1
|
Yuan B, Md Ahsanul K, Rong L, Han S, Pan Y, Hou G, Li S. Exploring the relationship between rearing system and carcass traits of Danzhou chicken: a microbial perspective. Poult Sci 2024; 103:104186. [PMID: 39260026 PMCID: PMC11416224 DOI: 10.1016/j.psj.2024.104186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024] Open
Abstract
This study investigated the effects of free-range (FR) and cage-rearing (CR) systems on intestinal health, carcass traits, and microbial diversity in the Danzhou chicken breed. Two groups of 125 hens in each group, aged 42 wk, were reared under FR and CR systems. At 50 wk, 50 hens from each group were randomly selected for carcass analysis and 10 hens for intestinal morphology and microbiota profiling. Results indicated a significant increase in villus height (VH) in the duodenum (P < 0.05), jejunum (P < 0.01), and ileum (P < 0.001) of the CR group. Additionally, the ratio of VH to crypt depth (VR) significantly (P < 0.001) increased in the jejunum, while crypt depth (CD) decreased significantly (P < 0.001) in the same section in the CR group. Carcass traits, including dress weight (DW), eviscerated with giblet weight (EGW), eviscerated weight (EW), and leg muscle weight (LW) significantly improved (P < 0.05) in the CR group. Microbial diversity showed significant β-diversity differences, with Lactobacillus, Enterococcus, and Oxalobacteraceae as dominant biomarkers in the CR group. Conversely, Actinomycetaceae, Erysipelotrichaceae, Coriobacteriaceae, Eubacterium, Actinomyces, Scardovia, and Lachnospiraceae were dominant in the FG group. Correlation analysis showed duodenum Lactobacillus was positively correlated with VH (P < 0.05), EW (P < 0.05), and LW (P < 0.001). Jejunum Lactobacillus was positively correlated considerably with VH (P < 0.01), VR (P < 0.05), DW (P < 0.05), EGW (P < 0.01), and LW (P < 0.001). Ileum Lactobacillus was positively correlated with EGW (P < 0.01), EW (P < 0.05), and LW (P < 0.01). Aeriscardovia in duodenum was positively (P < 0.01) associated with EGW. Enterococcus in the duodenum was positively (P < 0.05) associated with EGW and in Jejunum positively correlated with VH (P < 0.05) and VR (P < 0.01). The study concludes that cage rearing improves intestinal health, carcass traits, and microbial diversity in Danzhou chickens, with Lactobacillus and Enterococcus playing key roles.
Collapse
Affiliation(s)
- Bo Yuan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Kabir Md Ahsanul
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China; Biotechnology Division, Bangladesh Livestock Research Institute, Savar, Dhaka-1341, Bangladesh
| | - Li Rong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Shaobo Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yangming Pan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| | - Shijun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China; Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei Province 430070, China
| |
Collapse
|
2
|
Wang J, Wei W, Xing C, Wang H, Liu M, Xu J, He X, Liu Y, Guo X, Jiang R. Transcriptome and Weighted Gene Co-Expression Network Analysis for Feather Follicle Density in a Chinese Indigenous Breed. Animals (Basel) 2024; 14:173. [PMID: 38200904 PMCID: PMC10778273 DOI: 10.3390/ani14010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Feather follicle density plays an important role in appealing to consumers' first impressions when making purchasing decisions. However, the molecular network that contributes to this trait remains largely unknown. The aim of this study was to perform transcriptome and weighted gene co-expression network analyses to determine the candidate genes relating to feather follicle density in Wannan male chickens. In total, five hundred one-day-old Wannan male chickens were kept in a conventional cage system. Feather follicle density was recorded for each bird at 12 weeks of age. At 12 weeks, fifteen skin tissue samples were selected for weighted gene co-expression network analysis, of which six skin tissue samples (three birds in the H group and three birds in the L group) were selected for transcriptome analysis. The results showed that, in total, 95 DEGs were identified, and 56 genes were upregulated and 39 genes were downregulated in the high-feather-follicle-density group when compared with the low-feather-follicle-density group. Thirteen co-expression gene modules were identified. The red module was highly significantly negatively correlated with feather follicle density (p < 0.01), with a significant negative correlation coefficient of -0.72. In total, 103 hub genes from the red module were screened. Upon comparing the 103 hub genes with differentially expressed genes (DEGs), it was observed that 13 genes were common to both sets, including MELK, GTSE1, CDK1, HMMR, and CENPE. From the red module, FOXM1, GTSE1, MELK, CDK1, ECT2, and NEK2 were selected as the most important genes. These genes were enriched in the DNA binding pathway, the heterocyclic compound binding pathway, the cell cycle pathway, and the oocyte meiosis pathway. This study suggests that FOXM1, GTSE1, MELK, CDK1, ECT2, and NEK2 may be involved in regulating the development of feather follicle density in Wannan male chickens. The results of this study reveal the genetic structure and molecular regulatory network of feather follicle density in Wannan male chickens, and provide a basis for further elucidating the genetic regulatory mechanism and identifying molecular markers with breeding value.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Runshen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (J.W.); (W.W.); (C.X.); (H.W.); (M.L.); (J.X.); (X.H.); (Y.L.); (X.G.)
