1
|
Marchi NA, Daneault V, André C, Martineau‐Dussault M, Baril A, Thompson C, Montplaisir JY, Gilbert D, Lorrain D, Boré A, Descoteaux M, Carrier J, Gosselin N. Altered fornix integrity is associated with sleep apnea-related hypoxemia in mild cognitive impairment. Alzheimers Dement 2024; 20:4092-4105. [PMID: 38716833 PMCID: PMC11180866 DOI: 10.1002/alz.13833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/13/2024] [Accepted: 03/18/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION The limbic system is critical for memory function and degenerates early in the Alzheimer's disease continuum. Whether obstructive sleep apnea (OSA) is associated with alterations in the limbic white matter tracts remains understudied. METHODS Polysomnography, neurocognitive assessment, and brain magnetic resonance imaging (MRI) were performed in 126 individuals aged 55-86 years, including 70 cognitively unimpaired participants and 56 participants with mild cognitive impairment (MCI). OSA measures of interest were the apnea-hypopnea index and composite variables of sleep fragmentation and hypoxemia. Microstructural properties of the cingulum, fornix, and uncinate fasciculus were estimated using free water-corrected diffusion tensor imaging. RESULTS Higher levels of OSA-related hypoxemia were associated with higher left fornix diffusivities only in participants with MCI. Microstructure of the other white matter tracts was not associated with OSA measures. Higher left fornix diffusivities correlated with poorer episodic verbal memory. DISCUSSION OSA may contribute to fornix damage and memory dysfunction in MCI. HIGHLIGHTS Sleep apnea-related hypoxemia was associated with altered fornix integrity in MCI. Altered fornix integrity correlated with poorer memory function. Sleep apnea may contribute to fornix damage and memory dysfunction in MCI.
Collapse
Affiliation(s)
- Nicola Andrea Marchi
- Center for Advanced Research in Sleep MedicineHôpital du Sacré‐Coeur de Montréal, CIUSSS du Nord‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
- Department of PsychologyUniversité de MontréalMontrealQuebecCanada
- Center for Investigation and Research in SleepDepartment of MedicineLausanne University Hospital and University of LausanneLausanneVaudSwitzerland
- Laboratory for Research in NeuroimagingDepartment of Clinical NeurosciencesLausanne University Hospital and University of LausanneLausanneVaudSwitzerland
| | - Véronique Daneault
- Center for Advanced Research in Sleep MedicineHôpital du Sacré‐Coeur de Montréal, CIUSSS du Nord‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS du Centre‐Sud‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
| | - Claire André
- Center for Advanced Research in Sleep MedicineHôpital du Sacré‐Coeur de Montréal, CIUSSS du Nord‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
- Department of PsychologyUniversité de MontréalMontrealQuebecCanada
| | - Marie‐Ève Martineau‐Dussault
- Center for Advanced Research in Sleep MedicineHôpital du Sacré‐Coeur de Montréal, CIUSSS du Nord‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
- Department of PsychologyUniversité de MontréalMontrealQuebecCanada
| | - Andrée‐Ann Baril
- Center for Advanced Research in Sleep MedicineHôpital du Sacré‐Coeur de Montréal, CIUSSS du Nord‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
- Department of MedicineFaculty of MedicineUniversité de MontréalMontrealQuebecCanada
| | - Cynthia Thompson
- Center for Advanced Research in Sleep MedicineHôpital du Sacré‐Coeur de Montréal, CIUSSS du Nord‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
| | - Jacques Yves Montplaisir
- Center for Advanced Research in Sleep MedicineHôpital du Sacré‐Coeur de Montréal, CIUSSS du Nord‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
- Department of PsychiatryUniversité de MontréalMontrealQuebecCanada
| | - Danielle Gilbert
- Department of RadiologyRadio‐oncology and Nuclear Medicine, Université de MontréalMontrealQuebecCanada
- Department of RadiologyHôpital du Sacré‐Coeur de Montréal, CIUSSS du Nord‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
| | - Dominique Lorrain
- Research Center on AgingInstitut Universitaire de Gériatrie de Sherbrooke, CIUSSS de l'EstrieSherbrookeQuebecCanada
- Department of PsychologyUniversité de SherbrookeSherbrookeQuebecCanada
| | - Arnaud Boré
- Sherbrooke Connectivity Imaging LabUniversité de SherbrookeSherbrookeQuebecCanada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging LabUniversité de SherbrookeSherbrookeQuebecCanada
| | - Julie Carrier
- Center for Advanced Research in Sleep MedicineHôpital du Sacré‐Coeur de Montréal, CIUSSS du Nord‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
- Department of PsychologyUniversité de MontréalMontrealQuebecCanada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep MedicineHôpital du Sacré‐Coeur de Montréal, CIUSSS du Nord‐de‐l'Ile‐de‐MontréalMontrealQuebecCanada
