclusion Results of this dosimetric comparison clearly demonstrated the possibility of safe hemithoracic irradiation of medically/technically unresectable MPM patients with either of the two rotational RT techniques, namely the VMAT and HT. Clinically, considering their poor prognosis, these promising findings may open a potential new window for curative treatment of unresectable MPM patients, if further confirmed by future clinical studies.
Collapse
|
8
|
Cardiotoxicity of mediastinal radiotherapy. Rep Pract Oncol Radiother 2019; 24:629-643. [PMID: 31719801 DOI: 10.1016/j.rpor.2019.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/21/2019] [Indexed: 12/16/2022] Open
Abstract
Aim To explore available recent literature related to cardiotoxicity following mediastinal radiation. Background Radiotherapy-related heart injury is well documented, with no apparent safety threshold dose. The number of long-term cancer survivors exposed to mediastinal radiotherapy at some point of their treatment is increasing. Heart dosimetric parameters are of great importance in developing a treatment plan, but few data are available regarding radiosensitivity and dose-volume constraints for specific heart structures. Materials and Methods In October 2018, we identified articles published after 1990 through a PubMed/MEDLINE database search. The authors examined rough search results and manuscripts not relevant for the topic were excluded. We extracted clinical outcomes following mediastinal radiotherapy of childhood cancers, lymphoma, medulloblastoma, thymic cancers and hematopoietic cell transplantation survivors and evaluated treatment planning data, whenever available. Results A total of 1311 manuscripts were identified in our first-round search. Of these manuscripts, only 115 articles, matching our selection criteria, were included. Conclusions Studies uniformly show a linear radiation dose-response relationship between mean absorbed dose to the heart (heart-Dmean) and the risk of dying as a result of cardiac disease, particularly when heart-Dmean exceeds 5 Gy. Limited data are available regarding dose-volume predictors for heart substructures and the risk of subsequent cardiac toxicity. An individual patient's cardiotoxicity risk can be modified with advanced treatment planning techniques, including deep inspiration breath hold. Proton therapy is currently showing advantages in improving treatment planning parameters when compared to advanced photon techniques in lymphoma, thymic malignancies, malignant mesothelioma and craniospinal irradiation.
Collapse
Key Words
- 2D-RT, two-dimensional radiotherapy
- 3D-CRT, three-dimensional conformal radiation therapy
- CI, confidence interval
- CSI, craniospinal irradiation
- CVD, Cardiovascular disease
- Cardiotoxicity
- Dmax, maximum absorbed dose in a specified volume
- Dmean, mean absorbed radiation dose in a specified volume
- Dose-volume predictors
- EQD2, equivalent dose in 2 Gy fractions
- G, grade
- Gy, Gray
- HR, hazard ratio
- HT, Helical tomotherapy
- IFRT, involved field radiotherapy
- IMRT, intensity modulated radiation therapy
- INRT, involved node radiotherapy
- ISRT, involved site radiotherapy
- LAD, left anterior descending artery
- Mediastinal radiotherapy
- Mediastinal tumours
- Mv, megavoltage
- NTCP, normal tissue complication probability
- Normal tissue complication probability
- OAR, organs at risk
- OR, odds ratio
- PTV, planning target volume
- RR, relative risks
- TBI, total body irradiation
- VMAT, volumetric modulated arc therapy
- Vx, receiving at last x Gy
Collapse
|
9
|
Gomez DR, Rimner A, Simone CB, Cho BCJ, de Perrot M, Adjei AA, Bueno R, Gill RR, Harpole DH, Hesdorffer M, Hirsch FR, Jackson AA, Pass HI, Rice DC, Rusch VW, Tsao AS, Yorke E, Rosenzweig K. The Use of Radiation Therapy for the Treatment of Malignant Pleural Mesothelioma: Expert Opinion from the National Cancer Institute Thoracic Malignancy Steering Committee, International Association for the Study of Lung Cancer, and Mesothelioma Applied Research Foundation. J Thorac Oncol 2019; 14:1172-1183. [PMID: 31125736 DOI: 10.1016/j.jtho.2019.03.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Detailed guidelines regarding the use of radiation therapy for malignant pleural mesothelioma (MPM) are currently lacking because of the rarity of the disease, the wide spectrum of clinical presentations, and the paucity of high-level data on individual treatment approaches. METHODS In March 2017, a multidisciplinary meeting of mesothelioma experts was cosponsored by the U.S. National Cancer Institute, International Association for the Study of Lung Cancer Research, and Mesothelioma Applied Research Foundation. Among the outcomes of this conference was the foundation of detailed, multidisciplinary consensus guidelines. RESULTS Here we present consensus recommendations on the use of radiation therapy for MPM in three discrete scenarios: (1) hemithoracic radiation therapy to be used before or after extrapleural pneumonectomy; (2) hemithoracic radiation to be used as an adjuvant to lung-sparing procedures (i.e., without pneumonectomy); and (3) palliative radiation therapy for focal symptoms caused by the disease. We discuss appropriate simulation techniques, treatment volumes, dose fractionation regimens, and normal tissue constraints. We also assess the role of particle beam therapy, specifically, proton beam therapy, for MPM. CONCLUSION The recommendations provided in this consensus statement should serve as important guidelines for developing future clinical trials of treatment approaches for MPM.
