1
|
Saiman L, Waters V, LiPuma JJ, Hoffman LR, Alby K, Zhang SX, Yau YC, Downey DG, Sermet-Gaudelus I, Bouchara JP, Kidd TJ, Bell SC, Brown AW. Practical Guidance for Clinical Microbiology Laboratories: Updated guidance for processing respiratory tract samples from people with cystic fibrosis. Clin Microbiol Rev 2024; 37:e0021521. [PMID: 39158301 PMCID: PMC11391703 DOI: 10.1128/cmr.00215-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYThis guidance presents recommendations for clinical microbiology laboratories for processing respiratory samples from people with cystic fibrosis (pwCF). Appropriate processing of respiratory samples is crucial to detect bacterial and fungal pathogens, guide treatment, monitor the epidemiology of cystic fibrosis (CF) pathogens, and assess therapeutic interventions. Thanks to CF transmembrane conductance regulator modulator therapy, the health of pwCF has improved, but as a result, fewer pwCF spontaneously expectorate sputum. Thus, the collection of sputum samples has decreased, while the collection of other types of respiratory samples such as oropharyngeal and bronchoalveolar lavage samples has increased. To optimize the detection of microorganisms, including Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae, and Burkholderia cepacia complex; other less common non-lactose fermenting Gram-negative bacilli, e.g., Stenotrophomonas maltophilia, Inquilinus, Achromobacter, Ralstonia, and Pandoraea species; and yeasts and filamentous fungi, non-selective and selective culture media are recommended for all types of respiratory samples, including samples obtained from pwCF after lung transplantation. There are no consensus recommendations for laboratory practices to detect, characterize, and report small colony variants (SCVs) of S. aureus, although studies are ongoing to address the potential clinical impact of SCVs. Accurate identification of less common Gram-negative bacilli, e.g., S. maltophilia, Inquilinus, Achromobacter, Ralstonia, and Pandoraea species, as well as yeasts and filamentous fungi, is recommended to understand their epidemiology and clinical importance in pwCF. However, conventional biochemical tests and automated platforms may not accurately identify CF pathogens. MALDI-TOF MS provides excellent genus-level identification, but databases may lack representation of CF pathogens to the species-level. Thus, DNA sequence analysis should be routinely available to laboratories for selected clinical circumstances. Antimicrobial susceptibility testing (AST) is not recommended for every routine surveillance culture obtained from pwCF, although selective AST may be helpful, e.g., for unusual pathogens or exacerbations unresponsive to initial therapy. While this guidance reflects current care paradigms for pwCF, recommendations will continue to evolve as CF research expands the evidence base for laboratory practices.
Collapse
Affiliation(s)
- Lisa Saiman
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
- Department of Infection Prevention and Control, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Valerie Waters
- Division of Infectious Diseases, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lucas R Hoffman
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Kevin Alby
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Sean X Zhang
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yvonne C Yau
- Division of Microbiology, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Damian G Downey
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, Ireland
| | | | - Jean-Philippe Bouchara
- University of Angers-University of Brest, Infections Respiratoires Fongiques, Angers, France
| | - Timothy J Kidd
- Microbiology Division, Pathology Queensland Central Laboratory, The University of Queensland, Brisbane, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Scott C Bell
- The Prince Charles Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- The Translational Research Institute, Brisbane, Australia
| | - A Whitney Brown
- Cystic Fibrosis Foundation, Bethesda, Maryland, USA
- Inova Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, Virginia, USA
| |
Collapse
|
2
|
Zhang S, Chen X, Dai C, Wang J, Wang H. Associations between air pollutants and risk of respiratory infection: patient-based bacterial culture in sputum. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4007-4016. [PMID: 34806153 DOI: 10.1007/s10653-021-01154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023]
Abstract
Air pollution is a crucial risk factor for respiratory infection. However, the relationships between air pollution and respiratory infection based on pathogen detection are scarcely explored in the available literature. We detected respiratory infections through patient-based bacterial culture in sputum, obtained hourly data of all six pollutants (PM2.5, PM10, SO2, NO, CO, and O3) from four air quality monitoring stations, and assessed the relationships of air pollutants and respiratory bacterial infection and multi-drug-resistant bacteria. Air pollution remains a challenge for Mianyang, China, especially PM2.5 and PM10, and there are seasonal differences; pollution is the heaviest in winter and the lowest in summer. A total of 4237 pathogenic bacteria were detected, and the positive rate of multi-drug-resistant bacteria was 0.38%. Similar seasonal differences were found with respect to respiratory infection. In a single-pollutant model, all pollutants were significantly associated with respiratory bacterial infection, but only O3 was significantly associated with multi-drug-resistant bacteria. In multi-pollutant models (adjusted for one pollutant), the relationships of air pollutants with respiratory bacterial infection remained significant, while PM2.5, PM10, and O3 were significantly associated with the risk of infection with multi-drug-resistant bacteria. When adjusted for other five pollutants, only O3 was significantly associated with respiratory bacterial infection and the risk of infection with multi-drug-resistant bacteria, showing that O3 is an independent risk factor for respiratory bacterial infection and infection with multi-drug-resistant bacteria. In summary, this study highlights the adverse effects of air pollution on respiratory infection and the risk of infection with multi-drug-resistant bacteria, which may provide a basis for the formulation of environmental policy to prevent respiratory infections.
