1
|
Goo D, Singh AK, Choi J, Sharma MK, Paneru D, Lee J, Katha HR, Zhuang H, Kong B, Bowker B, Kim WK. Different dietary branched-chain amino acid ratios, crude protein levels, and protein sources can affect the growth performance and meat yield in broilers. Poult Sci 2024; 103:104313. [PMID: 39357235 PMCID: PMC11474198 DOI: 10.1016/j.psj.2024.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
Balanced ratios of branched-chain amino acids (BCAAs) can enhance chicken growth, immunity, and muscle synthesis. However, these ratios can be affected by changes in crude protein (CP) levels or the substitution of protein sources, leading to BCAA antagonism. This, in turn, can have a negative impact on chicken growth. In Experiment 1, a total of 960 0-d-old male Cobb 500 broilers were divided into 6 treatments with 8 replicates. Three different BCAA ratios were used in High or Low CP diets as follows: 1) Low Leu group (Low level of leucine with increased valine and isoleucine levels), 2) Med Leu group, and 3) High Leu group (High level of leucine with reduced valine and isoleucine levels) for a total of 6 diets. In Experiment 2, a total of 640 0-d-old male Cobb 500 broilers were divided into 4 treatments with 8 replicates. The four diets had either High or Low CP and one of two protein sources with the same medium levels of BCAAs: 1) the soybean meal (SBM) group, which had SBM as the main protein source (protein bound AA), and 2) the wheat middlings with non-bound AAs (WM+AA) group (non-bound AA), which had additional non-bound AAs to replace SBM. The High Leu diet had a negative effect on overall growth performance, carcass weight, breast muscle weight, and body mineral composition compared to the Low Leu and Med Leu groups, particularly in the High CP diet (P < 0.05). The SBM group showed increased growth performance, breast muscle weight, expression levels of genes promoting muscle growth, and improved bone mineral composition compared to the WM+AA group, and the High CP group intensified the negative effect of the WM+AA diet (P < 0.05). In summary, balanced BCAA ratios and SBM-based diets have positive effects on chicken growth and muscle accretion, whereas excessive leucine and non-bound AA levels in the diets may negatively affect growth performance and meat yield in chickens.
Collapse
Affiliation(s)
- Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Amit K Singh
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Janghan Choi
- US National Poultry Research Center, USDA-ARS, Athens, GA, USA
| | - Milan K Sharma
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Deependra Paneru
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Hemanth R Katha
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Hong Zhuang
- US National Poultry Research Center, USDA-ARS, Athens, GA, USA
| | - Byungwhi Kong
- US National Poultry Research Center, USDA-ARS, Athens, GA, USA
| | - Brian Bowker
- US National Poultry Research Center, USDA-ARS, Athens, GA, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
2
|
Kop Bozbay C, Yılmaz B, Ocak N. Beta-hydroxy-β-methyl butyrate-supplemented diet for broiler chickens is more conducive to dietary protein reduction than a leucine-supplemented diet until 21 days old. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1450-1457. [PMID: 37800278 DOI: 10.1002/jsfa.13023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Dietary l-leucine or its metabolite 𝛽-hydroxy-𝛽-methylbutyrate (HMB) has a crucial role in the muscle protein metabolism of broilers during the first few-week growing period. The present study aimed to evaluate the effects of l-leucine (LLPD) or HMB (HLPD) supplementation in a low-protein diet (20%, LPD) until 21 days old on performance, carcass weight, muscle yield and meat quality, as well as intestinal morphometry, in broiler chickens. RESULTS From days 1-42, LPD decreased body weight gain and feed intake (FI) and increased feed conversion ratio compared to a standard protein diet (22%, SPD). The LLPD and HLPD did not affect FI, but the LLPD decreased the body weight gain and increased the feed conversion ratio compared to the SPD. The LPD group had lower body and muscle weights than other groups. Compared to LPD, HLPD increased dressing percentage. The LPD decreased the serum insulin-like growth factor-1 content compared to the SPD and LLPD. The duodenal villus height of the LPD and LLPD broilers was smaller than those of the SPD and HLPD birds. The HLPD broilers had lower duodenal villus width than the SPD birds. The duodenal crypt depth and ileal mucosal thickness were higher in the HLPD group than in other groups. The HLPD and LLPD enhanced the ileal villus height compared to the SPD. The LLPD and HLPD treatments did not affect meat quality traits compared to the SPD treatment. CONCLUSION Dietary HMB could be a conducive approach to reducing dietary protein for broilers until 21 days old. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Canan Kop Bozbay