Collapse
Affiliation(s)
- Daniel R Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - B C John Cho
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Marc de Perrot
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Alex A Adjei
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Raphael Bueno
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ritu R Gill
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - David H Harpole
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | | | - Fred R Hirsch
- Department of Medicine, University of Colorado, Denver, Colorado; Department of Pathology, University of Colorado, Denver, Colorado
| | | | - Harvey I Pass
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York, New York
| | - David C Rice
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Valerie W Rusch
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anne S Tsao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kenneth Rosenzweig
- Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
10
|
Nelson DB, Rice DC, Mitchell KG, Tsao AS, Gomez DR, Sepesi B, Mehran RJ. Return to intended oncologic treatment after surgery for malignant pleural mesothelioma. J Thorac Cardiovasc Surg 2019; 158:924-929. [PMID: 31430846 DOI: 10.1016/j.jtcvs.2019.02.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Trimodality therapy may prolong survival for patients with resectable malignant pleural mesothelioma. However, many patients are unable to complete therapy. We sought to identify risk factors for failing to complete adjuvant intensity-modulated radiation therapy after cytoreduction for malignant pleural mesothelioma. METHODS We performed a single-institution review of those who received an extrapleural pneumonectomy or pleurectomy/decortication for malignant pleural mesothelioma from 2004 to 2017. Multivariable logistic regression was used to assess preoperative or intraoperative risk factors associated with failing to complete adjuvant intensity-modulated radiation therapy. RESULTS A total of 160 patients were identified, among whom 94 (59%) received an extrapleural pneumonectomy and 66 (41%) received a pleurectomy/decortication. Adjuvant intensity-modulated radiation therapy was completed among 105 patients (66%). Reasons for failing to complete adjuvant intensity-modulated radiation therapy included mortality (19), dose constraints (21), postoperative morbidity or delayed recovery (11), and refused or unknown status (4). On multivariable analysis, American Society of Anesthesiologists 3+ classification (P = .002) and smoking history (P = .022) were associated with failure to complete adjuvant intensity-modulated radiation therapy, whereas forced expiratory volume in 1 second 70% or less of predicted and pStage 4 (T4) were significant on univariable analysis only. Other factors, including extrapleural pneumonectomy or pleurectomy/decortication, margin status, age, and histology, were not associated with receiving adjuvant intensity-modulated radiation therapy. CONCLUSIONS Many patients are unable to complete adjuvant intensity-modulated radiation therapy after cytoreduction. Failure to complete adjuvant intensity-modulated radiation therapy was associated with worse preoperative comorbidity, but not the type of surgery or margin status.
Collapse
Affiliation(s)
- David B Nelson
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - David C Rice
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Kyle G Mitchell
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Anne S Tsao
- Department of Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Daniel R Gomez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Reza J Mehran
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Tex.
| |
Collapse
|
11
|
Radiation Therapy in Mesothelioma. Radiat Oncol 2019. [DOI: 10.1007/978-3-319-52619-5_36-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
12
|
Die Radiotherapie des Pleuramesothelioms – Klinische Praxisleitlinie der American Society of Clinical Oncology. Strahlenther Onkol 2018; 194:953-957. [DOI: 10.1007/s00066-018-1354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Tsao AS, Lindwasser OW, Adjei AA, Adusumilli PS, Beyers ML, Blumenthal GM, Bueno R, Burt BM, Carbone M, Dahlberg SE, de Perrot M, Fennell DA, Friedberg J, Gill RR, Gomez DR, Harpole DH, Hassan R, Hesdorffer M, Hirsch FR, Hmeljak J, Kindler HL, Korn EL, Liu G, Mansfield AS, Nowak AK, Pass HI, Peikert T, Rimner A, Robinson BWS, Rosenzweig KE, Rusch VW, Salgia R, Sepesi B, Simone CB, Sridhara R, Szlosarek P, Taioli E, Tsao MS, Yang H, Zauderer MG, Malik SM. Current and Future Management of Malignant Mesothelioma: A Consensus Report from the National Cancer Institute Thoracic Malignancy Steering Committee, International Association for the Study of Lung Cancer, and Mesothelioma Applied Research Foundation. J Thorac Oncol 2018; 13:1655-1667. [PMID: 30266660 DOI: 10.1016/j.jtho.2018.08.2036] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/10/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
Abstract
On March 28- 29, 2017, the National Cancer Institute (NCI) Thoracic Malignacy Steering Committee, International Association for the Study of Lung Cancer, and Mesothelioma Applied Research Foundation convened the NCI-International Association for the Study of Lung Cancer- Mesothelioma Applied Research Foundation Mesothelioma Clinical Trials Planning Meeting in Bethesda, Maryland. The goal of the meeting was to bring together lead academicians, clinicians, scientists, and the U.S. Food and Drug Administration to focus on the development of clinical trials for patients in whom malignant pleural mesothelioma has been diagnosed. In light of the discovery of new cancer targets affecting the clinical development of novel agents and immunotherapies in malignant mesothelioma, the objective of this meeting was to assemble a consensus on at least two or three practice-changing multimodality clinical trials to be conducted through NCI's National Clinical Trials Network.
