1
|
Zhang L, Song Z, Li P, Song X, Tang X, Hu D. Molecular characterization and immune protective efficacy of 3 Eimeria tenella antigens. Poult Sci 2024; 103:103234. [PMID: 37980744 PMCID: PMC10685023 DOI: 10.1016/j.psj.2023.103234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/21/2023] Open
Abstract
Avian coccidiosis caused by Eimeria is a serious parasitic disease that poses a threat to the poultry industry. Currently, prevention and treatment mainly rely on the administration of anticoccidials and live oocyst vaccines. However, the prevalence of drug resistance and the inherent limitations of live vaccines have driven the development of novel vaccines. In this study, the surface protein (Et-SAG14), a previously annotated rhoptry protein (Eten5-B), and a gametocyte phosphoglucomutase (Et-PGM1) were characterized and the vaccine potential of the recombinant proteins were evaluated. Et-SAG14 was dispersed in the form of particles in the sporozoite and merozoite stages, whereas Et-PGM1 was distributed in the apical part of the sporozoite and merozoite stages. The previously annotated rhoptry Eten5-B was found not to be located in the rhoptry but distributed in the cytoplasm of sporozoites and merozoites. Immunization with rEten5-B significantly elevated host interferon gamma (IFN-γ) and interleukin 10 (IL-10) transcript levels and exhibited moderate anticoccidial effects with an anticoccidial index (ACI) of 161. Unexpectedly, both recombinant Et-SAG14 and Et-PGM1 immunization significantly reduced host IFN-γ and IL-10 transcription levels, and did not show protection against E. tenella challenge (ACI < 80). These results suggest that the rEten5-B protein can trigger immune protection against E. tenella and may be a potential and effective subunit vaccine for the control of coccidiosis in poultry.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhixuan Song
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Peiyao Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xingju Song
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Xinming Tang
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dandan Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China.
| |
Collapse
|
2
|
Lee Y, Lillehoj HS. Development of a new immunodiagnostic tool for poultry coccidiosis using an antigen-capture sandwich assay based on monoclonal antibodies detecting an immunodominant antigen of Eimeria. Poult Sci 2023; 102:102790. [PMID: 37302331 PMCID: PMC10404777 DOI: 10.1016/j.psj.2023.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/01/2023] [Accepted: 05/13/2023] [Indexed: 06/13/2023] Open
Abstract
This study was conducted to develop an antigen-capture ELISA that detects an immunodominant antigen of Eimeria, 3-1E which is present in all Eimeria species, using a set of 3-1E-specific mouse monoclonal antibodies (mAbs). Highly sensitive 3-1E-specific antigen-capture ELISA was established using compatible mAb pairs (#318 and #320) selected from 6 mAbs (#312, #317, #318, #319, #320, and #323) with high binding activity against recombinant 3-1E protein. These anti-3-1E mAbs specifically recognized E. tenella sporozoites and a higher level of 3-1E was detected in the lysate of sporozoites than in sporocysts. Immunofluorescence assay (IFA) using 2 mAbs (#318 and #320) showed specific staining around the membrane of E. tenella sporozoites. In order to measure the changes in the 3-1E level during in coccidiosis, serum, feces, jejunal, and cecal contents were individually collected daily for 7-days postinfection (dpi) with E. maxima and E. tenella. The new ELISA was sensitive and specific for 3-1E detection in all samples collected daily from E. maxima- and E. tenella-infected chickens for a week, and the detection sensitivity ranges were 2 to 5 ng/mL and 1 to 5 ng/mL in serum, 4 to 25 ng/mL and 4 to 30 ng/mL in feces, 1 to 3 ng/mL and 1 to 10 ng/mL in cecal contents, and 3 to 65 ng/mL and 4 to 22 ng/mL in jejunal contents. Following coccidiosis, the overall 3-1E levels started to increase from 4 dpi, and the highest production was shown on 5 dpi. Among the samples collected from Eimeria-infected chickens, the highest detection level was found in the jejunal contents of E. maxima-infected chickens. Furthermore, the level of IFN-γ in serum was significantly (P < 0.05) increased from 3 dpi and peaked on 5 dpi post E. maxima infection. Post E. tenella infection, the level of IFN-γ in serum gradually (P < 0.05) increased from 2 to 5 dpi and plateaued at 7 dpi. The level of TNF-α in serum was rapidly (P < 0.05) increased from 4 dpi and those levels were kept until 7 dpi post both Eimeria infections (E. maxima and E. tenella). More importantly, the daily changes in the 3-1E levels in different samples from E. maxima- and E. tenella-infected chickens were effectively monitored with this new antigen-capture ELISA. Therefore, this new immunoassay is a sensitive diagnostic tool to monitor coccidiosis in a large field population in the commercial poultry farms before clinical symptoms develop using serum, feces, and gut samples during the entire period of infection cycle starting from 1 d after infection.
