1
|
Fast MF, Cao M, Parikh P, Sonke JJ. Intrafraction Motion Management With MR-Guided Radiation Therapy. Semin Radiat Oncol 2024; 34:92-106. [PMID: 38105098 DOI: 10.1016/j.semradonc.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
High quality radiation therapy requires highly accurate and precise dose delivery. MR-guided radiotherapy (MRgRT), integrating an MRI scanner with a linear accelerator, offers excellent quality images in the treatment room without subjecting patient to ionizing radiation. MRgRT therefore provides a powerful tool for intrafraction motion management. This paper summarizes different sources of intrafraction motion for different disease sites and describes the MR imaging techniques available to visualize and quantify intrafraction motion. It provides an overview of MR guided motion management strategies and of the current technical capabilities of the commercially available MRgRT systems. It describes how these motion management capabilities are currently being used in clinical studies, protocols and provides a future outlook.
Collapse
Affiliation(s)
- Martin F Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles, CA
| | - Parag Parikh
- Department of Radiation Oncology, Henry Ford Health - Cancer, Detroit, MI
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Yan M, Holden L, Detsky J, Tseng CL, Soliman H, Myrehaug S, Husain Z, Das S, Yeboah C, Lipsman N, Ruschin M, Sahgal A. Conventionally fully fractionated Gamma Knife Icon re-irradiation of primary recurrent intracranial tumors: the first report indicating feasibility and safety. J Neurosurg 2023; 138:674-682. [PMID: 35986735 DOI: 10.3171/2022.6.jns22998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/17/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE With the incorporation of real-time image guidance on the Gamma Knife system allowing for mask-based immobilization (Gamma Knife Icon [GKI]), conventionally fully fractionated (1.8-3.0 Gy/day) GKI radiation can now be delivered to take advantage of an inherently minimal margin for delivery uncertainty, sharp dose falloff, and inhomogeneous dose distribution. This case series details the authors' preliminary experience in re-irradiating 7 complex primary intracranial tumors, which were considered to have been previously maximally radiated and situated adjacent to critical organs at risk. METHODS The authors retrospectively reviewed all patients who received fractionated re-irradiation using GKI at the Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada, between 2016 and 2021. Patients with brain metastases, and those who received radiotherapy courses in 5 or fewer fractions, were excluded. All radiotherapy doses were converted to the equivalent total dose in 2-Gy fractions (EQD2), with the assumption of an α/β ratio of 2 for late normal tissue toxicity and 10 for the tumor. RESULTS A total of 7 patients were included in this case series. Three patients had recurrent meningiomas, as well as 1 patient each with ependymoma, intracranial sarcoma, pituitary macroadenoma, and papillary pineal tumor. Six patients had undergone prior linear accelerator-based conventional fractionated radiotherapy and 1 patient had undergone prior proton therapy. Patients were re-irradiated with a median (range) total dose of 50.4 (30-63.4) Gy delivered in a median (range) of 28 (10-38) fractions with GKI. The median (range) target volume was 6.58 (0.2-46.3) cm3. The median (range) cumulative mean EQD2 administered to the tumor was 121.1 (107.9-181.3) Gy, and the median (range) maximum point EQD2 administered to the brainstem, optic nerves, and optic chiasm were 91.6 (74.0-111.5) Gy, 58.9 (6.3-102.9) Gy, and 59.9 (36.7-127.3) Gy, respectively. At a median (range) follow-up of 15 (6-42) months, 6 of 7 patients were alive with 4 having locally controlled disease. Only 3 patients experienced treatment-related toxicities, which were self-limited. CONCLUSIONS Fractionated radiotherapy using GKI may be a safe and effective method for the re-irradiation of complex progressive primary intracranial tumors, where the aim is to minimize the potential for serious late effects.