Collapse
Affiliation(s)
- Anne S Tsao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - O Wolf Lindwasser
- Coordinating Center for Clinical Trials, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alex A Adjei
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Prasad S Adusumilli
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - Raphael Bueno
- Thoracic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Bryan M Burt
- Department of Surgery, Division of Thoracic Surgery, Baylor College of Medicine, Houston, Texas
| | | | - Suzanne E Dahlberg
- Department of Biostatistics, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Marc de Perrot
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dean A Fennell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom; University Hospitals of Leicester, Leicester, United Kingdom
| | - Joseph Friedberg
- Department of Thoracic Surgery, University of Maryland Cancer Center, Baltimore, Maryland
| | - Ritu R Gill
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Daniel R Gomez
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - David H Harpole
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University, Durham, North Carolina
| | - Raffit Hassan
- Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mary Hesdorffer
- Mesothelioma Applied Research Foundation, Alexandria, Virginia
| | - Fred R Hirsch
- University of Colorado Cancer Center, IASLC, Denver, Colorado
| | | | - Hedy L Kindler
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| | - Edward L Korn
- Biometric Research Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | - Anna K Nowak
- Medical School, University of Western Australia, Perth, Western Australia, Australia; National Center for Asbestos Related Diseases, University of Western Australia, Perth, Western Australia, Australia
| | - Harvey I Pass
- Department of Cardiothoracic Surgery, New York University, Langone Medical Center, New York, New York
| | - Tobias Peikert
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bruce W S Robinson
- National Centre for Asbestos Related Disease, University of Western Australia, Nedlands, Western Australia, Australia; Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Kenneth E Rosenzweig
- Department of Radiation Oncology, Mount Sinai Medical Center, New York, New York
| | - Valerie W Rusch
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, California
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland
| | | | - Peter Szlosarek
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Emanuela Taioli
- Epidemiology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ming-Sound Tsao
- Department of Pathology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology, Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Haining Yang
- Department of Surgery, Division of Thoracic Surgery, Baylor College of Medicine, Houston, Texas
| | - Marjorie G Zauderer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shakun M Malik
- Clinical Investigations Branch, Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
14
|
Fodor A, Broggi S, Incerti E, Dell'Oca I, Fiorino C, Samanes Gajate AM, Pasetti M, Cattaneo MG, Passoni P, Gianolli L, Calandrino R, Picchio M, Di Muzio N. Moderately Hypofractionated Helical IMRT, FDG-PET/CT-guided, for Progressive Malignant Pleural Mesothelioma in Patients With Intact Lungs. Clin Lung Cancer 2018; 20:e29-e38. [PMID: 30253920 DOI: 10.1016/j.cllc.2018.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/21/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The objective of this study was to present the outcomes of moderately hypofractionated helical intensity-modulated radiation therapy (HT) with/without simultaneous integrated boost (SIB) on fluorodeoxyglucose-positron emission tomography (FDG-PET) positive areas (gross tumor volume [GTV]-PET) for patients with progressive malignant pleural mesothelioma (MPM) after previous treatments. METHODS AND MATERIALS From May 2006 to April 2014, 51 patients with a median age of 68.8 years (range, 38.6-82 years) were treated. There were 41 men and 10 women; 43 epithelioid MPM and 8 sarcomatoid, involving the left pleura in 25 patients and the right pleura in 26 patients. The initial stage was: I, 11 patients; II, 14 patients; III, 17 patients; and IV, 9 patients. Chemotherapy was prescribed for 46 patients, for 6 cycles (range, 0-18 cycles). Eighteen patients had pleurectomy/decortication, and 33 had talc pleurodesis. FDG-PET was used for target identification. A median dose of 56 Gy/25 fractions was prescribed to the involved pleura, and SIB to 62.5 Gy to GTV-PET was added in 38 patients. RESULTS The median survival from diagnosis was 25.8 months (range, 8.4-99.0 months). One patient, treated with SIB, was alive at the October 2017 follow-up. Two cases of grade 5 radiation pneumonitis were registered. A GTV-PET ≤ 205 cc was predictive of late ≥ grade 2 lung toxicity, but also of better survival in stage III and IV disease: 5.9 versus 11.7 months (P = .04). A GTV-PET ≥ 473 cc was predictive of early death (P = .001). CONCLUSIONS Moderately hypofractionated, FDG-PET guided salvage HT in patients with progressive MPM after previous treatments showed acceptable toxicity and outcome results similar to adjuvant radiotherapy after pleurectomy/decortication, suggesting that the delay of radiotherapy is not detrimental to survival, and has the associated benefit of postponing inherent toxicity.
Collapse
Affiliation(s)
- Andrei Fodor
- Department of Radiotherapy, San Raffaele Scientific Institute, Milan, Italy.
