1
|
Perim FDS, da Silva WJ, de Souza DO, Ulhoa CJ, Rezende CF, dos Santos LF, dos Santos FR, Silva FG, Minafra CS. Effects of the Addition of Trichoderma reesei Cellulase to Broiler Chicken Diets for a 21-Day Period. Animals (Basel) 2024; 14:1467. [PMID: 38791683 PMCID: PMC11117215 DOI: 10.3390/ani14101467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The cellulose present in the cell wall of vegetables prevents the greater release of nutrients to the animal. Therefore, the use of the cellulase enzyme is a viable strategy as it is capable of breaking cellulose bonds, releasing nutrients such as glucose, increasing dietary energy, and thus improving the productive performance of birds. Trichoderma reesei is efficient in the production of cellulase, which is produced via submerged fermentation followed by purification, formulation, and drying. Therefore, an experiment was carried out using 240 male broilers of the Cobb-500® lineage to verify the effects resulting from the addition of powdered (500 g/t and 1000 g/t) and liquid (500 mL/t) cellulase over a period of 1 to 21 days. A completely randomized experimental design was used, consisting of four treatments with six replications and ten birds per replication that were housed in an experimental cage. It was observed that performance and digestibility results were significantly different with cellulase supplementation. Also, the relative weight of the large intestine in the period between one and seven days increased when cellulase was added at 1000 g/t. In the period of between eight and 14 days of life, the birds that consumed only the basal diet obtained higher levels of liver protein than those that received the treatments with the addition of the enzyme. However, 15 and 21 days, the consumed feed effect did not occur between thus, it is not conclusive whether hepatotoxicity occurs with the addition of cellulase. For the blood parameters, at 21 days, the diets with added cellulase were not significantly different regarding electrolytes. It was concluded that this cellulase produced by Trichoderma reesei can be included in the animals' diet.
Collapse
Affiliation(s)
- Francisco dos Santos Perim
- Goiano Federal Institute of Education Science and Technology (Instituto Federal Goiano—IF Goiano), Rio Verde 75901970, Brazil; (F.d.S.P.); (D.O.d.S.); (C.F.R.); (L.F.d.S.); (F.R.d.S.); (F.G.S.)
| | - Weslane Justina da Silva
- Program Postgraduate in Biotechnology and Biodiversity of Goiás—PGBB/UFG, Federal University of Goiás, Samambaia Campus, Goiânia 74001240, Brazil;
| | - Dênia Oliveira de Souza
- Goiano Federal Institute of Education Science and Technology (Instituto Federal Goiano—IF Goiano), Rio Verde 75901970, Brazil; (F.d.S.P.); (D.O.d.S.); (C.F.R.); (L.F.d.S.); (F.R.d.S.); (F.G.S.)
| | - Cirano José Ulhoa
- Department of Biochemistry and Molecular Biology, Biological Sciences Institute, Federal University of Goiás, Samambaia Campus, Goiânia 74001240, Brazil;
| | - Camila Ferreira Rezende
- Goiano Federal Institute of Education Science and Technology (Instituto Federal Goiano—IF Goiano), Rio Verde 75901970, Brazil; (F.d.S.P.); (D.O.d.S.); (C.F.R.); (L.F.d.S.); (F.R.d.S.); (F.G.S.)
| | - Ludmilla Faria dos Santos
- Goiano Federal Institute of Education Science and Technology (Instituto Federal Goiano—IF Goiano), Rio Verde 75901970, Brazil; (F.d.S.P.); (D.O.d.S.); (C.F.R.); (L.F.d.S.); (F.R.d.S.); (F.G.S.)
| | - Fabiana Ramos dos Santos
- Goiano Federal Institute of Education Science and Technology (Instituto Federal Goiano—IF Goiano), Rio Verde 75901970, Brazil; (F.d.S.P.); (D.O.d.S.); (C.F.R.); (L.F.d.S.); (F.R.d.S.); (F.G.S.)
| | - Fabiano Guimarães Silva
- Goiano Federal Institute of Education Science and Technology (Instituto Federal Goiano—IF Goiano), Rio Verde 75901970, Brazil; (F.d.S.P.); (D.O.d.S.); (C.F.R.); (L.F.d.S.); (F.R.d.S.); (F.G.S.)
| | - Cibele Silva Minafra
- Goiano Federal Institute of Education Science and Technology (Instituto Federal Goiano—IF Goiano), Rio Verde 75901970, Brazil; (F.d.S.P.); (D.O.d.S.); (C.F.R.); (L.F.d.S.); (F.R.d.S.); (F.G.S.)