Collapse
Affiliation(s)
- Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
| |
Collapse
|
3
|
Britez JD, Rodriguez AE, Di Ciaccio L, Marugán-Hernandez V, Tomazic ML. What Do We Know about Surface Proteins of Chicken Parasites Eimeria? Life (Basel) 2023; 13:1295. [PMID: 37374079 DOI: 10.3390/life13061295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Poultry is the first source of animal protein for human consumption. In a changing world, this sector is facing new challenges, such as a projected increase in demand, higher standards of food quality and safety, and reduction of environmental impact. Chicken coccidiosis is a highly widespread enteric disease caused by Eimeria spp. which causes significant economic losses to the poultry industry worldwide; however, the impact on family poultry holders or backyard production-which plays a key role in food security in small communities and involves mainly rural women-has been little explored. Coccidiosis disease is controlled by good husbandry measures, chemoprophylaxis, and/or live vaccination. The first live vaccines against chicken coccidiosis were developed in the 1950s; however, after more than seven decades, none has reached the market. Current limitations on their use have led to research in next-generation vaccines based on recombinant or live-vectored vaccines. Next-generation vaccines are required to control this complex parasitic disease, and for this purpose, protective antigens need to be identified. In this review, we have scrutinised surface proteins identified so far in Eimeria spp. affecting chickens. Most of these surface proteins are anchored to the parasite membrane by a glycosylphosphatidylinositol (GPI) molecule. The biosynthesis of GPIs, as well as the role of currently identified surface proteins and interest as vaccine candidates has been summarised. The potential role of surface proteins in drug resistance and immune escape and how these could limit the efficacy of control strategies was also discussed.
Collapse
Affiliation(s)
- Jesica Daiana Britez
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | - Anabel Elisa Rodriguez
- Instituto Nacional de Tecnología Agropecuaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | - Lucía Di Ciaccio
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | | | - Mariela Luján Tomazic
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
- Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Ciudad Autónoma de Buenos Aires 1113, Argentina
| |
Collapse
|
4
|
Zifan C, Chaojun Z, Qiaoli P, Qingfeng Z, Yunping D, Huihua Z. Construction of recombinant SAG22 Bacillus subtilis and its effect on immune protection of coccidia. Poult Sci 2023; 102:102780. [PMID: 37276704 PMCID: PMC10258495 DOI: 10.1016/j.psj.2023.102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023] Open
Abstract
Avian coccidiosis causes huge economic losses to the global poultry industry. Vaccine is an important means to prevent and control coccidiosis. In this study, Bacillus subtilis was selected as the expression host strain to express anti Eimeria tenella surface protein SAG22. The synthesized surface protein SAG22 gene fragment of E. tenella was ligated with Escherichia coli-bacillus shuttle vector GJ148 to construct the recombinant vector SAG22-GJ148. And then the recombinant Bacillus strain SAG22-DH61 was obtained by electrotransfer. The results of SDS-PAGE and Western Blot showed that the recombinant protein SAG22 was successfully expressed intracellularly. The immunoprotective effect of recombinant Bacillus strain SAG22-DH61 on broiler chickens was evaluated in 3 identically designed animal experiments. The birds were infected with E. tenella on d 14, 21, and 28, respectively. Each batch of experiments was divided into 4 groups: blank control group (NC), blank control group + infected E. tenella (CON), addition of recombinant SAG22-DH61 strain + infected with E. tenella (SAG22-DH61), addition of recombinant empty vector GJ148-DH61 strain + infected with E. tenella (GJ148-DH61). The animal experiments results showed that the average weight gain of the SAG22-DH61 group was higher than that of the infected control group, and the difference was significant in the d 14 and 28 attack tests (P < 0.05); the oocyst reduction rate of the SAG22-DH61 group was much higher than that of the GJ148-DH61 group (P < 0.05); the intestinal lesion count score of the SAG22-DH61 group was much lower than that of the GJ148-DH61 group (P < 0.05). In addition, the SAG22-DH61 group achieved highly effective coccidia resistance in the d 14 attack test and moderately effective coccidia resistance in both the d 21 and 28 attack tests. In summary, recombinant SAG22 B. subtilis has the potential to become one of the technological reserves in the prevention and control of coccidiosis in chickens in production.