| | - Sara Broggi
- Department of Medical Physics, San Raffaele Scientific Institute, Milan, Italy
| | - Elena Incerti
- Department of Nuclear Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Italo Dell'Oca
- Department of Radiotherapy, San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Fiorino
- Department of Medical Physics, San Raffaele Scientific Institute, Milan, Italy
| | | | - Marcella Pasetti
- Department of Radiotherapy, San Raffaele Scientific Institute, Milan, Italy
| | - Mauro G Cattaneo
- Department of Medical Physics, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Passoni
- Department of Radiotherapy, San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Gianolli
- Department of Nuclear Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Calandrino
- Department of Medical Physics, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Picchio
- Department of Nuclear Medicine, San Raffaele Scientific Institute, Milan, Italy; Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Nadia Di Muzio
- Department of Radiotherapy, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
15
|
Cramer G, Simone CB, Busch TM, Cengel KA. Adjuvant, neoadjuvant, and definitive radiation therapy for malignant pleural mesothelioma. J Thorac Dis 2018; 10:S2565-S2573. [PMID: 30206500 DOI: 10.21037/jtd.2018.07.65] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While ionizing radiotherapy (RT) can provide durable local control, the relative radiosensitivity of surrounding organs such as the lungs and heart and the distributed nature of the pleura limit the ability to safely deliver RT for patients with malignant pleural mesothelioma (MPM). Recent advances in the technological sophistication of RT planning and delivery devices have resulted in increased spatial control of irradiation dose that has extended the palliative and definitive applications of RT for patients with MPM. This review will outline the logistical, mechanistic and clinical basics of RT and the clinical trials supporting the use of RT in the multidisciplinary care of patients with MPM.
Collapse
Affiliation(s)
- Gwendolyn Cramer
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Theresa M Busch
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Keith A Cengel
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
16
|
Shaaban SG, Verma V, Choi JI, Shabason J, Sharma S, Glass E, Grover S, Badiyan SN, Simone CB. Utilization of Intensity-Modulated Radiation Therapy for Malignant Pleural Mesothelioma in the United States. Clin Lung Cancer 2018; 19:e685-e692. [PMID: 29803576 DOI: 10.1016/j.cllc.2018.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/04/2018] [Accepted: 04/26/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although postoperative radiotherapy (RT) for malignant pleural mesothelioma (MPM) has historically been delivered using 3-dimensional conformal RT (3DCRT) techniques, multiple reports show noteworthy safety and efficacy of the more advanced intensity-modulated RT (IMRT). To our knowledge, this is the only known study to evaluate national practice patterns of IMRT utilization for MPM. MATERIALS AND METHODS The National Cancer Data Base was queried for newly-diagnosed MPM patients who underwent definitive surgery (extrapleural pneumonectomy [EPP] or extended pleurectomy/decortication [P/D]) followed by adjuvant RT. Patients with metastatic disease, non-EPP or P/D surgical techniques, and lack of RT receipt (or without specified RT technique) were excluded. Statistics included multivariable logistic regression, Kaplan-Meier overall survival (OS) analysis, and Cox proportional hazards modeling. RESULTS Overall, 286 patients met criteria (181 [63%] IMRT and 105 [37%] 3DCRT). Temporal trends revealed that although 3DCRT was more common at initial time periods, IMRT utilization rose from 2004 to 2007 and stayed as a relatively constant majority thereafter. This was also present when substratifying the cohort according to EPP versus P/D approaches. IMRT was more often delivered at academic centers, along with institutions in the Southern United States, whereas 3DCRT was more frequently utilized in community facilities and in the Northeast (P ≤ .05 for all). RT technique did not affect OS (P > .05 for all comparisons). CONCLUSION In the United States, IMRT is now the most commonly utilized adjuvant RT technique for MPM. Facility and regional differences might associate with IMRT delivery. The findings of this investigation have implications for insurance coverage, clinical referral patterns, and ongoing and future prospective trial design.
Collapse
Affiliation(s)
- Sherif G Shaaban
- Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Vivek Verma
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE
| | - J Isabelle Choi
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD
| | - Jacob Shabason
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Sonam Sharma
- Department of Radiation Oncology, The Mount Sinai Hospital, New York, NY
| | - Erica Glass
- California Protons Cancer Therapy Center, San Diego, CA
| | - Surbhi Grover
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | | | | |
Collapse
|
17
|
Badiyan SN, Molitoris JK, Zhu M, Glass E, Diwanji T, Simone CB. Proton beam therapy for malignant pleural mesothelioma. Transl Lung Cancer Res 2018; 7:189-198. [PMID: 29876318 DOI: 10.21037/tlcr.2018.04.07] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a rare disease with a poor prognosis. Surgical techniques have made incremental improvements over the last few decades while new systemic therapies, including immunotherapies, show promise as potentially effective novel therapies. Radiation therapy has historically been used only in the palliative setting or as adjuvant therapy after extrapleural pneumonectomy, but recent advances in treatment planning and delivery techniques utilizing intensity-modulated radiation therapy and more recently pencil-beam scanning (PBS) proton therapy, have enabled the delivery of radiation therapy as neoadjuvant or adjuvant therapy after an extended pleurectomy and decortication or as definitive therapy for patients with recurrent or unresectable disease. In particular, PBS proton therapy has the potential to deliver high doses of irradiation to the entire effected pleura while significantly reducing doses to nearby organs at risk. This article describes the evolution of radiation therapy for MPM and details how whole-pleural PBS proton therapy is delivered to patients at the Maryland Proton Treatment Center.
