1
|
Santoso JW, Do SK, Verma R, Do AV, Hendricks E, Ichida JK, McCain ML. Human iPSC-Derived Motor Neuron Innervation Enhances the Differentiation of Muscle Bundles Engineered with Benchtop Fabrication Techniques. ACS Biomater Sci Eng 2025. [PMID: 39973396 DOI: 10.1021/acsbiomaterials.4c02225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Engineered skeletal muscle tissues are critical tools for disease modeling, drug screening, and regenerative medicine, but are limited by insufficient maturation. Because innervation is a critical regulator of skeletal muscle development and regeneration in vivo, motor neurons are hypothesized to improve the maturity of engineered skeletal muscle tissues. However, the impact of motor neurons on muscle phenotype when added prior to the onset of muscle differentiation is not clearly established. In this study, benchtop fabrication equipment was used to facilely fabricate chambers for engineering three-dimensional (3D) skeletal muscles bundles and measuring their contractile performance. Primary chick myoblasts were embedded in an extracellular matrix hydrogel solution and differentiated into engineered muscle bundles, with or without the addition of human induced pluripotent stem cell (hiPSC)-derived motor neurons. Muscle bundles differentiated with motor neurons had neurites distributed throughout their volume and a higher myogenic index compared to muscle bundles without motor neurons. Innervated muscle bundles also generated significantly higher twitch and tetanus forces in response to electrical field stimulation after 1 and 2 weeks of differentiation compared to noninnervated muscle bundles cultured with or without neurotrophic factors. Noninnervated muscle bundles also experienced a decline in rise and fall times as the culture progressed, whereas innervated muscle bundles and noninnervated muscle bundles with neurotrophic factors maintained more consistent rise and fall times. Innervated muscle bundles also expressed the highest levels of the genes for slow myosin light chain 3 (MYL3) and myoglobin (MB), which are associated with slow twitch fibers. These data suggest that motor neuron innervation enhances the structural and functional development of engineered skeletal muscle constructs and maintains them in a more oxidative phenotype.
Collapse
Affiliation(s)
- Jeffrey W Santoso
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Stephanie K Do
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Riya Verma
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033, United States
| | - Alexander V Do
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
- Thomas Jefferson High School for Science and Technology, Alexandria, Virginia 22312, United States
| | - Eric Hendricks
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033, United States
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033, United States
| | - Megan L McCain
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033, United States
| |
Collapse
|
2
|
Wang Y, Zhang D, Yu S, Zhang W, Tang Y, Yin L, Lin Z, Zhou R, Zhang Y, Lu L, Liu Y. miR-196-5p regulates myogenesis and induces slow-switch fibers formation by targeting PBX1. Int J Biol Macromol 2025; 305:141137. [PMID: 39965688 DOI: 10.1016/j.ijbiomac.2025.141137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Skeletal muscle, which is crucial for meat production, color, and quality is regulated by complex genetic mechanisms. MicroRNAs (miRNA), serve a crucial part in regulating skeletal muscle myogenesis together with the switching of muscle fiber types, but the identification of key miRNAs and their underlying molecular mechanism has been hindered. In the present study, miRNA sequencing was utilized to identify the differentially expressed miRNAs (DEMs) in different skeletal muscles, among which miR-196-5p was found notably upregulated in chicken soleus (SOL) muscles, suggesting the potential role of miR-196-5p in slow-switch fiber formation. Next, the gain- and loss-of-function experiments confirmed the inhibitory role and stimulatory effects of miR-196-5p on myoblast expansion, myotube maturation, and slow-switch myofibers formation, respectively. Through integrated bioinformatics and experimental analysis, the interaction between miR-196-5p and PBX1 was additionally clarified. PBX1 exhibits a promotive role in skeletal muscle myogenesis, while it exerts an inhibitory effect during the formation of slow-switch myofibers. In conclusion, we propose that miR-196-5p has an important involvement in modulating of skeletal muscle structural composition and function.