| |
Collapse
|
3
|
Ji G, Zhang M, Tu Y, Liu Y, Shan Y, Ju X, Zou J, Shu J, Sheng Z, Li H. Molecular Regulatory Mechanisms in Chicken Feather Follicle Morphogenesis. Genes (Basel) 2023; 14:1646. [PMID: 37628697 PMCID: PMC10454116 DOI: 10.3390/genes14081646] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
In China, the sale of freshly slaughtered chickens is becoming increasingly popular in comparison with that of live chickens, and due to this emerging trend, the skin and feather follicle traits of yellow-feathered broilers have attracted a great deal of research attention. The feather follicle originates from the interaction between the epidermis and dermis in the early embryonic stage. Feather follicle morphogenesis is regulated by the Wnt, ectodysplasin (Eda), epidermal growth factor (EGF), fibroblast growth factor (FGF), bone morphogenetic protein (BMP), sonic hedgehog (Shh), Notch, and other signaling pathways that exist in epithelial and mesenchymal cells. The Wnt pathway is essential for feather follicle and feather morphogenesis. Eda interacts with Wnt to induce FGF expression, which attracts mesenchymal cell movement and aggregates to form feather follicle primordia. BMP acts as an inhibitor of the above signaling pathways to limit the size of the feather tract and distance between neighboring feather primordia in a dose-dependent manner. The Notch/Delta pathway can interact with the FGF pathway to promote feather bud formation. While not a part of the early morphogenesis of feather follicles, Shh and BMP signaling are involved in late feather branching. This review summarizes the roles of miRNAs/lncRNA in the regulation of feather follicle and feather growth and development and suggests topics that need to be solved in a future study. This review focuses on the regulatory mechanisms involved in feather follicle morphogenesis and analyzes the impact of SNP sites on feather follicle traits in poultry. This work may help us to understand the molecular regulatory networks influencing feather follicle growth and provide basic data for poultry carcass quality.
Collapse
Affiliation(s)
- Gaige Ji
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Ming Zhang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Yunjie Tu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Yifan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Yanju Shan
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Xiaojun Ju
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Jianmin Zou
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Jingting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Zhongwei Sheng
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Hua Li
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| |
Collapse
|
4
|
Chen G, Zhang Y, Zhang K, Tian G, Bai S, Ding X, Wang J, Lv L, Tan Q, Zhao W, Zeng Q. Effects of Dietary Zinc Deficiency on Skin Breaking Strength and Fatty Acid Composition in Broiler Chickens and Pekin Ducks. Biol Trace Elem Res 2022:10.1007/s12011-022-03490-2. [PMID: 36396781 DOI: 10.1007/s12011-022-03490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
This study is aimed at investigating the effect of dietary zinc deficiency (ZnD) on skin breaking strength and skin chemical and fatty acid composition in broiler chickens and Pekin ducks. A total of 200 1-day-old male broiler chickens and 200 1-day-old male ducklings were used in a 2 × 2 factorial design and randomly allocated to 4 treatments with 10 replicated cages of 10 birds per cage. Diets containing zinc at 84.77 mg/kg and 20.42 mg/kg were regarded as the control diet and zinc-deficient diet, respectively. The results showed the following: (1) dietary ZnD decreased (P < 0.05) the breast skin weight (day 21), breast skin index (day 21), skin fat content (day 7), and skin Zn content (days 7, 14, and 21) of ducks, but only increased (P < 0.05) the skin fat content of broiler chickens at 7 days of age; ducks had a higher (P < 0.05) breast skin weight, breast skin index, and skin breaking strength as well as a lower skin fat content (days 7 and 14) than those in broiler chickens. (2) Dietary ZnD decreased the content of myristic acid (day 21) and increased the content of oleic acid (day 7) content in the skin of ducks and increased the palmitic acid (day 7) content in the skin of broiler chickens (P < 0.05) and increased the MUFA (day 7) content in the skin and the atherogenic index (day 21) in ducks. The contents of myristic acid (day 21), stearic acid (day 21), and oleic acid (days 7, 14, and 21) in the skin of broiler chickens were lower (P < 0.05) than those in ducks of the same age. In conclusion, using skin weight, skin index and skin MUFA content as criteria, the results indicated that meat ducks were more sensitive to dietary ZnD than broiler chickens. Using skin fat content as criterion, the results indicated that broiler chickens were more sensitive to dietary ZnD than meat ducks.