Collapse
Affiliation(s)
| | | | - Mingyao Zhu
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erica Glass
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tejan Diwanji
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
18
|
Kindler HL, Ismaila N, Armato SG, Bueno R, Hesdorffer M, Jahan T, Jones CM, Miettinen M, Pass H, Rimner A, Rusch V, Sterman D, Thomas A, Hassan R. Treatment of Malignant Pleural Mesothelioma: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2018; 36:1343-1373. [PMID: 29346042 DOI: 10.1200/jco.2017.76.6394] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To provide evidence-based recommendations to practicing physicians and others on the management of malignant pleural mesothelioma. Methods ASCO convened an Expert Panel of medical oncology, thoracic surgery, radiation oncology, pulmonary, pathology, imaging, and advocacy experts to conduct a literature search, which included systematic reviews, meta-analyses, randomized controlled trials, and prospective and retrospective comparative observational studies published from 1990 through 2017. Outcomes of interest included survival, disease-free or recurrence-free survival, and quality of life. Expert Panel members used available evidence and informal consensus to develop evidence-based guideline recommendations. Results The literature search identified 222 relevant studies to inform the evidence base for this guideline. Recommendations Evidence-based recommendations were developed for diagnosis, staging, chemotherapy, surgical cytoreduction, radiation therapy, and multimodality therapy in patients with malignant pleural mesothelioma. Additional information is available at www.asco.org/thoracic-cancer-guidelines and www.asco.org/guidelineswiki .
Collapse
Affiliation(s)
- Hedy L Kindler
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nofisat Ismaila
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Samuel G Armato
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Raphael Bueno
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mary Hesdorffer
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Thierry Jahan
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Clyde Michael Jones
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Markku Miettinen
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Harvey Pass
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andreas Rimner
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Valerie Rusch
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel Sterman
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anish Thomas
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Raffit Hassan
- Hedy L. Kindler and Samuel G. Armato III, The University of Chicago, Chicago, IL; Nofisat Ismaila, American Society of Clinical Oncology; Mary Hesdorffer, Mesothelioma Applied Research Foundation, Alexandria, VA; Raphael Bueno, Harvard Medical School, Boston, MA; Thierry Jahan, University of California San Francisco, San Francisco, CA; Clyde Michael Jones, Baptist Cancer Center Physicians Foundation, Memphis, TN; Markku Miettinen, Anish Thomas and Raffit Hassan, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Harvey Pass and Daniel Sterman, New York University Langone Medical Center; and Andreas Rimner and Valerie Rusch, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
19
|
Verma V, Ahern CA, Berlind CG, Lindsay WD, Sharma S, Shabason J, Culligan MJ, Grover S, Friedberg JS, Simone CB. National Cancer Database Report on Pneumonectomy Versus Lung-Sparing Surgery for Malignant Pleural Mesothelioma. J Thorac Oncol 2017; 12:1704-1714. [DOI: 10.1016/j.jtho.2017.08.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022]
|
20
|
de Perrot M, Wu L, Wu M, Cho BCJ. Radiotherapy for the treatment of malignant pleural mesothelioma. Lancet Oncol 2017; 18:e532-e542. [PMID: 28884702 DOI: 10.1016/s1470-2045(17)30459-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022]
Abstract
Malignant pleural mesothelioma is an aggressive disease that continues to be associated with poor outcomes. Although, traditionally this disease is considered to be resistant to radiotherapy, more recent evidence suggests that radiotherapy can produce positive outcomes. Over the past 15 years, the development of new, highly conformal radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), has enabled investigators to optimise the delivery of high-dose radiotherapy to the whole of the hemithorax. Prospective single-arm trials have shown that the median survival of patients who have completed high-dose hemithoracic radiotherapy after extrapleural pneumonectomy could reach 23·9-39·4 months independent of the chemotherapeutic response, suggesting that IMRT could potentially have an intrinsic benefit to this subset of patients. These observations have led to a change in practice, with the introduction of adjuvant pleural IMRT after pleurectomy-decortication and the development of induction-accelerated hemithoracic IMRT followed by extrapleural pneumonectomy. This Review focuses on recent observations on the role of radiotherapy in the treatment of malignant pleural mesothelioma, with particular emphasis on the results of clinical trials that evaluate the role of high-dose hemithoracic radiotherapy.
Collapse
Affiliation(s)
- Marc de Perrot
- Division of Thoracic Surgery, Princess Margaret Cancer Centre and Toronto General Hospital, University Health Network, University of Toronto, ON, Canada.
| | - Licun Wu
- Latner Thoracic Surgery Laboratories, Princess Margaret Cancer Centre and Toronto General Hospital, University Health Network, University of Toronto, ON, Canada
| | - Matthew Wu
- Latner Thoracic Surgery Laboratories, Princess Margaret Cancer Centre and Toronto General Hospital, University Health Network, University of Toronto, ON, Canada
| | - B C John Cho
- Department of Radiation Oncology, Princess Margaret Cancer Centre and Toronto General Hospital, University Health Network, University of Toronto, ON, Canada
| |
Collapse
|
21
|
Lee H, Zeng J, Bowen SR, Rengan R. Proton Therapy for Malignant Pleural Mesothelioma: A Three Case Series Describing the Clinical and Dosimetric Advantages of Proton-Based Therapy. Cureus 2017; 9:e1705. [PMID: 29159011 PMCID: PMC5690429 DOI: 10.7759/cureus.1705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a malignancy of the pleural cavity that typically presents at an advanced stage. Due to its large, circumferential clinical target volume (CTV) and proximity to major structures, including the heart and contralateral lung, delivering hemithoracic intensity-modulated radiotherapy (IMRT) with photon therapy to achieve loco-regional control following macroscopic complete resection is challenging. Intensity-modulated proton therapy (IMPT) has been shown to be a method for achieving higher therapeutic doses while limiting exposure to organs at risk (OARs), but patient outcomes after treatment have yet to be reported. We present three patients who received IMPT to 54 Gy after extrapleural pneumonectomy (EPP), with two patients receiving boosts to 66 and 60 Gy. All three tolerated treatment well and received doses to OARs markedly lower than those seen in comparison volumetric-modulated arc therapy (VMAT) IMRT photon plans. Radiation pneumonitis, a highly morbid and potentially fatal toxicity in patients receiving thoracic radiotherapy, was not observed even with boost treatments. In practice, IMPT appears to match dosimetric predictions as a feasible and safer alternative to photon IMRT-based radiotherapy.