Collapse
Affiliation(s)
- Michael Yan
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| | - Lori Holden
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| | - Jay Detsky
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| | - Chia-Lin Tseng
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| | - Hany Soliman
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| | - Sten Myrehaug
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| | - Zain Husain
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| | - Sunit Das
- 2Division of Neurosurgery, St. Michael's Hospital
| | - Collins Yeboah
- 3Department of Medical Physics, Sunnybrook Health Sciences Centre; and
| | - Nir Lipsman
- 4Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Mark Ruschin
- 3Department of Medical Physics, Sunnybrook Health Sciences Centre; and
| | - Arjun Sahgal
- 1Department of Radiation Oncology, Sunnybrook Health Sciences Centre
| |
Collapse
|
3
|
Foster RD, Moeller BJ, Robinson M, Bright M, Ruiz JL, Hampton CJ, Heinzerling JH. Dosimetric Analysis of Intra-Fraction Motion Detected by Surface-Guided Radiation Therapy During Linac Stereotactic Radiosurgery. Adv Radiat Oncol 2022; 8:101151. [PMID: 36691448 PMCID: PMC9860342 DOI: 10.1016/j.adro.2022.101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Purpose Stereotactic radiosurgery (SRS) immobilization with an open face mask is more comfortable and less invasive than frame based, but concerns about intrafraction motion must be addressed. Surface-guided radiation therapy (SGRT) is an attractive option for intrafraction patient monitoring because it is continuous, has submillimeter accuracy, and uses no ionizing radiation. The purpose of this study was to investigate the dosimetric consequences of uncorrected intrafraction patient motion detected during frameless linac-based SRS. Methods and Materials Fifty-five SRS patients were monitored during treatment using SGRT between January 1, 2017, and September 30, 2020. If SGRT detected motion >1 mm, imaging was repeated and the necessary shifts were made before continuing treatment. For the 25 patients with intrafraction 3-dimensional vector shifts of ≥1 mm, we moved the isocenter in the planning system using the translational shifts from the repeat imaging and recalculated the plans to determine the dosimetric effect of the shifts. Planning target volume (PTV) coverage, minimum gross tumor volume (GTV) dose (relative and absolute), and normal brain V12 were evaluated. Wilcoxon signed rank tests were used to compare planned and simulated dosimetric parameters and median 2 sample tests were used to investigate these differences between cone and multileaf collimator (MLC) plans. Results For simulated plans, V12 increased by a median of 0.01 cc (P = .006) and relative GTV minimum dose and PTV coverage decreased by a median of 15.8% (P < .001) and 10.2 % (P < .001), respectively. Absolute minimum GTV dose was found to be significantly lower in the simulated plans (P < .001). PTV coverage decreased more for simulated cone plans than for simulated MLC plans (11.6% vs 4.7%, P = .011) but median V12 differences were found to be significantly larger for MLC plans (-0.34 cc vs -0.01 cc, P = .011). Differences in GTV minimum dose between cone and MLC plans were not statistically significant. Conclusions SGRT detected clinically meaningful intrafraction motion during frameless SRS, which could lead to large underdoses and increased normal brain dose if uncorrected.
Collapse
Affiliation(s)
- Ryan D. Foster
- Levine Cancer Institute, Atrium Health, Concord, North Carolina,Corresponding author: Ryan Foster, PhD
| | - Benjamin J. Moeller
- Levine Cancer Institute, Atrium Health and Southeast Radiation Oncology Group, Charlotte, North Carolina
| | - Myra Robinson
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Megan Bright
- Levine Cancer Institute, Atrium Health, Concord, North Carolina
| | - Justin L. Ruiz
- Levine Cancer Institute, Atrium Health, Concord, North Carolina
| | | | - John H. Heinzerling
- Levine Cancer Institute, Atrium Health and Southeast Radiation Oncology Group, Charlotte, North Carolina
| |
Collapse
|
4
|
Yan M, Holden L, Wang M, Soliman H, Myrehaug S, Tseng CL, Detsky J, Ruschin M, Tjong M, Atenafu EG, Das S, Lipsman N, Heyn C, Sahgal A, Husain Z. Gamma knife icon based hypofractionated stereotactic radiosurgery (GKI-HSRS) for brain metastases: impact of dose and volume. J Neurooncol 2022; 159:705-712. [PMID: 35999435 DOI: 10.1007/s11060-022-04115-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Gamma Knife Icon-based hypofractionated stereotactic radiosurgery (GKI-HSRS) is a novel technical paradigm in the treatment of brain metastases that allows for both the dosimetric benefits of the GKI stereotactic radiosurgery (SRS) platform as well as the biologic benefits of fractionation. We report mature local control and adverse radiation effect (ARE) outcomes following 5 fraction GKI-HSRS for intact brain metastases. METHODS Patients with intact brain metastases treated with 5-fraction GKI-HSRS were retrospectively reviewed. Survival, local control, and adverse radiation effect rates were determined. Univariable and multivariable regression (MVA) were performed on potential predictive factors. RESULTS Two hundred and ninety-nine metastases in 146 patients were identified. The median clinical follow-up was 10.7 months (range 0.5-47.6). The median total dose and prescription isodose was 27.5 Gy (range, 20-27.5) in 5 daily fractions and 52% (range, 45-93), respectively. The median overall survival (OS) was 12.7 months, and the 1-year local failure rate was 15.2%. MVA identified a total dose of 27.5 Gy vs. ≤ 25 Gy (hazard ratio [HR] 0.59, p = 0.042), and prior chemotherapy exposure (HR 1.99, p = 0.015), as significant predictors of LC. The 1-year ARE rate was 10.8% and the symptomatic ARE rate was 1.8%. MVA identified a gross tumor volume of ≥ 4.5 cc (HR 7.29, p < 0.001) as a significant predictor of symptomatic ARE. CONCLUSION Moderate total doses in 5 daily fractions of GKI-HSRS were associated with high rates of LC and a low incidence of symptomatic ARE.