Collapse
Affiliation(s)
- Yufei Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Donghao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Songhang Yu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Weijie Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lingqian Yin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongzhen Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yupei Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Department of Pig Production, Chongqing Academy of Animal Science, Chongqing 402460, China; College of Animal Science and Technology, Southwest University, Chongqing 402460, China.
| | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Shan Y, Liu Y, Zhang M, Pang L, Ji G, Ju X, Tu Y, Shu J. The m6A modification regulates the composition of myofiber types in chicken skeletal muscle. Poult Sci 2025; 104:104811. [PMID: 39919566 PMCID: PMC11848472 DOI: 10.1016/j.psj.2025.104811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 02/09/2025] Open
Abstract
As a widespread epigenetic RNA modification, N6-methyladenosine (m6A) plays essential regulatory roles in multiple biological processes. However, its function in maintaining and modulating myofiber-type properties remains largely unknown. To investigate the post-transcriptional modification underlying the myofiber type diversity in chicken skeletal muscle, we evaluated the m6A methylation levels of chicken skeletal muscles with different phenotypic traits, and profiled a transcriptome-wide m6A map in the oxidative and glycolytic skeletal muscles by methylated RNA immunoprecipitation sequencing (MeRIP-seq). Our results showed that the levels of m6A methylation in chicken skeletal muscles were closely related to the composition of myofiber types. The m6A methylation level of anterior latissimus dorsi (ALD, typical oxidative skeletal muscle) was the highest among the three muscles and significantly higher than that of the pectoralis major (PM, typical glycolytic skeletal muscle) (P<0.05). We found that about 24.77 % and 33.50 % of genes were modified by m6A methylation in the PM and ALD, respectively, and identified 6,530 and 9,965 m6A peaks, which were mainly located in the coding sequence (CDS) and stop codon. About 3.14 % of m6A modified genes showed significantly differential methylation levels between these two muscles. Intriguingly, the myofiber type-related genes, such as MYOT, TPM3, TPM1, PDK1, MBNL1, and MYH1G, showed differences in m6A methylation and mRNA expression. Further analysis revealed that the m6A methylation was positively correlated with gene expression homeostasis. It is exciting we found that the expression level of ALKBH5 mRNA and protein, was closely related to the composition of myofiber types. ALKBH5 over-expression could regulate the expression levels of genes related to muscle contraction and metabolism, including MYH1E, MYH1G, MYH7B, PDK1, and TPM1, suggesting the effect of ALKBH5 on the formation of myofiber-type properties in chicken skeletal muscle. Our results contribute to a better understanding of epigenetic factors involved in forming chicken myofiber-type properties and provide new targets for further investigation into chicken's growth development and meat quality.
Collapse
Affiliation(s)
- Yanju Shan
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China
| | - Yifan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China
| | - Ming Zhang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China
| | - Lichuan Pang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China
| | - Gaige Ji
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China
| | - Xiaojun Ju
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China
| | - Yunjie Tu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China
| | - Jingting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China.
| |
Collapse
|
4
|
Fan C, Shan Y, Zhang M, Tu Y, Ji G, Ju X, Shu J, Liu Y. Genome-wide association study of myofiber type composition traits in a yellow-feather broiler population. Poult Sci 2025; 104:104634. [PMID: 39647360 PMCID: PMC11667031 DOI: 10.1016/j.psj.2024.104634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
Meat quality is a key factor determining the economic viability of the broiler industry, particularly in native broiler breeds. Skeletal muscles contain a mixture of muscle fibers, each possessing unique physicochemical properties; the composition of myofiber types within these muscles is closely linked to meat quality. However, comprehension of the regulatory mechanisms governing this trait remains limited. Therefore, we conducted a genome-wide association study (GWAS) with a population of 400 yellow-feather broilers to explore genetic variations associated with myofiber-type composition at the genomic level. Whole-genome resequencing was employed to detect genetic variations and immunohistochemistry was used for muscle fiber typing in the sartorius muscle. We identified 1 and 18 single-nucleotide polymorphisms (SNPs) significantly and potentially associated with the proportion of slow muscle fibers, respectively, and 1 and 12 SNPs significantly and potentially associated with the area proportion of slow muscle fibers, respectively. We annotated several candidate genes, including DMD, KLF7, CREB1, EFCAB11, GADD45A, GSTT1, and GSTT1L, which are related to myofiber type composition. We also demonstrated that myofiber composition traits exhibit low-to-medium heritability, indicating potential for enhancement through genetic selection. These findings provide a crucial reference for further studies on the regulatory mechanisms of poultry meat quality and for advancing the breeding of superior-quality broiler chickens.