Collapse
Affiliation(s)
- Howard Lee
- School of Medicine, Duke University School of Medicine
| | - Jing Zeng
- Radiation Oncology, University of Washington School of Medicine
| | - Stephen R Bowen
- Radiation Oncology, University of Washington School of Medicine
| | - Ramesh Rengan
- Radiation Oncology, University of Washington School of Medicine
| |
Collapse
|
22
|
Vogel J, Lin L, Simone CB, Berman AT. Risk of major cardiac events following adjuvant proton versus photon radiation therapy for patients with thymic malignancies. Acta Oncol 2017; 56:1060-1064. [PMID: 28338373 DOI: 10.1080/0284186x.2017.1302097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND While often managed with surgery alone, patients with thymic malignancies with high-risk features may benefit from adjuvant radiation therapy but are at risk for late toxicities. Previously, the risk of major cardiac events (MCEs) was reported to increase by 7% per one Gray (Gy) to the heart. In this study, we compare dose to organs at risk (OARs) with intensity-modulated (IMRT) versus proton beam therapy (PBT). We hypothesize a decrease risk of predicted MCEs with PBT. MATERIAL AND METHODS Patients requiring adjuvant therapy for thymic malignancies were treated with double scattered proton beam therapy (DS-PBT). Clinical backup IMRT plans were generated. Predicted MCEs were calculated based on median dose to the heart. A Wilcoxon rank sum test was used for statistical comparisons. RESULTS Twenty-two consecutive patients were evaluated. DS-PBT resulted in statistically significant decreases in dose to the heart, lungs, left ventricle, esophagus, and spinal cord (all p ≤ .01). The increase in risk of MCEs from 0 to ≥20 years was lower with PBT (74% versus 135%, p = .04). DISCUSSION DS-PBT results in decreased dose to OARs and may reduce the risk of MCEs compared with IMRT. Long-term follow-up is required to assess for clinical benefit from DS-PBT.
Collapse
Affiliation(s)
- Jennifer Vogel
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Liyong Lin
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Charles B. Simone
- Department of Radiation Oncology, University of Maryland Medical Center, Maryland Proton Treatment Center, Baltimore, MD, USA
| | - Abigail T. Berman
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Yorke ED, Jackson A, Kuo LC, Ojo A, Panchoo K, Adusumilli P, Zauderer MG, Rusch VW, Shepherd A, Rimner A. Heart Dosimetry is Correlated With Risk of Radiation Pneumonitis After Lung-Sparing Hemithoracic Pleural Intensity Modulated Radiation Therapy for Malignant Pleural Mesothelioma. Int J Radiat Oncol Biol Phys 2017; 99:61-69. [PMID: 28816162 DOI: 10.1016/j.ijrobp.2017.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/06/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE To determine clinically helpful dose-volume and clinical metrics correlating with symptomatic radiation pneumonitis (RP) in malignant pleural mesothelioma (MPM) patients with 2 lungs treated with hemithoracic intensity modulated pleural radiation therapy (IMPRINT). METHODS AND MATERIALS Treatment plans and resulting normal organ dose-volume histograms of 103 consecutive MPM patients treated with IMPRINT (February 2005 to January 2015) to the highest dose ≤50.4 Gy satisfying departmental normal tissue constraints were uniformly recalculated. Patient records provided maximum RP grade (Common Terminology Criteria for Toxicity and Adverse Event version 4.0) and clinical and demographic information. Correlations analyzed with the Cox model were grade ≥2 RP (RP2+) and grade ≥3 RP (RP3+) with clinical variables, with volumes of planning target volume (PTV) and PTV-lung overlap and with mean dose, percent volume receiving dose D (VD), highest dose encompassing % volume V, (DV), and heart, total, ipsilateral, and contralateral lung volumes. RESULTS Twenty-seven patients had RP2+ (14 with RP3+). The median prescription dose was 46.8 Gy (39.6-50.4 Gy, 1.8 Gy/fraction). The median age was 67.6 years (range, 42-83 years). There were 79 men, 40 never-smokers, and 44 with left-sided MPM. There were no significant (P≤.05) correlations with clinical variables, prescription dose, total lung dose-volume metrics, and PTV-lung overlap volume. Dose-volume correlations for heart were RP2+ with VD (35 ≤ D ≤ 47 Gy, V43 strongest at P=.003), RP3+ with VD (31 ≤ D ≤ 45 Gy), RP2+ with DV (5 ≤ V ≤ 30%), RP3+ with DV (15 ≤ V ≤ 35%), and mean dose. Significant for ipsilateral lung were RP2+ with VD (38 ≤ D ≤ 44 Gy), RP3+ with V41, RP2+ and RP3+ with minimum dose, and for contralateral lung, RP2+ with maximum dose. Correlation of PTV with RP2+ was strong (P<.001) and also significant with RP3+. CONCLUSIONS Heart dose correlated strongly with symptomatic RP in this large cohort of MPM patients with 2 lungs treated with IMPRINT. Planning constraints to reduce future heart doses are suggested.