- Department of PsychologyUniversité de MontréalMontrealQuebecCanada
| |
Collapse
|
2
|
Chen Y, Wang Y, Song Z, Fan Y, Gao T, Tang X. Abnormal white matter changes in Alzheimer's disease based on diffusion tensor imaging: A systematic review. Ageing Res Rev 2023; 87:101911. [PMID: 36931328 DOI: 10.1016/j.arr.2023.101911] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Alzheimer's disease (AD) is a degenerative neurological disease in elderly individuals. Subjective cognitive decline (SCD), mild cognitive impairment (MCI) and further development to dementia (d-AD) are considered to be major stages of the progressive pathological development of AD. Diffusion tensor imaging (DTI), one of the most important modalities of MRI, can describe the microstructure of white matter through its tensor model. It is widely used in understanding the central nervous system mechanism and finding appropriate potential biomarkers for the early stages of AD. Based on the multilevel analysis methods of DTI (voxelwise, fiberwise and networkwise), we summarized that AD patients mainly showed extensive microstructural damage, structural disconnection and topological abnormalities in the corpus callosum, fornix, and medial temporal lobe, including the hippocampus and cingulum. The diffusion features and structural connectomics of specific regions can provide information for the early assisted recognition of AD. The classification accuracy of SCD and normal controls can reach 92.68% at present. And due to the further changes of brain structure and function, the classification accuracy of MCI, d-AD and normal controls can reach more than 97%. Finally, we summarized the limitations of current DTI-based AD research and propose possible future research directions.
Collapse
Affiliation(s)
- Yu Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yifei Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zeyu Song
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yingwei Fan
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Tianxin Gao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
3
|
Shaikh I, Beaulieu C, Gee M, McCreary CR, Beaudin AE, Valdés-Cabrera D, Smith EE, Camicioli R. Diffusion tensor tractography of the fornix in cerebral amyloid angiopathy, mild cognitive impairment and Alzheimer's disease. Neuroimage Clin 2022; 34:103002. [PMID: 35413649 PMCID: PMC9010796 DOI: 10.1016/j.nicl.2022.103002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022]
Abstract
The fornix was delineated with deterministic tractography from diffusion tensor images (DTI). Fornix diffusion changes were found in the fornix in CAA, AD and MCI compared to controls. Higher fornix diffusivity correlated with smaller hippocampal volume and larger ventricles. Fornix diffusion measures correlated with cognitive measures in the combined disease groups.
Purpose Cerebral amyloid angiopathy (CAA) is a common neuropathological finding and clinical entity that occurs independently and with co-existent Alzheimer’s disease (AD) and small vessel disease. We compared diffusion tensor imaging (DTI) metrics of the fornix, the primary efferent tract of the hippocampus between CAA, AD and Mild Cognitive Impairment (MCI) and healthy controls. Methods Sixty-eight healthy controls, 32 CAA, 21 AD, and 26 MCI patients were recruited at two centers. Diffusion tensor images were acquired at 3 T with high spatial resolution and fluid-attenuated inversion recovery (FLAIR) to suppress cerebrospinal fluid (CSF) and minimize partial volume effects on the fornix. The fornix was delineated with deterministic tractography to yield mean diffusivity (MD), axial diffusivity (AXD), radial diffusivity (RD), fractional anisotropy (FA) and tract volume. Volumetric measurements of the hippocampus, thalamus, and lateral ventricles were obtained using T1-weighted MRI. Results Diffusivity (MD, AXD, and RD) of the fornix was highest in AD followed by CAA compared to controls; the MCI group was not significantly different from controls. FA was similar between groups. Fornix tract volume was ∼ 30% lower for all three patient groups compared to controls, but not significantly different between the patient groups. Thalamic and hippocampal volumes were preserved in CAA, but lower in AD and MCI compared to controls. Lateral ventricular volumes were increased in CAA, AD and MCI. Global cognition, memory, and executive function all correlated negatively with fornix diffusivity across the combined clinical group. Conclusion There were significant diffusion changes of the fornix in CAA, AD and MCI compared to controls, despite relatively intact thalamic and hippocampal volumes in CAA, suggesting the mechanisms for fornix diffusion abnormalities may differ in CAA compared to AD and MCI.