- Department of Animal Science, Faculty of Agriculture, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Berkan Yılmaz
- Department of Animal Science, Faculty of Agriculture, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Nuh Ocak
- Department of Animal Science, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
3
|
Salem HM, Saad AM, Soliman SM, Selim S, Mosa WFA, Ahmed AE, Al Jaouni SK, Almuhayawi MS, Abd El-Hack ME, El-Tarabily KA, El-Saadony MT. Ameliorative avian gut environment and bird productivity through the application of safe antibiotics alternatives: a comprehensive review. Poult Sci 2023; 102:102840. [PMID: 37478510 PMCID: PMC10393590 DOI: 10.1016/j.psj.2023.102840] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 07/23/2023] Open
Abstract
The avian digestive tract is an important system for converting ingested food into the nutrients their bodies need for maintenance, growth, and reproduction (meat, table eggs, and fertile eggs). Therefore, preserving digestive system integrity is crucial to bird health and productivity. As an alternative to antibiotics, the world has recently turned to the use of natural products to enhance avian development, intestinal health, and production. Therefore, the primary goal of this review is to explain the various characteristics of the avian digestive tract and how to enhance its performance with natural, safe feed additives such as exogenous enzymes, organic acids, photogenic products, amino acids, prebiotics, probiotics, synbiotics, and herbal extracts. In conclusion, the composition of the gut microbiome can be influenced by a number of circumstances, and this has important consequences for the health and productivity of birds. To better understand the connection between pathogens, the variety of therapies available, and the microbiome of the gut, additional research needs to be carried out.
Collapse
Affiliation(s)
- Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Soliman M Soliman
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed S Almuhayawi
- Department of Clinical Microbiology and Immunology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
4
|
Ruan D, Fan QL, Zhang S, Ei-Senousey HK, Fouad AM, Lin XJ, Dong XL, Deng YF, Yan SJ, Zheng CT, Jiang ZY, Jiang SQ. Dietary isoleucine supplementation enhances growth performance, modulates the expression of genes related to amino acid transporters and protein metabolism, and gut microbiota in yellow-feathered chickens. Poult Sci 2023; 102:102774. [PMID: 37302324 PMCID: PMC10276271 DOI: 10.1016/j.psj.2023.102774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/22/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
This study investigated the effects of dietary isoleucine (Ile) on growth performance, intestinal expression of amino acid transporters, protein metabolism-related genes and intestinal microbiota in starter phase Chinese yellow-feathered chickens. Female Xinguang yellow-feathered chickens (n = 1,080, aged 1 d) were randomly distributed to 6 treatments, each with 6 replicates of 30 birds. Chickens were fed diets with 6 levels of total Ile (6.8, 7.6, 8.4, 9.2, 10.0, and 10.8 g/kg) for 30 d. The average daily gain and feed conversion ratio were improved with dietary Ile levels (P < 0.05). Plasma uric acid content and glutamic-oxalacetic transaminase activity were linearly and quadratically decreased with increasing dietary Ile inclusion (P < 0.05). Dietary Ile level had a linear (P < 0.05) or quadratic (P < 0.05) effect on the jejunal expression of ribosomal protein S6 kinase B1 and eukaryotic translation initiation factor 4E binding protein 1. The relative expression of jejunal 20S proteasome subunit C2 and ileal muscle ring finger-containing protein 1 decreased linearly (P < 0.05) and quadratically (P < 0.05) with increasing dietary Ile levels. Dietary Ile level had a linear (P = 0.069) or quadratic (P < 0.05) effect on the gene expression of solute carrier family 15 member 1 in jejunum and solute carrier family 7 member 1 in ileum. In addition, bacterial 16S rDNA full-length sequencing showed that dietary Ile increased the cecal abundances of the Firmicutes phylum, and Blautia, Lactobacillus, and unclassified_Lachnospiraceae genera, while decreased that of Proteobacteria, Alistipes, and Shigella. Dietary Ile levels affected growth performance and modulated gut microbiota in yellow-feathered chickens. The appropriate level of dietary Ile can upregulate the expression of intestinal protein synthesis-related protein kinase genes and concomitantly inhibit the expression of proteolysis-related cathepsin genes.