Collapse
Affiliation(s)
- Chengyu Fan
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science Cangjie Road 58#, Hanjiang, Yangzhou, Jiangsu 225125, China
| | - Yanju Shan
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science Cangjie Road 58#, Hanjiang, Yangzhou, Jiangsu 225125, China
| | - Ming Zhang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science Cangjie Road 58#, Hanjiang, Yangzhou, Jiangsu 225125, China
| | - Yunjie Tu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science Cangjie Road 58#, Hanjiang, Yangzhou, Jiangsu 225125, China
| | - Gaige Ji
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science Cangjie Road 58#, Hanjiang, Yangzhou, Jiangsu 225125, China
| | - Xiaojun Ju
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science Cangjie Road 58#, Hanjiang, Yangzhou, Jiangsu 225125, China
| | - Jingting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science Cangjie Road 58#, Hanjiang, Yangzhou, Jiangsu 225125, China
| | - Yifan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science Cangjie Road 58#, Hanjiang, Yangzhou, Jiangsu 225125, China..
| |
Collapse
|
5
|
Gu S, Gao J, Li Z, Zhang S, Wen C, Sun C, Yan W, Hou Z, Yang N, Li J. Comparative Analysis of Myofiber Characteristics, Shear Force, and Amino Acid Contents in Slow- and Fast-Growing Broilers. Foods 2024; 13:3997. [PMID: 39766940 PMCID: PMC11675930 DOI: 10.3390/foods13243997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Skeletal muscle fiber characteristics are pivotal in assessing meat quality. However, there is currently a lack of research precisely quantifying the total number of myofibers (TNM) of skeletal muscles. This study used Arbor Acres (AA) broilers and Wenchang (WC) chickens to determine the TNM of several skeletal muscles and the meat quality of the pectoralis major muscle (PM). The results showed that the TNMs of the PM in AA males and females were 935,363.64 ± 92,529.28 and 873,983.72 ± 84,511.28, respectively, significantly higher than those in WC (511,468.97 ± 73,460.81 and 475,371.93 ± 70,187.83) at 7 days of age (p < 0.01). In terms of gastrocnemius medialis in AA males and females, we recorded values of 207,551.43 ± 31,639.97 and 177,203.23 ± 28,764.01, showing a significant difference compared to the values observed in WC (146,313.03 ± 29,633.21 and 124,238.9 ± 20,136.95) (p < 0.01). Similarly, the levels of gastrocnemius lateralis exhibited a significant difference between AA and WC (p < 0.01). Furthermore, the essential, umami, and sweet amino acids were found to be significantly higher in WC compared to AA (p < 0.01). These findings offer valuable data and insights for accurately quantifying the TNM in livestock and for the development of further genetic breeding strategies for meat quality.
Collapse
Affiliation(s)
- Shuang Gu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (S.G.); (J.G.); (Z.L.); (S.Z.); (C.W.); (C.S.); (W.Y.); (Z.H.); (N.Y.)
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jia Gao
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (S.G.); (J.G.); (Z.L.); (S.Z.); (C.W.); (C.S.); (W.Y.); (Z.H.); (N.Y.)
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zehao Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (S.G.); (J.G.); (Z.L.); (S.Z.); (C.W.); (C.S.); (W.Y.); (Z.H.); (N.Y.)
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shenbo Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (S.G.); (J.G.); (Z.L.); (S.Z.); (C.W.); (C.S.); (W.Y.); (Z.H.); (N.Y.)
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (S.G.); (J.G.); (Z.L.); (S.Z.); (C.W.); (C.S.); (W.Y.); (Z.H.); (N.Y.)
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (S.G.); (J.G.); (Z.L.); (S.Z.); (C.W.); (C.S.); (W.Y.); (Z.H.); (N.Y.)
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Wei Yan
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (S.G.); (J.G.); (Z.L.); (S.Z.); (C.W.); (C.S.); (W.Y.); (Z.H.); (N.Y.)
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Zhuocheng Hou
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (S.G.); (J.G.); (Z.L.); (S.Z.); (C.W.); (C.S.); (W.Y.); (Z.H.); (N.Y.)
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (S.G.); (J.G.); (Z.L.); (S.Z.); (C.W.); (C.S.); (W.Y.); (Z.H.); (N.Y.)
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (S.G.); (J.G.); (Z.L.); (S.Z.); (C.W.); (C.S.); (W.Y.); (Z.H.); (N.Y.)