| |
Collapse
|
2
|
Tian S, Tang W, Zhong Z, Wang Z, Xie X, Liu H, Chen F, Liu J, Han Y, Qin Y, Tan Z, Xiao Q. Identification of Runs of Homozygosity Islands and Functional Variants in Wenchang Chicken. Animals (Basel) 2023; 13:ani13101645. [PMID: 37238076 DOI: 10.3390/ani13101645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Wenchang chickens, a native breed in the Hainan province of China, are famous for their meat quality and adaptability to tropical conditions. For effective management and conservation, in the present study, we systematically investigated the characteristics of genetic variations and runs of homozygosity (ROH) along the genome using re-sequenced whole-genome sequencing data from 235 Wenchang chickens. A total of 16,511,769 single nucleotide polymorphisms (SNPs) and 53,506 ROH segments were identified in all individuals, and the ROH of Wenchang chicken were mainly composed of short segments (0-1 megabases (Mb)). On average, 5.664% of the genome was located in ROH segments across the Wenchang chicken samples. According to several parameters, the genetic diversity of the Wenchang chicken was relatively high. The average inbreeding coefficient of Wenchang chickens based on FHOM, FGRM, and FROH was 0.060 ± 0.014, 0.561 ± 0.020, and 0.0566 ± 0.01, respectively. A total of 19 ROH islands containing 393 genes were detected on 9 different autosomes. Some of these genes were putatively associated with growth performance (AMY1a), stress resistance (THEMIS2, PIK3C2B), meat traits (MBTPS1, DLK1, and EPS8L2), and fat deposition (LANCL2, PPARγ). These findings provide a better understanding of the degree of inbreeding in Wenchang chickens and the hereditary basis of the characteristics shaped under selection. These results are valuable for the future breeding, conservation, and utilization of Wenchang and other chicken breeds.
Collapse
Affiliation(s)
- Shuaishuai Tian
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Wendan Tang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Ziqi Zhong
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Ziyi Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Xinfeng Xie
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Hong Liu
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Fuwen Chen
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Jiaxin Liu
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Yuxin Han
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Yao Qin
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Zhen Tan
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Qian Xiao
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Perz K, Kaczmarek SA, Nowaczewski S, Cowieson AJ, Hejdysz M. The Effect of Exogenous Amylase Supplementation on the Nutritional Value of Pea ( Pisum sativum L.) for Broiler Chickens. Animals (Basel) 2023; 13:ani13050816. [PMID: 36899673 PMCID: PMC10000111 DOI: 10.3390/ani13050816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
The present study aimed to investigate whether the exogenous addition of amylase enhances the nutritional value of pea seeds for broiler chickens. In total, 84 1-day-old male broiler chickens (Ross 308) were used for the experimental study. During the first phase of the experiment (1-16 d), all birds in each treatment were fed with a corn-soybean meal reference diet. After this time, the first treatment (control) was still fed the reference diet. In the second and third treatment, 50% of the reference diet was replaced with 50% pea seeds. In addition, the third treatment was supplemented with exogenous amylase. Animal excreta were collected on 21 d and 22 d of the experiment. The birds were sacrificed at the end of the experiment (23 d), and samples of ileum content were collected. The experimental results showed that the exogenous addition of amylase significantly improved (p < 0.05) the apparent ileal digestibility (AID) of the crude protein (CP), starch, and dry matter (DM) of pea. In addition, an improvement in the AID of essential amino acids in pea seeds (except Phe) was observed. The trend in the AMEN values was also noted (p = 0.076). It can be concluded that supplementation with exogenous amylase improves the nutritional value of pea seeds in broiler chicken nutrition.
Collapse
Affiliation(s)
- Katarzyna Perz
- Department of Animal Breeding and Product Quality Assessment, Poznan University of Life Sciences, Słoneczna 1, 62-002 Suchy Las, Poland
- Correspondence: (K.P.); (M.H.)
| | | | - Sebastian Nowaczewski
- Department of Animal Breeding and Product Quality Assessment, Poznan University of Life Sciences, Słoneczna 1, 62-002 Suchy Las, Poland
| | | | - Marcin Hejdysz
- Department of Animal Breeding and Product Quality Assessment, Poznan University of Life Sciences, Słoneczna 1, 62-002 Suchy Las, Poland
- Correspondence: (K.P.); (M.H.)