Collapse
Affiliation(s)
- D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Q L Fan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - S Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - H K Ei-Senousey
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - A M Fouad
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - X J Lin
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - X L Dong
- CJ International Trading Co., Ltd., Shanghai 201107, China
| | - Y F Deng
- CJ International Trading Co., Ltd., Shanghai 201107, China
| | - S J Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - C T Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Z Y Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - S Q Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| |
Collapse
|
5
|
Humphrey DC, Haydon K, Greiner LL. Evaluation of branched-chain amino acid interactions in 10 to 20 kg nursery pigs using a central composite design. J Anim Sci 2023; 101:skad253. [PMID: 37527486 PMCID: PMC10503536 DOI: 10.1093/jas/skad253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023] Open
Abstract
Two groups of 240 pigs (PIC 337 × 1050, PIC Genus, Hendersonville, TN) were used to investigate the interactions between leucine, isoleucine, and valine on the growth performance of approximately 10 to 20 kg nursery pigs. At weaning, pigs were placed into 40 pens with three barrows and three gilts per pen and fed a common diet for 3 wk. On day 21 postweaning, pens were randomly assigned to 1 of 15 dietary treatments in a central composite design. Diets were formulated to various levels of standardized ileal digestible (SID) Leu, Ile, and Val by supplementing L-Leu, L-Ile, and L-Val. Levels of the branched-chain amino acids, expressed as ratios to SID Lys, ranged from 98% to 180%, 46% to 64%, and 51% to 78% for Leu, Ile, and Val, respectively. Diets were formulated to be iso-Lys, isonitrogenous, and isocaloric. Pig weights and feed intake were measured for the 21-d experiment to calculate average daily gain (ADG), average daily feed intake (ADFI), and feed efficiency (G:F). Growth performance data were analyzed using the lm() function in R version 4.2.2 (R Core Team, 2022). The second-order polynomial model included the linear and quadratic effects of Leu, Ile, and Val, their three two-way interactions, and initial body weight. Pen was the experimental unit, and parameters were considered significant at P ≤ 0.10. A linear and quadratic effect of Val was observed for ADG and G:F (P < 0.001). There was an interaction between Leu and Ile for ADG (P = 0.069) and G:F (P = 0.032), where increasing Leu and decreasing Ile, and the inverse, improved ADG and G:F. However, growth and efficiency were negatively impacted as Leu and Ile increased in the diet. There was an interaction between Leu and Val for ADFI (P = 0.060), where Leu negatively impacted feed intake at low levels of Val but had little impact as Val increased above NRC (2012) recommendations. In conclusion, Val linearly and quadratically impacted ADG and G:F, regardless of Leu and Ile levels in the diet, while ADG and G:F were reduced with high levels of Leu and Ile, which was resolved as either Leu or Ile was reduced. Furthermore, ADFI was negatively impacted by increased Leu when Val was below NRC (2012) recommendations but was not affected by Leu at higher Val levels. Together, the results of this experiment emphasize the complexity of amino acid metabolism in nursery pigs and the importance of considering potential interactions among amino acids when conducting requirement studies.