Collapse
Affiliation(s)
- Chen Zifan
- School of Life Science and Engineering, Foshan University, Foshan, 528000, China
| | - Zheng Chaojun
- School of Life Science and Engineering, Foshan University, Foshan, 528000, China
| | - Peng Qiaoli
- School of Life Science and Engineering, Foshan University, Foshan, 528000, China
| | - Zhou Qingfeng
- Guangdong Guangken Animal Husbandry Engineering Research Institute Co., Ltd., Guangzhou, 510000, China
| | - Du Yunping
- Guangdong Guangken Animal Husbandry Engineering Research Institute Co., Ltd., Guangzhou, 510000, China
| | - Zhang Huihua
- School of Life Science and Engineering, Foshan University, Foshan, 528000, China.
| |
Collapse
|
5
|
Yang X, Song X, Liu J, Chen Q, An T, Liu Q. Protection of hatchlings against coccidiosis by maternal antibodies to four recombinant proteins of Eimeria tenella, Eimeria acervulina and Eimeria maxima. Vet Parasitol 2022; 312:109813. [PMID: 36343529 DOI: 10.1016/j.vetpar.2022.109813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Maternally derived IgG antibodies to protective Eimeria antigens have great potential to control chicken coccidiosis and multivalent vaccines are more practical to resist against co-infection with several species of Eimeria under natural conditions. In this study, five good protective antigens of Eimeria species were combined into two combinations based on previous studies, namely C1(EtROPK-Eten5-A, EtGAM22, Ea3-1E and EmGAM56) and C2(EtM2AP and EtGAM22, Ea3-1E and EmGAM56). Then, five antigens were expressed in the Escherichia coli system and purified to inoculate breeding hens. After three times immunization, the specific antibodies could sustain for 11 and 10 weeks in hens' plasma and egg yolk, respectively. Moreover, maternally derived antibodies against recombinant proteins could retain for 14 days in hatchlings' serum. Then, protective efficacies of specific antibodies on hatchlings against mixed infection of E. tenella, E. acervulina and E. maxima were evaluated. The results showed that the hatchlings of the immunized hens had a higher survival rate on day 7 of hatching. Moreover, body weight gains within the hatchlings of immunized hens were higher than those of unvaccinated hens on 7 days (C1: p = 0.0744; C2: p = 0.4020) and 14 days (p < 0.0001). Moreover, hatchlings from vaccinated hens showed significantly alleviated lesion scores in the small intestine and duodenum at day 7 (p < 0.01) and day 14 (C1: p < 0.05). Particularly, the number of oocyst excretion from hatchlings of immunized hens was significantly reduced at day 7 (p < 0.0001) and day 14 (p < 0.0001). Our findings suggest that the maternal immunization with multivalent recombinant vaccines has the potential to be transmission blocking vaccines against mixed infection of Eimeria.
Collapse
Affiliation(s)
- Xu Yang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Xingju Song
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China.
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Qingzhong Chen
- HLINTE Biological Technology Company, Tianjin 301702, PR China.
| | - Tongwei An
- HLINTE Biological Technology Company, Tianjin 301702, PR China.