Collapse
Affiliation(s)
- Ibrahim Shaikh
- Department of Medicine, Division of Neurology and Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Myrlene Gee
- Department of Medicine, Division of Neurology and Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
| | - Cheryl R McCreary
- Department of Radiology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada; Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health Services, Calgary, AB, Canada
| | - Andrew E Beaudin
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Diana Valdés-Cabrera
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Eric E Smith
- Department of Radiology, University of Calgary, Calgary, AB, Canada; Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health Services, Calgary, AB, Canada
| | - Richard Camicioli
- Department of Medicine, Division of Neurology and Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Zhou Y, Si X, Chen Y, Chao Y, Lin CP, Li S, Zhang X, Ming D, Li Q. Hippocampus- and Thalamus-Related Fiber-Specific White Matter Reductions in Mild Cognitive Impairment. Cereb Cortex 2021; 32:3159-3174. [PMID: 34891164 DOI: 10.1093/cercor/bhab407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/04/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Early diagnosis of mild cognitive impairment (MCI) fascinates screening high-risk Alzheimer's disease (AD). White matter is found to degenerate earlier than gray matter and functional connectivity during MCI. Although studies reveal white matter degenerates in the limbic system for MCI, how other white matter degenerates during MCI remains unclear. In our method, regions of interest with a high level of resting-state functional connectivity with hippocampus were selected as seeds to track fibers based on diffusion tensor imaging (DTI). In this way, hippocampus-temporal and thalamus-related fibers were selected, and each fiber's DTI parameters were extracted. Then, statistical analysis, machine learning classification, and Pearson's correlations with behavior scores were performed between MCI and normal control (NC) groups. Results show that: 1) the mean diffusivity of hippocampus-temporal and thalamus-related fibers are significantly higher in MCI and could be used to classify 2 groups effectively. 2) Compared with normal fibers, the degenerated fibers detected by the DTI indexes, especially for hippocampus-temporal fibers, have shown significantly higher correlations with cognitive scores. 3) Compared with the hippocampus-temporal fibers, thalamus-related fibers have shown significantly higher correlations with depression scores within MCI. Our results provide novel biomarkers for the early diagnoses of AD.
Collapse
Affiliation(s)
- Yu Zhou
- School of Microelectronics, Tianjin University, Tianjin 300072, China
| | - Xiaopeng Si
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China.,Institute of Applied Psychology, Tianjin University, Tianjin 300350, China
| | - Yuanyuan Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Yiping Chao
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.,Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience Hsinchu City, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Sicheng Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Xingjian Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Qiang Li
- School of Microelectronics, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Harrison JR, Bhatia S, Tan ZX, Mirza-Davies A, Benkert H, Tax CMW, Jones DK. Imaging Alzheimer's genetic risk using diffusion MRI: A systematic review. Neuroimage Clin 2020; 27:102359. [PMID: 32758801 PMCID: PMC7399253 DOI: 10.1016/j.nicl.2020.102359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/20/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022]
Abstract
Diffusion magnetic resonance imaging (dMRI) is an imaging technique which probes the random motion of water molecules in tissues and has been widely applied to investigate changes in white matter microstructure in Alzheimer's Disease. This paper aims to systematically review studies that examined the effect of Alzheimer's risk genes on white matter microstructure. We assimilated findings from 37 studies and reviewed their diffusion pre-processing and analysis methods. Most studies estimate the diffusion tensor (DT) and compare derived quantitative measures such as fractional anisotropy and mean diffusivity between groups. Those with increased AD genetic risk are associated with reduced anisotropy and increased diffusivity across the brain, most notably the temporal and frontal lobes, cingulum and corpus callosum. Structural abnormalities are most evident amongst those with established Alzheimer's Disease. Recent studies employ signal representations and analysis frameworks beyond DT MRI but show that dMRI overall lacks specificity to disease pathology. However, as the field advances, these techniques may prove useful in pre-symptomatic diagnosis or staging of Alzheimer's disease.