Collapse
Affiliation(s)
- Ellen D Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Li Cheng Kuo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anthonia Ojo
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kelly Panchoo
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prasad Adusumilli
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marjorie G Zauderer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Valerie W Rusch
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Annemarie Shepherd
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
24
|
Simone CB, Busch TM, Cengel KA. Radiotherapy and Photodynamic Therapy for Malignant Pleural Mesothelioma. ASBESTOS AND MESOTHELIOMA 2017. [DOI: 10.1007/978-3-319-53560-9_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Liao L, Lim GJ, Li Y, Yu J, Sahoo N, Li H, Gillin M, Zhu XR, Mahajan A, Frank SJ, Grosshans DR, Nguyen QN, Gomez D, Zhang X. Robust Optimization for Intensity Modulated Proton Therapy Plans with Multi-Isocenter Large Fields. Int J Part Ther 2016; 3:305-311. [PMID: 31772982 DOI: 10.14338/ijpt-16-00012.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/10/2016] [Indexed: 12/27/2022] Open
Abstract
We have developed a robust optimization approach for intensity modulated proton therapy treatment plans with multi-isocenter large fields. The method creates a low-gradient field dose in the junction regions to mitigate the impact caused by misalignment errors and is more efficient than the conventional junction shifting technique.
Collapse
Affiliation(s)
- Li Liao
- Department of Industrial Engineering, The University of Houston, Houston, TX, USA
| | - Gino J Lim
- Department of Industrial Engineering, The University of Houston, Houston, TX, USA
| | - Yupeng Li
- Applied Research, Varian Medical Systems, Palo Alto, CA, USA
| | - Juan Yu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Maryland Proton Treatment Center, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Narayan Sahoo
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heng Li
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Gillin
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - X Ronald Zhu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anita Mahajan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David R Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Gomez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaodong Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
26
|
Doyen J, Bondiau PY, Benezery K, Thariat J, Vidal M, Gérard A, Hérault J, Carrie C, Hannoun-Lévi JM. [Indications and results for protontherapy in cancer treatments]. Cancer Radiother 2016; 20:513-8. [PMID: 27614508 DOI: 10.1016/j.canrad.2016.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 06/10/2016] [Indexed: 12/16/2022]
Abstract
Purpose was to summarize results for proton therapy in cancer treatment. A systematic review has been done by selecting studies on the website www.pubmed.com (Medline) and using the following keywords: proton therapy, radiation therapy, cancer, chordoma, chondrosarcoma, uveal melanoma, retinoblastoma, meningioma, glioma, neurinoma, pituitary adenoma, medulloblastoma, ependymoma, craniopharyngioma and nasal cavity. There are several retrospective studies reporting results for proton therapy in cancer treatments in the following indications: ocular tumors, nasal tumors, skull-based tumors, pediatric tumors. There is no prospective study except one phase II trial in medulloblastoma. The use of proton therapy for these indications is due to dosimetric advantages offering better tumor coverage and organ at risk sparing in comparison with photon therapy. Clinical results are historically at least as efficient as photon therapy with a better toxicity profile in pediatric tumors (cognitive and endocrine functions, radiation-induced cancer) and a better tumoral control in tumors of the nasal cavity. Clinical advantages of proton therapy counterbalance its cost especially in pediatric tumors. Proton therapy could be used in other types of cancer. Proton therapy showed good outcome in ocular, nasal tumors, pediatric, skull-based and paraspinal tumors. Because of some dosimetric advantages, proton therapy could be proposed for other indications in cancer treatments.
Collapse
Affiliation(s)
- J Doyen
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France.
| | - P-Y Bondiau
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France
| | - K Benezery
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France
| | - J Thariat
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France
| | - M Vidal
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France
| | - A Gérard
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France
| | - J Hérault
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France
| | - C Carrie
- Centre Léon-Bérard, radiation oncology, 28, rue Laennec, 69008 Lyon, France
| | - J-M Hannoun-Lévi
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France
| |
Collapse
|
27
|
Doyen J, Falk AT, Floquet V, Hérault J, Hannoun-Lévi JM. Proton beams in cancer treatments: Clinical outcomes and dosimetric comparisons with photon therapy. Cancer Treat Rev 2016; 43:104-12. [PMID: 26827698 DOI: 10.1016/j.ctrv.2015.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/24/2015] [Accepted: 12/29/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE To review current evidence of the role of proton therapy (PT) in other tumors than skull base, sinusal/parasinusal, spinal and pediatric tumors; to determine medico-economic aspects raised by PT. MATERIAL AND METHODS A systematic review on Medline was performed with the following keywords: proton therapy, proton beam, protontherapy, cancer; publications with comparison between PT and photon-therapy were also selected. RESULTS In silico studies have shown superiority (better dose delivery to the target and/or to organs at risk) of PT toward photon-therapy in most of thoracic and abdominal malignant tumors. Potential benefits of PT could be: reduction of toxicities (including radiation-induced cancer), increase of tumor control through a dose-escalation approach, hypofractionation. Cost of treatment is always cited as an issue which actually can be managed by a precise patient selection making PT a cost-effective procedure. Comparison plan with photon therapy may be useful to determine the dosimetric and clinical advantages of PT (Normal Tissue Complications Probability). CONCLUSION PT may be associated with a great advantage compared to the best photon-therapies in various types of cancers. Accumulation of clinical data is on-going and will challenge the in silico data analysis. Some indications are associated with strong superiority of PT and may be discussed as a new standard within prospective observational studies.