| |
Collapse
|
4
|
Perz K, Kaczmarek S, Nowaczewski S, Cowieson A, Jarosz Ł, Ciszewski A, Hejdysz M. The effect of reduction of resistant starch content of faba bean and pea by amylase supplementation on performance, nutrient digestibility, and sialic acid execration of broiler chickens. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
5
|
Jiang Q, Wu W, Wan Y, Wei Y, Kawamura Y, Li J, Guo Y, Ban Z, Zhang B. Energy values evaluation and improvement of soybean meal in broiler chickens through supplemental mutienzyme. Poult Sci 2022; 101:101978. [PMID: 35793599 PMCID: PMC9260631 DOI: 10.1016/j.psj.2022.101978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
This study measured the metabolizable energy of soybean meal (SBM) and evaluated effects of soybean meal specific enzymes supplementation in corn-soybean diets on growth performance, intestinal digestion properties and energy values of 28-day-old broilers. A total of 336 one-day-old male AA broiler chickens were distributed to 7 groups in a completely random design. The birds were given 7 diets containing 6 diets with different combined soybean meals and a fasting treatment, 8 replicates per treatment and 6 birds per replicate (Trial 1). A total of 672 one-day-old male AA broiler chickens were randomly allocated to 7 dietary treatments including a control diet and 6 diets supplemented with 300 mg/kg α-galactosidase, 200 mg/kg β-mannanase, and 300 mg/kg protease individually or in combination (Trial 2). Apparent metabolizable energy (AME) of broilers was measured from d 25 to 27 in both trial 1 and trial 2. The results showed that AME values of combined soybean meals averaged 2,894 kcal/kg. Dietary β-mannanase and protease supplementation increased body weight gain (P < 0.05) during d 0 to 14, whereas did not affect the growth performance (P > 0.05) during d 14 to 28. Addition of β-mannanase in combination with other enzymes significantly increased lipase and trypsin content (P < 0.05) in ileum. In addition, dietary β-mannanase and protease supplementation individually or in combination enhanced trypsin enzyme content in jejunum (P < 0.05). The β-mannanase enzyme enhanced villus height and villus height to crypt depth ratio (P < 0.05) of ileum compared with control diet. Moreover, supplementation of enzyme except for protease enhanced raffinose and stachyose degradation ratio (P < 0.05). Dietary β-mannanase supplementation individually or in combination enhanced AME and AMEn values (P < 0.05). This study demonstrated that dietary enzyme supplementation especially β-mannanase improved intestinal digestion properties and contributed to high energy values.
Collapse
Affiliation(s)
- Qiuyu Jiang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Wei Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yan Wan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yi Wei
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | | | - Junyou Li
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, 319-0206, Japan
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Zhibin Ban
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China; Laboratory of Animal Nutrition Metabolism, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin 136100, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Influence of Broiler Age on the Apparent Metabolizable Energy of Cereal Grains Determined Using the Substitution Method. Animals (Basel) 2022; 12:ani12020183. [PMID: 35049805 PMCID: PMC8772686 DOI: 10.3390/ani12020183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Knowledge of the metabolizable energy content of cereal grains is critical for their economical and sustainable use and precise poultry feed formulation. The current practice in the feed industry is to use the apparent metabolizable energy (AME) or nitrogen-corrected AME (AMEn) values of ingredients from prediction equations or reference tables, which have been estimated using (5-week-old birds). Several factors, including age, ingredient type, and methodology, can affect the AMEn value of ingredients in poultry. Currently, there are no data available on the age effect, from hatch to 6 weeks of age, on the AMEn of grains in broilers. The aim of the present study was to investigate the influence of age on the AMEn of wheat, sorghum, barley, and corn from hatching to day 42 using the substitution method. The results showed that the age influence on the AMEn of cereal grains was grain dependent. In wheat and sorghum, AMEn was influenced by age, while the AMEn of barley and corn were unaffected. Poultry nutritionists might need to consider age-dependent AME or AMEn values for some grains in feed formulations. Abstract The present study investigated the influence of broiler age on the AMEn of wheat, sorghum, barley, and corn using the substitution method at six different ages (days 7, 14, 21, 28, 35, and 42). A corn-soybean meal basal diet was formulated and, the test diets were developed by replacing (w/w) 300 g/kg of the basal diet with wheat, sorghum, barley, or corn. Bird age influenced (p < 0.001) the AMEn of wheat and sorghum but had no effect (p > 0.05) on those of barley and corn. The AMEn of wheat increased with age (p < 0.001) from 12.53 MJ/kg DM in week 1 to 14.55 MJ/kg DM in week 2, then declined subsequently, but no linear or quadratic responses were observed. The AMEn of sorghum demonstrated a quadratic response (p < 0.05), increasing from 12.84 MJ/kg DM in week 1 to 13.95 MJ/kg DM in week 2, and then plateauing to week 6. Overall, the present results suggest that the effect of broiler age on the AMEn varies depending on the grain type. The current data suggest that the application of age-dependent AME or AMEn of wheat and sorghum will lead to more precise feed formulations.