Collapse
Affiliation(s)
- Dalton C Humphrey
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - Laura L Greiner
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
6
|
Determination of the Optimal In-Feed Amino Acid Ratio for Japanese Quail Breeders Based on Utilization Efficiency. Animals (Basel) 2022; 12:ani12212953. [PMID: 36359076 PMCID: PMC9656694 DOI: 10.3390/ani12212953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Breeder reproductive responses are optimized if nutritional, environmental, and health requirements are adequately met. Thus, the ideal concentration of amino acids in the diet must be obtained to prevent excess or deficiency to the animal. This may occur due to the inefficiency in the production or excessive excretion of nitrogen. Therefore, it is necessary to determine the optimal relationship for this nutrient category. These results contribute to ensuring optimal ratios of essential amino acids in the diets of Japanese quail breeders based on amino acid efficiency. Abstract The description of the genetic potential is the first step to estimating amino acid requirements and the ideal amino acid relation (IAAR). The aim of this study was to estimate the parameters that describe the daily maximum theoretical nitrogen retention (NRmaxT, mg/BWkg0.67), daily nitrogen maintenance requirement (NMR, mg/BWkg0.67), protein quality (b), dietary efficiency of the limiting amino acid (bc−1) and determine the lysine requirement and the IAAR for Japanese quail breeders. Two nitrogen balance assays were performed, one assay using 49 quails distributed in seven treatments (protein levels between 70.1 and 350.3 g/kg) and seven replicates and other assay to determine the IAAR by the use of bc−1, 12 treatments and 10 replicate, with a control diet (CD) and 11 treatments that had limited essential amino acids by providing only 60% of the CD. The values obtained for NRmaxT, NMR, b and bc−1 were 3386.61, 0.000486 and 0.000101, respectively. The daily intake of Lys was 291 mg/bird day. Lys was set at 100% for determining the IAAR: 87, 67, 21, 117, 96, 66, 142, 39, and 133 for Met + Cys, Thr, Trp, Arg, Val, Ile, Leu, His, and Phr + Tyr, respectively, for Japanese quail breeders.
Collapse
|
7
|
Teyssier JR, Brugaletta G, Sirri F, Dridi S, Rochell SJ. A review of heat stress in chickens. Part II: Insights into protein and energy utilization and feeding. Front Physiol 2022; 13:943612. [PMID: 36003648 PMCID: PMC9393371 DOI: 10.3389/fphys.2022.943612] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022] Open
Abstract
With the growing global demand for animal protein and rising temperatures caused by climate change, heat stress (HS) is one of the main emerging environmental challenges for the poultry industry. Commercially-reared birds are particularly sensitive to hot temperatures, so adopting production systems that mitigate the adverse effects of HS on bird performance is essential and requires a holistic approach. Feeding and nutrition can play important roles in limiting the heat load on birds; therefore, this review aims to describe the effects of HS on feed intake (FI) and nutrient digestibility and to highlight feeding strategies and nutritional solutions to potentially mitigate some of the deleterious effects of HS on broiler chickens. The reduction of FI is one of the main behavioral changes induced by hot temperatures as birds attempt to limit heat production associated with the digestion, absorption, and metabolism of nutrients. Although the intensity and length of the heat period influences the type and magnitude of responses, reduced FI explains most of the performance degradation observed in HS broilers, while reduced nutrient digestibility appears to only explain a small proportion of impaired feed efficiency following HS. Targeted feeding strategies, including feed restriction and withdrawal, dual feeding, and wet feeding, have showed some promising results under hot temperatures, but these can be difficult to implement in intensive rearing systems. Concerning diet composition, feeding increased nutrient and energy diets can potentially compensate for decreased FI during HS. Indeed, high energy and high crude protein diets have both been shown to improve bird performance under HS conditions. Specifically, positive results may be obtained with increased added fat concentrations since lipids have a lower thermogenic effect compared to proteins and carbohydrates. Moreover, increased supplementation of some essential amino acids can help support increased amino acid requirements for maintenance functions caused by HS. Further research to better characterize and advance these nutritional strategies will help establish economically viable solutions to enhance productivity, health, welfare, and meat quality of broilers facing HS.
