1
|
Liu KX, Haas-Kogan DA, Elhalawani H. Radiotherapy for Primary Pediatric Central Nervous System Malignancies: Current Treatment Paradigms and Future Directions. Pediatr Neurosurg 2023; 58:356-366. [PMID: 37703864 DOI: 10.1159/000533777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Central nervous system tumors are the most common solid tumors in childhood. Treatment paradigms for pediatric central nervous system malignancies depend on elements including tumor histology, age of patient, and stage of disease. Radiotherapy is an important modality of treatment for many pediatric central nervous system malignancies. SUMMARY While radiation contributes to excellent overall survival rates for many patients, radiation also carries significant risks of long-term side effects including neurocognitive decline, hearing loss, growth impairment, neuroendocrine dysfunction, strokes, and secondary malignancies. In recent decades, clinical trials have demonstrated that with better imaging and staging along with more sophisticated radiation planning and treatment set-up verification, smaller treatment volumes can be utilized without decrement in survival. Furthermore, the development of intensity-modulated radiotherapy and proton-beam radiotherapy has greatly improved conformality of radiation. KEY MESSAGES Recent changes in radiation treatment paradigms have decreased risks of short- and long-term toxicity for common histologies and in different age groups. Future studies will continue to develop novel radiation regimens to improve outcomes in aggressive central nervous system tumors, integrate molecular subtypes to tailor radiation treatment, and decrease radiation-associated toxicity for long-term survivors.
Collapse
Affiliation(s)
- Kevin X Liu
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hesham Elhalawani
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Ehret F, Kaul D, Budach V, Lohkamp LN. Applications of Frameless Image-Guided Robotic Stereotactic Radiotherapy and Radiosurgery in Pediatric Neuro-Oncology: A Systematic Review. Cancers (Basel) 2022; 14:cancers14041085. [PMID: 35205834 PMCID: PMC8869944 DOI: 10.3390/cancers14041085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND CyberKnife-based robotic radiosurgery (RRS) is a widely used treatment modality for various benign and malignant tumors of the central nervous system (CNS) in adults due to its high precision, favorable safety profile, and efficacy. Although RRS is emerging in pediatric neuro-oncology, scientific evidence for treatment indications, treatment parameters, and patient outcomes is scarce. This systematic review summarizes the current experience and evidence for RRS and robotic stereotactic radiotherapy (RSRT) in pediatric neuro-oncology. METHODS We performed a systematic review based on the databases Ovid Medline, Embase, Cochrane Library, and PubMed to identify studies and published articles reporting on RRS and RSRT treatments in pediatric neuro-oncology. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were applied herein. Articles were included if they described the application of RRS and RSRT in pediatric neuro-oncological patients. The quality of the articles was assessed based on their evidence level and their risk for bias using the original as well as an adapted version of the Newcastle Ottawa Quality Assessment Scale (NOS). Only articles published until 1 August 2021, were included. RESULTS A total of 23 articles were included after final review and removal of duplicates. Articles reported on a broad variety of CNS entities with various treatment indications. A majority of publications lacked substantial sample sizes and a prospective study design. Several reports included adult patients, thereby limiting the possibility of data extraction and analysis of pediatric patients. RRS and RSRT were mostly used in the setting of adjuvant, palliative, and salvage treatments with decent local control rates and acceptable short-to-intermediate-term toxicity. However, follow-up durations were limited. The evidence level was IV for all studies; the NOS score ranged between four and six, while the overall risk of bias was moderate to low. CONCLUSION Publications on RRS and RSRT and their application in pediatric neuro-oncology are rare and lack high-quality evidence with respect to entity-related treatment standards and long-term outcomes. The limited data suggest that RRS and RSRT could be efficient treatment modalities, especially for children who are unsuitable for surgical interventions, suffer from tumor recurrences, or require palliative treatments. Nevertheless, the potential short-term and long-term adverse events must be kept in mind when choosing such a treatment. Prospective studies are necessary to determine the actual utility of RRS and RSRT in pediatric neuro-oncology.
Collapse
Affiliation(s)
- Felix Ehret
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353 Berlin, Germany; (D.K.); (V.B.)