Collapse
|
7
|
Liu Y, Zeng D, Qu L, Wang Z, Ning Z. Multi-Enzyme Supplementation Modifies the Gut Microbiome and Metabolome in Breeding Hens. Front Microbiol 2021; 12:711905. [PMID: 34925250 PMCID: PMC8678520 DOI: 10.3389/fmicb.2021.711905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Laying and reproductive performance, egg quality, and disease resistance of hens decrease during the late laying period. Exogenous enzymes promote nutrient digestibility and utilization and improve the intestinal environment. However, the specific regulation of the gut microbiome and metabolome by exogenous enzymes remains unelucidated. This study was conducted to evaluate effects of dietary multi-enzyme supplementation on egg and reproductive performance, egg quality, ileum microbiome, and metabolome of breeders. Here, 224 Hy-Line Brown breeding hens (55 weeks old) were randomly allocated to two groups: dietary controls fed basal diet (DC), and test hens fed 0.2 g/kg corn enzyme diet (CE). Serum levels of total protein, globulin, immunoglobulin Y, and antibodies against the Newcastle disease virus and avian influenza H9 strain were significantly increased (p < 0.05). Egg albumen height, Haugh unit, and fertilization and hatching rates were also significantly increased (p < 0.05) in the CE-fed group. 16S rRNA sequence analysis showed that CE strongly affected both α- and β-diversity of the ileal microbiota. LEfSe analysis revealed that the potentially beneficial genera Lactobacillus, Enterococcus, Faecalicoccus, and Streptococcus were enriched as biomarkers in the CE-fed group. Microbial functional analysis revealed that the functional genes associated with harmful-substance biodegradation was significantly increased in the CE-fed group. Additionally, Spearman correlation analysis indicated that changes in microbial genera were correlated with differential metabolites. In summary, dietary multi-enzyme addition can improve egg quality, humoral immunity, and reproductive performance and regulate the intestinal microbiome and metabolome in breeders. Therefore, multi-enzymes could be used as feed additive to extend breeder service life.
Collapse
Affiliation(s)
- Yuchen Liu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dan Zeng
- Huayu Agricultural Science and Technology Co., Ltd., Handan, China
| | - Lujiang Qu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Liu Y, Liu S, Jiang G, Dai Q. Optimization of exogenous carbohydrases supplemented in broiler diets using in vitro simulated gastrointestinal digestion and response surface methodology. PLoS One 2021; 16:e0259865. [PMID: 34780535 PMCID: PMC8592445 DOI: 10.1371/journal.pone.0259865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/27/2021] [Indexed: 11/19/2022] Open
Abstract
The present study aimed to explore the optimal zymogram of combination of 6 carbohydrases (glucoamylase, pullulanase, maltase, thermostable α-amylase, medium temperature α-amylase, and cold-active α-amylase) supplemented in corn-soybean based diet of broilers aged 1 to 3 wk for the maximum starch digestibility, by using in vitro simulated gastrointestinal digestion and response surface method. The third generation of simulated monogastric animal digestion system was used for in vitro digestion experiment. By using single factor completely random design, the optimal supplement levels of single carbohydras were determined by the reducing sugar release amount and improved dry matter digestibility, which were the parameters representing the starch digestibility of the diet. Additionally, Box-Behnken response surface method was used to predict the optimal combination of 6 carbohydrases. The results showed that the optimistic zymogram of 6 carbohydrases in corn-soybean based diet for broilers aged 1 to 3 wk were 297.39 U/g glucoamylase, 549.72 U/g pullulanase, 3.01 U/g maltase, 1,455.73 U/g thermostable α-amylase, 278.64 U/g medium temperature α-amylase, and 1,985.97 U/g cold-active α-amylase, and the associated reduced sugar release amount and improved dry matter digestibility were 215.98 mg/g, and 6.23%, respectively. Furthermore, we conducted in vitro digestion experiments with diets supplemented with the predicted optimistic zymogram and found that the experimental reduced sugar release amount and improved dry matter digestibility were 219.26 mg/g and 6.31% respectively, whose errors to the predicted optimistic reducing sugar release amount and the improved dry matter digestibility were 1.05% and 1.02%. To sum up, the predicted optimal zymogram of 6 carbohydrases in the present study were capable to improve the starch digestibility in diet for broilers aged 1 to 3 wk, which were represented by increased reduced sugar release amount and improved dry matter digestibility.
Collapse
Affiliation(s)
- Yang Liu
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, China
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| | - Shengli Liu
- Shandong Lonct Enzymes Co., Ltd., Linyi, China
| | - Guitao Jiang
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, China
| | - Qiuzhong Dai
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, China
| |
Collapse
|