Collapse
Affiliation(s)
- Jean-Rémi Teyssier
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Giorgio Brugaletta
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Samuel J. Rochell
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
8
|
Kriseldi R, Silva M, Lee J, Adhikari R, Williams C, Corzo A. Understanding the interactive effects of dietary leucine with isoleucine and valine in the modern commercial broiler. Poult Sci 2022; 101:102140. [PMID: 36191517 PMCID: PMC9529509 DOI: 10.1016/j.psj.2022.102140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/04/2022] Open
Abstract
A study was conducted to understand the relationship among dietary branched-chain amino acids (BCAA) on the performance of Ross 344 × 708 male broilers. A total of 2,592 d-old male chicks were randomly placed into 144-floor pens according to a 23 full factorial central composite design (CCD) with 20 treatments (14 treatments and 6 center points). Each treatment consisted of varying digestible Ile:Lys (52 to 75), Val:Lys (64 to 87), and Leu:Lys (110 to 185) ratios. Birds and feed were weighed at 20 and 34 d of age to determine body weight gain (BWG), feed intake, and feed conversion ratio (FCR). At 35 d of age, feather amino acid composition and carcass characteristics were evaluated. Data were analyzed as CCD using the surface response option of JMP v. 15. Body weight gain (1,332 g; P < 0.001; R2 = 0.93) and FCR (1.54; P = 0.002; R2 = 0.88) were optimized at the lowest Leu:Lys ratio (110) with moderate Val:Lys (78 to 79) and Ile:Lys (65 to 66) ratios. Poorer BWG and FCR were observed as Leu:Lys ratio increased while increasing Val:Lys and Ile:Lys ratios alleviated the poor performance. Carcass (71.5%; P = 0.031; R2 = 0.76) and breast yield (26.7%; P < 0.001; R2 = 0.96) were maximized at the highest Leu:Lys ratio. This effect was complemented by increasing Ile:Lys ratio beyond 68. Lower Ile:Lys and Val:Lys ratios were required to maximize carcass and breast yield at the lowest Leu:Lys ratio. However, this strategy yielded less meat than providing a high Leu:Lys ratio diet. Dietary BCAA had little effect on altering the composition of feather protein and amino acid (P > 0.10). These results suggest that optimum BCAA ratios to Lys may vary depending on response criteria and demonstrate the importance of maintaining proper Val and Ile ratios centered on dietary Leu. Live performance can be optimized in diets with low Leu:Lys ratios; however, meat yield can be enhanced by increasing dietary Leu:Lys along with Ile:Lys ratios.
Collapse
|
9
|
Cobas N, Gómez-Limia L, Franco I, Martínez S. Amino acid profile and protein quality related to canning and storage of swordfish packed in different filling media. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Maynard C, Mullenix G, Maynard C, Lee J, Caldas J, Hiltz J, Orlowski S, Kidd M. Interactions of the branched-chain amino acids. 1. Influence of dietary isoleucine and leucine on the valine requirement of male Cobb MV × 500 broilers for a 29- to 42-day finisher period. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
11
|
Maynard C, Mullenix G, Maynard C, Lee J, Rao S, Butler L, Orlowski S, Kidd M. Interactions of the branched-chain amino acids. 2. Practical adjustments in valine and isoleucine. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
12
|
An evaluation of elevated branched-chain amino acid inclusions on the performance of broiler chickens offered reduced-crude protein, wheat-based diets from 7 to 28 days post-hatch. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Ullah S, Ditta YA, King AJ, Pasha TN, Mahmud A, Majeed KA. Varying isoleucine level to determine effects on performance, egg quality, serum biochemistry, and ileal protein digestibility in diets of young laying hens. PLoS One 2022; 17:e0261159. [PMID: 35061687 PMCID: PMC8782478 DOI: 10.1371/journal.pone.0261159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 11/25/2021] [Indexed: 11/19/2022] Open
Abstract
To ascertain an appropriate level of isoleucine for LSL-LITE layers (23- to 30-week-old), diets containing total isoleucine concentrations (levels) of 0.66 (Control), 0.69, 0.72, 0.75, 0.78, 0.81, and 0.84% were fed as 7 treatments (2730 kcal/kg metabolizable energy) x 7 replicates x 10 birds per replicate. Significance for performance, egg quality, serum biochemistry, and ileal digestibility of protein was determined at P ≤ 0.05. Level, week, and level*week (L*W) were significant for production, egg mass, and feed intake. Level and week were significant for FCR. Week was significant for weight gain. Level was significant for egg weight, specific gravity, and shell thickness; week was also significant for these external egg parameters as well as shape index and proportional shell thickness. L*W was significant for all except shape index. For internal egg measurements, level was significant for proportional yolk, proportional albumen, yolk index, and yolk:albumen. Week was significant for internal egg parameters while L*W significantly affected Haugh unit, proportional albumen weight, yolk index, albumen index, and yolk color. Level was significant for globulin and glucose in serum. Isoleucine at 0.72%, 0.81%, and 0.84% produced the lowest FCR, an important standard in the poultry industry. Considering the low FCR of 1.45 and cost for inclusion as a dietary ingredient, 0.72% isoleucine was chosen for further studies with varying quantities of other branched chain amino acids in diets for young laying hens.