Collapse
Affiliation(s)
- Jérôme Doyen
- Department of Radiation Oncology, Antoine Lacassagne Cancer Center, University of Nice-Sophia, Nice, France
| | - Alexander Tuan Falk
- Department of Radiation Oncology, Antoine Lacassagne Cancer Center, University of Nice-Sophia, Nice, France
| | - Vincent Floquet
- Department of Radiation Oncology, Antoine Lacassagne Cancer Center, University of Nice-Sophia, Nice, France
| | - Joël Hérault
- Department of Radiation Oncology, Antoine Lacassagne Cancer Center, University of Nice-Sophia, Nice, France
| | - Jean-Michel Hannoun-Lévi
- Department of Radiation Oncology, Antoine Lacassagne Cancer Center, University of Nice-Sophia, Nice, France.
| |
Collapse
|
28
|
Shaikh F, Rimner A. Optimizing hemithoracic pleural intensity-modulated radiation therapy for malignant pleural mesothelioma. Lung Cancer Manag 2015. [DOI: 10.2217/lmt.15.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The treatment of malignant pleural mesothelioma (MPM) remains challenging. Optimal management for resectable patients involves an aggressive approach, frequently using trimodality therapy. Historically, poor tumor control and profound pulmonary toxicity prevented conventional radiation therapy from being widely used. The advent of intensity-modulated radiation therapy was a major development in the delivery of radiation for MPM in the adjuvant setting, improving target coverage and dose homogeneity while maintaining acceptable toxicity profiles. Nevertheless, there remains a significant risk of severe pulmonary toxicity, ameliorated by careful target delineation, treatment planning and proactive toxicity management. Innovative technology, including arc therapy, simultaneous integrated boosts and proton therapy as well as neodjuvant delivery of radiation followed by pneumonectomy are being actively investigated to improve outcomes in the treatment of MPM.
Collapse
Affiliation(s)
- Fauzia Shaikh
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., NY 10065, USA
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., NY 10065, USA
| |
Collapse
|
29
|
Kishan AU, Cameron RB, Wang PC, Alexander S, Qi SX, Low DA, Kupelian PA, Steinberg ML, Lee JM, Selch MT, Lee P. Tomotherapy improves local control and changes failure patterns in locally advanced malignant pleural mesothelioma. Pract Radiat Oncol 2015; 5:366-73. [PMID: 26432677 DOI: 10.1016/j.prro.2015.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/17/2015] [Accepted: 07/30/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE The purpose of the study was to determine whether intensity modulated radiation therapy delivered via helical tomotherapy improves local control (LC) after pleurectomy/decortication (P/D) for malignant pleural mesothelioma compared with 3-dimensional conformal radiation therapy (3D-CRT). METHODS AND MATERIALS Forty-five consecutive patients were treated with adjuvant radiation to 45 Gy in 1.8 Gy fractions after P/D between 2006 and 2014; 23 received 3D-CRT, and 22 received tomotherapy. Kaplan-Meier analysis was used to calculate overall survival, time to in-field or local failure (LF), and time to out-of-field failure. The Student t test and Fisher exact test were used to detect between-group differences. RESULTS Median follow-up time was 19.4 months and 12.7 months for the 3D-CRT and tomotherapy groups, respectively. Eighty-two percent of patients had T3/T4 disease, and 64% had positive nodes; 17.4% and 41% of patients in the 3D-CRT and tomotherapy groups had nonepithelioid histology, respectively. Mean planning target volume dose, percentage of planning target volume receiving 100% of the prescription dose, and lung doses were significantly greater with tomotherapy (P < .05), but toxicity rates (including radiation pneumonitis rates) were equivalent. LC was significantly improved with tomotherapy on Kaplan-Meier analysis with outcomes censored at 2 years (P < .05); uncensored, this became a trend (P = .06). Median time to LF was 19 months with tomotherapy and 10.9 months in 3D-CRT (the latter interval being less than the median follow-up in the tomotherapy group). On univariate analysis, treatment modality was the only significant predictor of LC (P < .05). Isolated LF was significantly more frequent with 3D-CRT (P < .05). Conversely, isolated out-of-field failure was significantly more frequent with tomotherapy (P < .05). Overall survival and out-of-field control were not significantly different. CONCLUSION Tomotherapy after P/D for malignant pleural mesothelioma is associated with improved target coverage that translates into improved LC compared with 3D-CRT. This is related to a change in failure patterns, with isolated LF being more common in the 3D-CRT group and isolated out-of-field failures predominating in the tomotherapy group.
Collapse
Affiliation(s)
- Amar U Kishan
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Robert B Cameron
- Division of Thoracic Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Pin-Chieh Wang
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Sherri Alexander
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Sharon X Qi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Daniel A Low
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Patrick A Kupelian
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Michael L Steinberg
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jay M Lee
- Division of Thoracic Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Michael T Selch
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Percy Lee
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|