Collapse
Affiliation(s)
- Judith R Harrison
- Cardiff University Brain Research Imaging Centre (CUBRIC), Maindy Road, Cardiff CF24 4HQ, UK.
| | - Sanchita Bhatia
- Cardiff University School of Medicine, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK
| | - Zhao Xuan Tan
- Cardiff University School of Medicine, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK
| | - Anastasia Mirza-Davies
- Cardiff University School of Medicine, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK
| | - Hannah Benkert
- Cardiff University School of Medicine, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK
| | - Chantal M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), Maindy Road, Cardiff CF24 4HQ, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Maindy Road, Cardiff CF24 4HQ, UK; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Benear SL, Ngo CT, Olson IR. Dissecting the Fornix in Basic Memory Processes and Neuropsychiatric Disease: A Review. Brain Connect 2020; 10:331-354. [PMID: 32567331 DOI: 10.1089/brain.2020.0749] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The fornix is the primary axonal tract of the hippocampus, connecting it to modulatory subcortical structures. This review reveals that fornix damage causes cognitive deficits that closely mirror those resulting from hippocampal lesions. Methods: We reviewed the literature on the fornix, spanning non-human animal lesion research, clinical case studies of human patients with fornix damage, as well as diffusion-weighted imaging (DWI) work that evaluates fornix microstructure in vivo. Results: The fornix is essential for memory formation because it serves as the conduit for theta rhythms and acetylcholine, as well as providing mnemonic representations to deep brain structures that guide motivated behavior, such as when and where to eat. In rodents and non-human primates, fornix lesions lead to deficits in conditioning, reversal learning, and navigation. In humans, damage to the fornix manifests as anterograde amnesia. DWI research reveals that the fornix plays a key role in mild cognitive impairment and Alzheimer's Disease, and can potentially predict conversion from the former to the latter. Emerging DWI findings link perturbations in this structure to schizophrenia, mood disorders, and eating disorders. Cutting-edge research has investigated how deep brain stimulation of the fornix can potentially attenuate memory loss, control epileptic seizures, and even improve mood. Conclusions: The fornix is essential to a fully functioning memory system and is implicated in nearly all neurological functions that rely on the hippocampus. Future research needs to use optimized DWI methods to study the fornix in vivo, which we discuss, given the difficult nature of fornix reconstruction. Impact Statement The fornix is a white matter tract that connects the hippocampus to several subcortical brain regions and is pivotal for episodic memory functioning. Functionally, the fornix transmits essential neurotransmitters, as well as theta rhythms, to the hippocampus. In addition, it is the conduit by which memories guide decisions. The fornix is biomedically important because lesions to this tract result in irreversible anterograde amnesia. Research using in vivo imaging methods has linked fornix pathology to cognitive aging, mild cognitive impairment, psychosis, epilepsy, and, importantly, Alzheimer's Disease.
Collapse
Affiliation(s)
- Susan L Benear
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Chi T Ngo
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ingrid R Olson
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Bigham B, Zamanpour SA, Zemorshidi F, Boroumand F, Zare H. Identification of Superficial White Matter Abnormalities in Alzheimer's Disease and Mild Cognitive Impairment Using Diffusion Tensor Imaging. J Alzheimers Dis Rep 2020; 4:49-59. [PMID: 32206757 PMCID: PMC7081087 DOI: 10.3233/adr-190149] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Diffusion tensor imaging (DTI) estimates the microstructural alterations of the brain, as a magnetic resonance imaging (MRI)-based neuroimaging technique. Prior DTI studies reported decreased structural integrity of the superficial white matter (SWM) in the brain diseases. OBJECTIVE This study aimed to determine the diffusion characteristics of SWM in Alzheimer's disease (AD) and mild cognitive impairment (MCI) using tractography and region of interest (ROI) approaches. METHODS The diffusion MRI data were downloaded from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database on 24 patients with AD, 24 with MCI, and 24 normal control (NC) subjects. DTI processing was performed using DSI Studio software. First, for ROI-based analysis, The superficial white matter was divided into right and left frontal, parietal, temporal, insula, limbic and occipital regions by the Talairach Atlas, Then, for tractography-based analysis, the tractography of each of these regions was performed with 100000 seeds. Finally, the average diffusion values were extracted from voxels within the ROIs and tracts. RESULTS Both tractography and ROI analyses showed a significant difference in radial, axial and mean diffusivity values between the three groups (p < 0.05) across most of the SWM. Furthermore, The Mini-Mental State Examination was significantly correlated with radial, axial, and mean diffusivity values in parietal and temporal lobes SWM in the AD group (p < 0.05). CONCLUSION DTI provided information indicating microstructural changes in the SWM of patients with AD and MCI. Therefore, assessment of the SWM using DTI may be helpful for the clinical diagnosis of patients with AD and MCI.
Collapse
Affiliation(s)
- Bahare Bigham
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Amir Zamanpour
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Zemorshidi
- Department of Neurology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Boroumand
- Student Research Committee, Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hoda Zare
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|