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
6
|
Meng YJ, Mu BJ, Liu XX, Yu LM, Zheng WB, Xie SC, Gao WW, Zhu XQ, Liu Q. Transcriptional changes in LMH cells induced by Eimeria tenella rhoptry kinase family protein 17. Front Vet Sci 2022; 9:956040. [PMID: 36016802 PMCID: PMC9395702 DOI: 10.3389/fvets.2022.956040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Though a number of Eimeria tenella rhoptry kinase family proteins have been identified, little is known about their molecular functions. In the present study, the gene fragment encoding the matured peptide of E. tenella rhoptry kinase family protein 17 (EtROP17) was used to construct a recombinant vector, followed by transfection into leghorn male hepatoma (LMH) cells. Then, the transcriptional changes in the transfected cells were determined by RNA-seq. The expression of EtROP17 in LMH cells was validated by both Western blot and indirect immunofluorescence analysis. Our analysis showed that EtROP17 altered the expression of 309 genes (114 downregulated genes and 195 upregulated genes) in LMH cells. The quantitative real-time polymerase chain reaction (qRT-PCR) results of the selected differentially expressed genes (DEGs) were consistent with the RNA-seq data. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs were significantly enriched in nine pathways, such as toll-like receptor signaling pathway, ECM-receptor interaction, intestinal immune network for IgA production and focal adhesion. These findings reveal several potential roles of EtROP17, which contribute to understanding the molecular mechanisms underlying the host-parasite interplay.
Collapse
Affiliation(s)
- Yi-Jing Meng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Bing-Jin Mu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xiao-Xin Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Lin-Mei Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Wen-Bin Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Shi-Chen Xie
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Wen-Wei Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Qing Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- *Correspondence: Qing Liu
| |
Collapse
|
7
|
Gumina E, Hall JW, Vecchi B, Hernandez-Velasco X, Lumpkins B, Mathis G, Layton S. Evaluation of a subunit vaccine candidate (Biotech Vac Cox) against Eimeria spp. in broiler chickens. Poult Sci 2021; 100:101329. [PMID: 34333387 PMCID: PMC8342787 DOI: 10.1016/j.psj.2021.101329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 01/13/2023] Open
Abstract
This study evaluated growth performance and cross-protection against Eimeria spp. using a subunit coccidia vaccine in 2 independent challenge experiments. In both trials, chickens were challenged with E. acervulina, E. maxima, and E. tenella oocysts. In Exp 1, 1000-day-old chickens were allocated in one of 2 treatments 1) Control group; 2) Biotech Vac Cox group. The vaccine was orally gavaged on d 2 and 16 of life and coccidia challenge was on d 21. Performance parameters were evaluated on d 21, 35, and 42. On d 34, coccidia lesions were scored. Oocysts per gram of feces (OPG) were evaluated on d 28, 35, and 42. In Exp 2, 900-day-old chickens were assigned in one of 2 treatments 1) Control group; 2) Biotech Vac Cox group. The vaccine was orally gavaged on d 2 and 16 of life and coccidia challenge was on d 21. Performance parameters were evaluated on d 21, 27, 35, and 42, and lesion scores and OPG at d 27. In Exp 1, chickens vaccinated had significantly lower feed intake (FI) at d 21 and feed conversion ratio (FCR) at d 35 compared to control chickens (P < 0.05). Vaccinated chickens showed a significant reduction (P ≤ 0.05) in OPG for E. maxima to nondetectable levels and for all coccidian species at d 42 compared to control chickens. In Exp 2, the chickens vaccinated showed a significant increase in BW, BW gain (BWG) and reduction in FCR on d 27, 35, and 42 (P ≤ 0.05). Vaccinated chickens had significantly lower (P ≤ 0.05) lesion scores for all 3 Eimeria species. Moreover, vaccinated chickens had a reduction in total OPG of 35.50% (P = 0.0739). Studies to evaluate the serological and mucosal immune response are currently being evaluated. This inactivated, orally delivered subunit vaccine offers significant cross-protection to Eimeria spp. and eliminates the needs to treat broilers with live oocysts, enhanced ease of use, and greater biosecurity to producers.