Collapse
Affiliation(s)
- Guanhua Chen
- Animal Nutrition Institute, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yang Zhang
- Habio Bio-Tech Co. Ltd, Mianyang, 61000, China
| | - Keying Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Shiping Bai
- Animal Nutrition Institute, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xuemei Ding
- Animal Nutrition Institute, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Li Lv
- Animal Nutrition Institute, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Quan Tan
- Novus International Trading (Shanghai), Co., Ltd, Shanghai, 200080, China
| | - Wei Zhao
- Novus International Trading (Shanghai), Co., Ltd, Shanghai, 200080, China
| | - Qiufeng Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
5
|
Su M, Chen D, Zhou J, Shen Q. Effects of Different Dietary Carbohydrate Sources on the Meat Quality and Flavor Substances of Xiangxi Yellow Cattle. Animals (Basel) 2022; 12:ani12091136. [PMID: 35565563 PMCID: PMC9105694 DOI: 10.3390/ani12091136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 01/03/2023] Open
Abstract
This study investigated the dietary supplementation of starches with different carbohydrate sources on the proximate composition, meat quality, flavor substances, and volatile flavor substances in the meat of Chinese Xiangxi yellow cattle. A total of 21 Chinese Xiangxi yellow steers (20 ± 0.5 months, 310 kg ± 5.85 kg) were randomly divided into three groups (control, corn, and barley groups), with seven steers per group. The control steers received a conventional diet (coarse forage type: whole silage corn at the end of the dough stage as the main source), the corn group received a diet with corn as the main carbohydrate source, and the barley group received a diet with barley as the main carbohydrate source. The experiment lasted for 300 d. and the means of the final weights in the control, corn, and barley groups were 290 kg, 359 kg, and 345 kg. The diets were isonitrogenous. The corn and barley groups reduced the moisture (p = 0.04) and improved the intramuscular fat content of the meat (p = 0.002). They also improved meat color (a*) (p = 0.01) and reduced cooking loss (p = 0.08), shear force (p = 0.002), and water loss (p = 0.001). There was no significant difference in the 5′-nucleotide content (p > 0.05), the equivalent umami concentration (EUC) (p = 0.88), and taste activity value (TAV) (p > 0.05) among the three groups. The 5′-IMP (umami) content was the highest in the 5′-nucleotide and its TAV > 1. The corn and barley groups improved the content of tasty amino acids (tAA, p < 0.001). The corn group had a higher content of sweet amino acids (SAA, p < 0.001) and total amino acids (TAA, p = 0.003). Corn and barley improved the levels of MUFA (p < 0.001), PUFA (p = 0.002), n-3 PUFA (p = 0.005), and n-6 PUFA (p = 0.020). The levels of alcohols, hydrocarbons, and aldehydes in the corn group were higher than in the barley and control groups (p < 0.001). The esters content in the corn group was higher than in the barley and control groups (p = 0.050). In conclusion, feeding corn or barley as a carbohydrate source can improve the nutrient content and taste. Feeding corn as a carbohydrate source can improve the content of free amino acids (Cys, Glu, Gly, Thr, Leu, Trp, Gln, Asn, and Asp), fatty acids (saturated fatty acid, monounsaturated fatty acid, polyunsaturated fatty acid, n-3PUFA, n-6PUFA, and total fatty acid), and volatile flavor substances (alcohols, aldehydes, acids, and hydrocarbons) to improve the flavor and meat quality.
Collapse
Affiliation(s)
- Minchao Su
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China; (M.S.); (J.Z.)
| | - Dong Chen
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China; (M.S.); (J.Z.)
- Correspondence: ; Tel.: +86-731-13787038140
| | - Jing Zhou
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China; (M.S.); (J.Z.)
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| |
Collapse
|