Collapse
Affiliation(s)
- Shaocheng Zhang
- Department of Clinical Laboratory Medicine, Suining Central Hospital, 127 Deshengxi Rd., Suining, 629000, Sichuan, China
| | - Xi Chen
- Department of Clinical Laboratory Medicine, Mianyang Central Hospital, Mianyang, 621000, Sichuan, China
| | - Chunmei Dai
- Department of Clinical Laboratory Medicine, Mianyang Central Hospital, Mianyang, 621000, Sichuan, China
| | - Jing Wang
- Department of Clinical Laboratory Medicine, Mianyang Central Hospital, Mianyang, 621000, Sichuan, China
| | - Huanhuan Wang
- Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Rd., Shantou, 515041, Guangdong, China.
| |
Collapse
|
3
|
Impaired Ratio of Unsaturated to Saturated Non-Esterified Fatty Acids in Saliva from Patients with Cystic Fibrosis. Diagnostics (Basel) 2020; 10:diagnostics10110915. [PMID: 33171650 PMCID: PMC7695280 DOI: 10.3390/diagnostics10110915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
Impaired salivary non-esterified fatty acids (NEFA) levels have been previously observed in cystic fibrosis (CF). This study aimed to characterize the salivary NEFA profile in CF and to examine whether the alterations are related to the pancreatic status and/or lung disease severity. We analyzed salivary NEFA, cholesterol and interleukin-6 (IL-6) in CF patients (n = 66) and healthy subjects (n = 48). CF patients showed higher salivary levels of cholesterol, total NEFA (that was negatively correlated with serum triglycerides), unsaturated NEFA/saturated NEFA (U/S NEFA) ratio and IL-6 than controls. The U/S NEFA ratio was positively correlated with IL-6 in both patients and controls, suggesting an association between this parameter and local inflammation independently from the disease. No correlation between salivary lipids and pancreatic status was observed, while the U/S NEFA ratio was higher in patients with severe lung disease than mild/moderate severity and may represent a prognostic marker of lung disease in CF.
Collapse
|
4
|
Castaldo A, Iacotucci P, Carnovale V, Cimino R, Liguori R, Comegna M, Raia V, Corso G, Castaldo G, Gelzo M. Salivary Cytokines and Airways Disease Severity in Patients with Cystic Fibrosis. Diagnostics (Basel) 2020; 10:diagnostics10040222. [PMID: 32326546 PMCID: PMC7235910 DOI: 10.3390/diagnostics10040222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
About 50% of patients with cystic fibrosis (CF) have sinonasal complications, which include inferior turbinate hypertrophy (NTH) and/or nasal polyposis (NP), and different degrees of lung disease, which represents the main cause of mortality. Monitoring of sinonasal disease requires complex instrumental procedures, while monitoring of lung inflammation requires invasive collection of bronchoalveolar lavage fluid. The aim of this study was to investigate the associations between salivary cytokines levels and CF-related airway diseases. Salivary biochemical parameters and cytokines, i.e., interleukin-6 (IL-6), IL-8, and tumor necrosis factor alpha (TNF-α), were analyzed in resting saliva from healthy subjects and patients with CF. Patients with CF showed significantly higher levels of salivary chloride, IL-6, IL-8, and TNF-α and lower calcium levels than healthy subjects. Among patients with CF, IL-6 and IL-8 were significantly higher in patients with NTH, while TNF-α was significantly lower in patients with NP. A decreasing trend of TNF-α in patients with severe lung disease was also observed. On the other hand, we did not find significant correlation between cytokine levels and Pseudomonas aeruginosa or Stenotrophomonas maltophilia colonization. These preliminary results suggest that salivary IL-6 and IL-8 levels increase during the acute phase of sinonasal disease (i.e., NTH), while the end stages of pulmonary disease and sinonasal disease (i.e., NP) show decreased TNF-α levels.
Collapse
Affiliation(s)
- Alice Castaldo
- Dipartimento di Scienze Mediche Traslazionali, University of Naples Federico II, 80131 Naples, Italy; (A.C.); (P.I.); (V.C.); (V.R.)
| | - Paola Iacotucci
- Dipartimento di Scienze Mediche Traslazionali, University of Naples Federico II, 80131 Naples, Italy; (A.C.); (P.I.); (V.C.); (V.R.)
| | - Vincenzo Carnovale
- Dipartimento di Scienze Mediche Traslazionali, University of Naples Federico II, 80131 Naples, Italy; (A.C.); (P.I.); (V.C.); (V.R.)
| | - Roberta Cimino
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, University of Naples Federico II, 80131 Naples, Italy;
| | - Renato Liguori
- Dipartimento di Scienze e Tecnologie, University of Naples Parthenope, 80133 Naples, Italy;
| | - Marika Comegna
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II, 80138 Naples, Italy; (M.C.); (M.G.)
- CEINGE-Biotecnologie Avanzate, 80145 Naples, Italy
| | - Valeria Raia
- Dipartimento di Scienze Mediche Traslazionali, University of Naples Federico II, 80131 Naples, Italy; (A.C.); (P.I.); (V.C.); (V.R.)
| | - Gaetano Corso
- Dipartimento di Medicina Clinica e Sperimentale, University of Foggia, 71122 Foggia, Italy;
| | - Giuseppe Castaldo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II, 80138 Naples, Italy; (M.C.); (M.G.)
- CEINGE-Biotecnologie Avanzate, 80145 Naples, Italy
- Correspondence:
| | - Monica Gelzo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II, 80138 Naples, Italy; (M.C.); (M.G.)
- CEINGE-Biotecnologie Avanzate, 80145 Naples, Italy
| |
Collapse
|