- European Radiosurgery Center, 81377 Munich, Germany
- Correspondence:
| | - David Kaul
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353 Berlin, Germany; (D.K.); (V.B.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité CyberKnife Center, 13353 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Volker Budach
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353 Berlin, Germany; (D.K.); (V.B.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité CyberKnife Center, 13353 Berlin, Germany
| | - Laura-Nanna Lohkamp
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON M5T 2S8, Canada;
| |
Collapse
|
3
|
Yu X, Christ SM, Liu R, Wang Y, Hu C, Feng B, Mahadevan A, Kasper EM. Evaluation of Long-Term Outcomes and Toxicity After Stereotactic Phosphorus-32-Based Intracavitary Brachytherapy in Patients With Cystic Craniopharyngioma. Int J Radiat Oncol Biol Phys 2021; 111:773-784. [PMID: 34058257 DOI: 10.1016/j.ijrobp.2021.05.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/03/2021] [Accepted: 05/20/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Interstitial brachytherapy based on phosphorus-32 (P-32) has an established role as a minimally invasive treatment modality for patients with cystic craniopharyngioma. However, reporting on long-term outcomes with toxicity profiles for large cohorts is lacking in the literature. The purpose of this study is therefore to evaluate the long-term visual, endocrinal, and neurocognitive functions in what is the largest patient series having received this treatment to date. METHODS AND MATERIALS We retrospectively evaluated 90 patients with cystic craniopharyngiomas who were treated with stereotactic intracavitary brachytherapy between 1998 and 2010. Colloidal activity of injected radioisotope P-32 was based on an even distribution within the tumor. After treatment, patients were followed-up for a minimum of 5 years and over a mean of 121 months (60-192 months) to assess radiographic and clinical responses. RESULTS The 90 patients included in our study cohort underwent a total of 108 stereotactic surgical procedures for 129 craniopharyngioma-related cysts. Of the included tumors, 65 (72.2%) were associated with a single cyst, 15 (16.7%) were associated with 2 cysts, and 10 (11.1%) tumors had developed septations with 3 to 4 cysts. Stereotactic cyst puncture and content aspiration were used to drain a mean cyst fluid volume of 21.4 mL (1.0-55.0 mL). Each cyst was then instilled for interstitial brachytherapy with colloidal P-32 solution. Based on radiographic follow-up assessments, 56 cysts (43.4%) showed resolution and/or nonrecurrence, which was classified as a complete response to treatment; 47 cysts (36.4%) showed a partial response; and 5 cysts (3.9%) displayed a stable appearance. Treatment resulted in immediate and clinically significant vision improvement in 54 of 63 (86%) symptomatic patients, and this improvement was maintained. Progression-free survival rates at 5 and 10 years were 95.5% and 84.4%, respectively. CONCLUSIONS P-32-based interstitial brachytherapy can play an effective role in managing patients with cystic craniopharyngiomas. It can be considered a valid alternative to surgery in select patients with a favorable toxicity profile and long-term clinical outcomes.
Collapse
Affiliation(s)
- Xin Yu
- Department of Neurosurgery, People's Liberation Army General Hospital, Beijing, China
| | - Sebastian M Christ
- Department of Radiation Oncology with Competence Center for Palliative Care, University Hospital Zurich, Zurich, Switzerland
| | - Rui Liu
- Department of Neurosurgery, People's Liberation Army General Hospital, Beijing, China
| | - Yaming Wang
- Department of Neurosurgery, People's Liberation Army General Hospital, Beijing, China
| | - Chenhao Hu
- Department of Neurosurgery, People's Liberation Army General Hospital, Beijing, China
| | - Bo Feng
- Department of Biostatistics, PLA General Hospital, Beijing, China
| | - Anand Mahadevan
- Department of Radiation Oncology, Geisinger Health Care, Danville, Pennsylvania
| | - Ekkehard M Kasper
- Department of Radiation Oncology, Geisinger Health Care, Danville, Pennsylvania; Division of Neurosurgery, McMaster University and Hamilton General Hospital, Hamilton, Ontario, Canada.
| |
Collapse
|
4
|
Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, Colak O, Ozcan F, Gundem E, Elcim Y, Dirican B, Beyzadeoglu M. Concise review of stereotactic irradiation for pediatric glial neoplasms: Current concepts and future directions. World J Methodol 2021; 11:61-74. [PMID: 34026579 PMCID: PMC8127424 DOI: 10.5662/wjm.v11.i3.61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Brain tumors, which are among the most common solid tumors in childhood, remain a leading cause of cancer-related mortality in pediatric population. Gliomas, which may be broadly categorized as low grade glioma and high grade glioma, account for the majority of brain tumors in children. Expectant management, surgery, radiation therapy (RT), chemotherapy, targeted therapy or combinations of these modalities may be used for management of pediatric gliomas. Several patient, tumor and treatment-related characteristics including age, lesion size, grade, location, phenotypic and genotypic features, symptomatology, predicted outcomes and toxicity profile of available therapeutic options should be considered in decision making for optimal treatment. Management of pediatric gliomas poses a formidable challenge to the physicians due to concerns about treatment induced toxicity. Adverse effects of therapy may include neurological deficits, hemiparesis, dysphagia, ataxia, spasticity, endocrine sequelae, neurocognitive and communication impairment, deterioration in quality of life, adverse socioeconomic consequences, and secondary cancers. Nevertheless, improved understanding of molecular pathology and technological advancements may pave the way for progress in management of pediatric glial neoplasms. Multidisciplinary management with close collaboration of disciplines including pediatric oncology, surgery, and radiation oncology is warranted to achieve optimal therapeutic outcomes. In the context of RT, stereotactic irradiation is a viable treatment modality for several central nervous system disorders and brain tumors. Considering the importance of minimizing adverse effects of irradiation, radiosurgery has attracted great attention for clinical applications in both adults and children. Radiosurgical applications offer great potential for improving the toxicity profile of radiation delivery by focused and precise targeting of well-defined tumors under stereotactic immobilization and image guidance. Herein, we provide a concise review of stereotactic irradiation for pediatric glial neoplasms in light of the literature.
Collapse
Affiliation(s)
- Omer Sager
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Ferrat Dincoglan
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Selcuk Demiral
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Bora Uysal
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Hakan Gamsiz
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Onurhan Colak
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Fatih Ozcan
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Esin Gundem
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Yelda Elcim
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Bahar Dirican
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| | - Murat Beyzadeoglu
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 06018, Turkey
| |
Collapse
|