Collapse
Affiliation(s)
- Emanuel Gumina
- Vetanco SA, Villa Martelli B1603, Province of Buenos Aires, Argentina
| | | | - Bruno Vecchi
- Vetanco SA, Villa Martelli B1603, Province of Buenos Aires, Argentina
| | - Xochitl Hernandez-Velasco
- Department of Avian Medicine and Zootechnics, FMVZ, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | | - Greg Mathis
- Southern Poultry Research, Athens, GA 30607, USA
| | - Sherry Layton
- Vetanco SA, Villa Martelli B1603, Province of Buenos Aires, Argentina; Vetanco USA, Saint Paul, MN 55114, USA; BV Science, Lenexa, KS 66219, USA.
| |
Collapse
|
8
|
Juárez-Estrada MA, Gayosso-Vázquez A, Tellez-Isaias G, Alonso-Morales RA. Protective Immunity Induced by an Eimeria tenella Whole Sporozoite Vaccine Elicits Specific B-Cell Antigens. ANIMALS : AN OPEN ACCESS JOURNAL FROM MDPI 2021; 11:ani11051344. [PMID: 34065041 PMCID: PMC8151427 DOI: 10.3390/ani11051344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Coccidiosis caused by Eimeria tenella is a dreadful disease with a significant economic impact to the poultry industry. The disease has been controlled by routine medication of feed with synthetic chemicals or ionophore drugs. However, the rising appearance of drug resistance and public demands for reduced drug use in poultry production have driven a dramatic change, replacing anticoccidial drugs with alternative methods, such as vaccination with either virulent or attenuated Eimeria oocysts. Based on preliminary studies, the immune protection evaluating whole-sporozoites of E. tenella vaccine was verified. After this vaccine provided successful protection, the humoral response of a heterologous species like the rabbit was compared with the natural host immune response. Several B-cells antigens from the E. tenella sporozoite suitable for a genetically engineered vaccine were identified. Vaccination with newly identified recombinant antigens offers a feasible alternative for the control of avian coccidiosis into the broiler barns favoring the gradual withdrawal of the anticoccidial drugs. Abstract This study investigated protection against Eimeria tenella following the vaccination of chicks with 5.3 × 106E. tenella whole-sporozoites emulsified in the nanoparticle adjuvant IMS 1313 N VG Montanide™ (EtSz-IMS1313). One-day-old specific pathogen-free (SPF) chicks were subcutaneously injected in the neck with EtSz-IMS1313 on the 1st and 10th days of age. Acquired immunity was assayed through a challenge with 3 × 104 homologous sporulated oocysts at 21 days of age. The anticoccidial index (ACI) calculated for every group showed the effectiveness of EtSz-IMS1313 as a vaccine with an ACI of 186; the mock-injected control showed an ACI of 18 and the unimmunized, challenged control showed an ACI of −28. In a comparison assay, antibodies from rabbits and SPF birds immunized with EtSz-IMS1313 recognized almost the same polypeptides in the blotting of E. tenella sporozoites and merozoites. However, rabbit antisera showed the clearest recognition pattern. Polypeptides of 120, 105, 94, 70, 38, and 19 kDa from both E. tenella life cycle stages were the most strongly recognized by both animal species. The E. tenella zoite-specific IgG antibodies from the rabbits demonstrated the feasibility for successful B cell antigen identification.
Collapse
Affiliation(s)
- Marco A. Juárez-Estrada
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Cd. De México 04510, Mexico
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Cd. De México 04510, Mexico; (A.G.-V.); (R.A.A.-M.)
- Correspondence:
| | - Amanda Gayosso-Vázquez
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Cd. De México 04510, Mexico; (A.G.-V.); (R.A.A.-M.)
| | | | - Rogelio A. Alonso-Morales
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Cd. De México 04510, Mexico; (A.G.-V.); (R.A.A.-M.)
| |
Collapse
|