1
|
Zhang X, Li Y, Guan Q, Dong D, Zhang J, Meng X, Chen F, Luo Y, Zhang H. Distance-dependent reconfiguration of hubs in Alzheimer's disease: a cross-tissue functional network study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.532772. [PMID: 36993290 PMCID: PMC10055319 DOI: 10.1101/2023.03.24.532772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The hubs of the intra-grey matter (GM) network were sensitive to anatomical distance and susceptible to neuropathological damage. However, few studies examined the hubs of cross-tissue distance-dependent networks and their changes in Alzheimer's disease (AD). Using resting-state fMRI data of 30 AD patients and 37 normal older adults (NC), we constructed the cross-tissue networks based on functional connectivity (FC) between GM and white matter (WM) voxels. In the full-ranged and distance-dependent networks (characterized by gradually increased Euclidean distances between GM and WM voxels), their hubs were identified with weight degree metrics (frWD and ddWD). We compared these WD metrics between AD and NC; using the resultant abnormal WDs as the seeds, we performed seed-based FC analysis. With increasing distance, the GM hubs of distance-dependent networks moved from the medial to lateral cortices, and the WM hubs spread from the projection fibers to longitudinal fascicles. Abnormal ddWD metrics in AD were primarily located in the hubs of distance-dependent networks around 20-100mm. Decreased ddWDs were located in the left corona radiation (CR), which had decreased FCs with the executive network's GM regions in AD. Increased ddWDs were located in the posterior thalamic radiation (PTR) and the temporal-parietal-occipital junction (TPO), and their FCs were larger in AD. Increased ddWDs were shown in the sagittal striatum, which had larger FCs with the salience network's GM regions in AD. The reconfiguration of cross-tissue distance-dependent networks possibly reflected the disruption in the neural circuit of executive function and the compensatory changes in the neural circuits of visuospatial and social-emotional functions in AD.
Collapse
Affiliation(s)
- Xingxing Zhang
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yingjia Li
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Qing Guan
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
- Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Jianfeng Zhang
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Xianghong Meng
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Fuyong Chen
- Department of Neurosurgery, Shenzhen Hospital of University of Hong Kong, Shenzhen, China
| | - Yuejia Luo
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Haobo Zhang
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | | |
Collapse
|
2
|
Differentiating white matter measures that protect against vs. predispose to bipolar disorder and other psychopathology in at-risk youth. Neuropsychopharmacology 2021; 46:2207-2216. [PMID: 34285367 PMCID: PMC8505429 DOI: 10.1038/s41386-021-01088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022]
Abstract
Bipolar disorder (BD) is highly heritable. Identifying objective biomarkers reflecting pathophysiological processes predisposing to, versus protecting against BD, can help identify BD risk in offspring of BD parents. We recruited 21 BD participants with a first-degree relative with BD, 25 offspring of BD parents, 27 offspring of comparison parents with non-BD psychiatric disorders, and 32 healthy offspring of healthy parents. In at-risk groups, 23 had non-BD diagnoses and 29, no Axis-I diagnoses(healthy). Five at-risk offspring who developed BD post scan(Converters) were included. Diffusion imaging(dMRI) analysis with tract segmentation identified between-group differences in the microstructure of prefrontal tracts supporting emotional regulation relevant to BD: forceps minor, anterior thalamic radiation(ATR), cingulum bundle(CB), and uncinate fasciculus(UF). BD participants showed lower fractional anisotropy (FA) in the right CB (anterior portion) than other groups (q < 0.05); and in bilateral ATR (posterior portion) versus at-risk groups (q < 0.001). Healthy, but not non-BD, at-risk participants showed significantly higher FA in bilateral ATR clusters than healthy controls (qs < 0.05). At-risk groups showed higher FA in these clusters than BD participants (qs < 0.05). Non-BD versus healthy at-risk participants, and Converters versus offspring of BD parents, showed lower FA in the right ATR cluster (qs < 0.05). Low anterior right CB FA in BD participants versus other groups might result from having BD. High bilateral ATR FA in at-risk groups, and in healthy at-risk participants, versus healthy controls might protect against BD/other psychiatric disorders. Absence of elevated right ATR FA in non-BD versus healthy at-risk participants, and in Converters versus non-converter offspring of BD parents, might lower protection against BD in at-risk groups.
Collapse
|