Collapse
Affiliation(s)
- Michael Yan
- Department of Radiation Oncology, Odette Cancer Center, University of Toronto, Toronto, Canada
| | - Lori Holden
- Department of Radiation Oncology, Odette Cancer Center, University of Toronto, Toronto, Canada
| | - Michael Wang
- Department of Radiation Oncology, Odette Cancer Center, University of Toronto, Toronto, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Odette Cancer Center, University of Toronto, Toronto, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Odette Cancer Center, University of Toronto, Toronto, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Odette Cancer Center, University of Toronto, Toronto, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Odette Cancer Center, University of Toronto, Toronto, Canada
| | - Mark Ruschin
- Department of Medical Physics, Odette Cancer Center, University of Toronto, Toronto, Canada
| | - Michael Tjong
- Department of Radiation Oncology, Odette Cancer Center, University of Toronto, Toronto, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, Princess Margaret Cancer Center, University of Toronto, Toronto, Canada
| | - Sunit Das
- Department of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Nir Lipsman
- Department of Neurosurgery, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Canada
| | - Chinthaka Heyn
- Department of Radiology, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Center, University of Toronto, Toronto, Canada
| | - Zain Husain
- Department of Radiation Oncology, Odette Cancer Center, University of Toronto, Toronto, Canada. .,Sunnybrook Health Sciences Center, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
5
|
Kawashima M, Akabane A, Noda R, Segawa M, Tsunoda S, Inoue T. Interfractional change of tumor volume during fractionated stereotactic radiotherapy using gamma knife for brain metastases. J Neurooncol 2022; 159:409-416. [PMID: 35809149 DOI: 10.1007/s11060-022-04075-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Fractionated stereotactic radiotherapy (FSRT) using gamma knife is useful for brain metastases. However, several uncertainties derived from fractionation pose issues for maintaining high-level accuracy. This study analyzed interfractional tumor change by performing radiological reassessment at the midterm of FSRT with ≥ 10 fractions, and the significance of replanning was evaluated. METHODS Data of FSRT using gamma knife with ≥ 10 fractions were retrospectively collected. Interfractional volume changes in MRI at the midterm of the irradiation period were analyzed. Radiological changes after FSRT and final outcomes were also investigated. RESULTS Overall, 114 lesions in 74 treatments from 66 patients were included, with previously irradiated lesions accounting for 46%. The median interval between planning and the interfractional MRI was 7 days. The interfractional change rates of tumor volume ranged from - 48 to + 72%. Significant interfractional enlargement was observed in 16 lesions (14%); evident regression was confirmed in 17 lesions (15%). Predictive factors for interfractional enlargement were small tumor and cystic lesion; high biologically effective dose was associated with regression. After FSRT, most lesions regressed within 6 months despite interfractional change type. The incidences of tumor control and radiation necrosis indicated no differences between interfractionally-regressed lesions and others. CONCLUSION This is the first study to evaluate interfractional tumor change in FSRT using gamma knife with ≥ 10 fractions, indicating significant volume changes in 29% of the lesions. These preliminary results suggest that interfractional reassessment of a treatment plan in FSRT with irradiation periods exceeding a week is necessary for more adaptive treatment.
Collapse
Affiliation(s)
| | - Atsuya Akabane
- Gamma Knife Center, NTT Medical Center Tokyo, Tokyo, Japan
| | - Ryuichi Noda
- Gamma Knife Center, NTT Medical Center Tokyo, Tokyo, Japan.,Department of Neurosurgery, NTT Medical Center Tokyo, Tokyo, Japan
| | - Masafumi Segawa
- Department of Neurosurgery, NTT Medical Center Tokyo, Tokyo, Japan
| | - Sho Tsunoda
- Department of Neurosurgery, NTT Medical Center Tokyo, Tokyo, Japan
| | - Tomohiro Inoue
- Department of Neurosurgery, NTT Medical Center Tokyo, Tokyo, Japan
| |
Collapse
|