Collapse
Affiliation(s)
- S. Ullah
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Y. A. Ditta
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - A. J. King
- Department of Animal Science, University of California, Davis, Davis, CA, United States of America
| | - T. N. Pasha
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - A Mahmud
- Department of Poultry Production, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - K. A. Majeed
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
14
|
Kim WK, Singh AK, Wang J, Applegate T. Functional role of branched chain amino acids in poultry: a review. Poult Sci 2022; 101:101715. [PMID: 35299066 PMCID: PMC8927823 DOI: 10.1016/j.psj.2022.101715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 01/08/2023] Open
Abstract
This review provides insight into the effects of the branched-chain amino acids (BCAA: leucine, isoleucine, and valine) on the growth, production performance, immunity, and intestinal health of poultry. Besides providing nitrogen substrates and carbon framework for energy homeostasis and transamination, BCAA also function as signaling molecules in the regulation of glucose, lipid, and protein synthesis via protein kinase B and as a mechanistic target of the rapamycin (AKT-mTOR) signaling pathway that is important for muscle accretion. The level of leucine is generally high in cereals and an imbalance in the ratio among the 3 BCAA in a low protein diet would produce a negative effect on poultry growth performance. This occurs due to the structural similarity of the 3 BCAA, which leads to metabolic competition and interference with the enzymatic degradation pathway. Emerging evidence shows that the inclusion of BCAA is essential for the proper functioning of the innate and adaptive immune system and the maintenance of intestinal mucosal integrity. The recommended levels of BCAA for poultry are outlined by NRC (1994), but commercial broilers and laying hen breed standards also determine their own recommended levels. In this review, it has been noted that the requirement for BCAA is influenced by the diet type, breed, and age of the birds. Additionally, several studies focused on the effects of BCAA in low protein diets as a strategy to reduce nitrogen excretion. Notably, there is limited research on the inclusion ratio of BCAA in a supplemental form as compared to the ingredient-bound form which would affect the dynamics of utilization in different disease-challenged conditions, especially those affecting digesta passage ratio. In summary, this review encompasses the role of BCAA as functional AA and discusses their physiological effects on the productivity and health of poultry. The observations and interpretations of this review can guide future research to adjust the recommended levels of BCAA in feeding programs in the absence of subtherapeutic antibiotics in poultry.
Collapse
Affiliation(s)
- Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| | - Amit Kumar Singh
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Jinquan Wang
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Todd Applegate
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
15
|
Comparative meta-analysis of broiler and piglet response to dietary valine taking into account isoleucine and leucine interactions. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Zhang L, Li F, Guo Q, Duan Y, Wang W, Yang Y, Yin Y, Gong S, Han M, Yin Y. Different Proportions of Branched-Chain Amino Acids Modulate Lipid Metabolism in a Finishing Pig Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7037-7048. [PMID: 34110799 DOI: 10.1021/acs.jafc.1c02001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the effect of the supplementation of branched-chain amino acids (BCAAs) at different ratios in protein restriction diets on lipid metabolism in a finishing pig model. The BCAA supplementation (leucine/isoleucine/valine = 2:1:1 and 2:1:2) ameliorated the poor growth performance and carcass characteristics, particularly high fat mass caused by a protein-restricted diet. Serum adiponectin increased while leptin decreased in BCAA diets in comparison to the 12% CP group. BCAA supplementation also increased the low-protein expression of AMPK and SIRT1 caused by protein restriction. The mRNA and protein levels of peroxisome proliferation-activated receptor-γ (PPARγ) and acetyl-CoA carboxylase (ACC) were highest in the protein-restricted group and lowered in the 2:1:1 or 2:1:2 group. In conclusion, BCAAs supplemented in an adequate ratio range of 2:1:1 to 2:1:2 (2:1:2 is recommended) in reduced protein diets could modulate lipid metabolism by accelerating the secretion of adipokines and fatty acid oxidation.
Collapse
Affiliation(s)
- Lingyu Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Wenlong Wang
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha 410018, Hunan, China
| | - Yuhuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Yunju Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Saiming Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Mengmeng Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| |
Collapse
|