1
|
Cui Z, Amevor FK, Tang B, Qin S, Lan X, Liu L, Liu A. Gga-miR-34b-3p targets calbindin 1 to regulate cellular calcium ion homeostasis during eggshell calcification in chicken uterus. Int J Biol Macromol 2025; 286:138520. [PMID: 39647741 DOI: 10.1016/j.ijbiomac.2024.138520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Improving eggshell quality in poultry is a key breeding goal, and identifying genetic markers that regulate eggshell calcification is essential for accelerating genetic advancements. This study focused on identifying the keys genes and molecular mechanisms that regulate eggshell calcification in the chicken uterus. The results showed that rapid eggshell mineralization began approximately 4 h after the egg enters the uterus, corresponding with observed morphological and histological changes in the uterine tissue. This is associated with increased energy demands and the production of ion transport proteins. Transcriptome analysis identified calbindin-1 (CALB1), ATPase plasma membrane Ca2+ transporting 2 (ATP2B2), and gga-miR-34b-3p as differentially expressed during eggshell formation. CALB1 and ATP2B2 were predicted targets of gga-miR-34b-3p, with roles in maintaining cellular calcium ion balance. A dual-luciferase reporter assay confirmed that gga-miR-34b-3p directly targeted inhibited CALB1 expression, although no significant changes in the luciferase activity were observed with the co-transfection of ATP2B2 wild-type and gga-miR-34b-3p mimic. Validation experiments showed significant increases in CALB1 and ATP2B2 mRNA and protein levels of CALB1 and ATP2B2 in the chicken uterus during eggshell calcification, with CALB1 predominantly expressed in the cytoplasm of uterine tubular gland cells. Furthermore, primary uterine tubular gland cells, identified using immunofluorescence for Cytokertin 18, demonstrated that silencing CALB1 and ATP2B2 increased intracellular Ca2+ concentration in these cells. Taken together, these findings suggest that the gga-miR-34b-3p/CALB1 regulatory axis maintains calcium ion homeostasis in the uterine tubular gland cells, to facilitate continuous and efficient eggshell calcification and thereby enhancing eggshell quality in chickens.
Collapse
Affiliation(s)
- Zhifu Cui
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, PR China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bincheng Tang
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, PR China
| | - Simeng Qin
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, PR China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, PR China.
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, PR China.
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, PR China.
| |
Collapse
|
2
|
Liu W, Ma R, Sun C, Xu Y, Liu Y, Hu J, Ma Y, Wang D, Wen D, Yu Y. Implications from proteomic studies investigating circadian rhythm disorder-regulated neurodegenerative disease pathology. Sleep Med Rev 2023; 70:101789. [PMID: 37253318 DOI: 10.1016/j.smrv.2023.101789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023]
Abstract
Neurodegenerative diseases (NDs) affect 15% of the world's population and are becoming an increasingly common cause of morbidity and mortality worldwide. Circadian rhythm disorders (CRDs) have been reported to be involved in the pathogenic regulation of various neurologic diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis. Proteomic technology is helpful to explore treatment targets for CRDs in patients with NDs. Here, we review the key differentially expressed (DE) proteins identified in previous proteomic studies investigating NDs, CRDs and associated models and the related pathways identified by enrichment analysis. Furthermore, we summarize the advantages and disadvantages of the above studies and propose new proteomic technologies for the precise study of circadian disorder-mediated regulation of ND pathology. This review provides a theoretical and technical reference for the precise study of circadian disorder-mediated regulation of ND pathology.
Collapse
Affiliation(s)
- Weiwei Liu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China
| | - Ruze Ma
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China; Department of Gerontology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Chen Sun
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China; Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Yingxi Xu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China
| | - Yang Liu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China
| | - Jiajin Hu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China
| | - Yanan Ma
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China; Department of Epidemiology and Health Statistics, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Difei Wang
- Department of Gerontology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Deliang Wen
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China.
| | - Yang Yu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
3
|
Du X, Cui Z, Ning Z, Deng X, Amevor FK, Shu G, Wang X, Zhang Z, Tian Y, Zhu Q, Wang Y, Li D, Zhang Y, Zhao X. Circadian miR-218-5p targets gene CA2 to regulate uterine carbonic anhydrase activity during egg shell calcification. Poult Sci 2022; 101:102158. [PMID: 36167021 PMCID: PMC9513254 DOI: 10.1016/j.psj.2022.102158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/29/2022] [Accepted: 08/24/2022] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in regulating the circadian clock. In our previous work, miR-218-5p was found to be a circadian miRNA in the chicken uterus, but its role in the eggshell formation process was not clear. In the present study, we found that the expression levels of miR-218-5p and two 2 predicted target genes carbonic anhydrase 2 (CA2) and neuronal PAS domain protein 2 (NPAS2) were oscillated in the chicken uterus. The results of dual-luciferase reporter gene assays in the present study demonstrated that miR-218-5p directly targeted the 3' untranslated regions of CA2 and NPAS2. miR-218-5p showed an opposite expression profile to CA2 within a 24 h cycle in the chicken uterus. Moreover, over-expression of miR-218-5p reduced the mRNA and protein expression of CA2, while miR-218-5p knockdown increased CA2 mRNA and protein expression. Overexpression of CA2 also significantly increased the activity of carbonic anhydrase Ⅱ (P < 0.05), whereas knockdown of CA2 decreased the activity of carbonic anhydrase Ⅱ. miR-218-5p influenced carbonic anhydrase activity via regulating the expression of CA2. These results demonstrated that clock-controlled miR-218-5p regulates carbonic anhydrase activity in the chicken uterus by targeting CA2 during eggshell formation.
Collapse
Affiliation(s)
- Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Xiaoqi Wang
- Agriculture and Animal Husbandry Comprehensive Service Center, Tibet Autonomous Region, P. R. China
| | - Zhichao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China.
| |
Collapse
|