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
6
|
Santoso JW, Do SK, Verma R, Do AV, Hendricks E, Ichida JK, McCain ML. Human iPSC-derived motor neuron innervation enhances the differentiation of muscle bundles engineered with benchtop fabrication techniques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626391. [PMID: 39677637 PMCID: PMC11642770 DOI: 10.1101/2024.12.02.626391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Engineered skeletal muscle tissues are critical tools for disease modeling, drug screening, and regenerative medicine, but are limited by insufficient maturation. Because innervation is a critical regulator of skeletal muscle development and regeneration in vivo, motor neurons are hypothesized to improve the maturity of engineered skeletal muscle tissues. Although motor neurons have been added to pre-engineered muscle constructs, the impact of motor neurons added prior to the onset of muscle differentiation has not been evaluated. In this study, benchtop fabrication equipment was used to facilely fabricate chambers for engineering 3-dimensional (3-D) skeletal muscles bundles and measuring their contractile performance. Primary chick myoblasts were embedded in an extracellular matrix hydrogel solution and differentiated into engineered muscle bundles, with or without the addition of human induced pluripotent stem cell (hiPSC)-derived motor neurons. Muscle bundles differentiated with motor neurons had neurites distributed throughout their volume and a higher myogenic index compared to muscle bundles without motor neurons. Innervated muscle bundles also generated significantly higher twitch and tetanus forces in response to electrical field stimulation after one and two weeks of differentiation compared to non-innervated muscle bundles cultured with or without neurotrophic factors. Non-innervated muscle bundles also experienced a decline in rise and fall times as the culture progressed, whereas innervated muscle bundles and non-innervated muscle bundles with neurotrophic factors maintained more consistent rise and fall times. Innervated muscle bundles also expressed the highest levels of the genes for slow myosin light chain 3 (MYL3) and myoglobin (MB), which are associated with slow twitch fibers. These data suggest that motor neuron innervation enhances the structural and functional development of engineered skeletal muscle constructs and maintains them in a more oxidative phenotype.
Collapse
Affiliation(s)
- Jeffrey W. Santoso
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Stephanie K. Do
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Riya Verma
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Alexander V. Do
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Thomas Jefferson Highschool for Science and Technology, Alexandria, VA 22312, USA
| | - Eric Hendricks
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Justin K. Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Megan L. McCain
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
7
|
Cheng Y, Zheng Y, Cai X, Wang L, Zhou C, Cao J, Tong C, Wang J, Sun Y, Wang Z, Barba FJ, Pan D, Wu Z, Xia Q. Effect of pre-acidification induction on the physicochemical features, myofibrillar protein microstructure, and headspace volatiles of ready-to-cook goose meat. Food Res Int 2024; 197:115166. [PMID: 39593377 DOI: 10.1016/j.foodres.2024.115166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
This study examined the impact of pre-acidification induction on the quality attributes and flavor retention of ready-to-cook (RTC) goose meat products. The results demonstrated that pre-acidification could influence the eating qualities of RTC goose meat by effectively regulating the physicochemical properties of goose myofibrillar proteins (MP) including solubility and water-holding capacity. Elevated carbonyl contents indicated an enhanced gel-forming capacity in RTC goose meat during storage, accompanied with reduced total sulfhydryl contents from enhanced protonation pretreatment and augmented lipid oxidation. Structural characterization of MP via sodium dodecyl sulfate-polyacrylamide gel electrophoresis, circular dichroism spectroscopy, and intrinsic fluorescence revealed the formation of a dense protein matrix under highly acidic conditions. Furthermore, the headspace concentration of aldehydes increased by 3.23 times upon enhancing the pre-acidification intensity, resulting in the production of esters and acidic flavor compounds with favorable aromas. Correlation analysis demonstrated the dependence of headspace concentrations of volatile constituents on the acidification-enhanced surface hydrophobicity of MP, attributed to the modified binding sites of proteins after pre-acidification. Current results have indicated both the positive and negative influence of pre-acidulation induction on the eating quality of goose meat products, suggesting the necessity of introducing extra processes to modulate the quality of prefabricated products.
Collapse
Affiliation(s)
- Yan Cheng
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Xintong Cai
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo 315211, China
| | - Libin Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo 315211, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Changmin Tong
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo 315211, China
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yangying Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo 315211, China
| | - Zhaoshan Wang
- Shandong Zhongke Food Co., Ltd, Tai'an City 271229, China
| | - Francisco J Barba
- Research group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Avenida Vicent Andrés Estellés s/n, Burjassot, València 46100, Spain
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Zhen Wu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
8
|
Ma M, Yang X, Zhang Y, Wang S, Jin C, Xia W, Chen W, Cai B, Zheng C. PPM1J regulates meat quality feature and glycerophospholipids composition in broiler by modulating protein dephosphorylation. NPJ Sci Food 2024; 8:89. [PMID: 39511232 PMCID: PMC11544016 DOI: 10.1038/s41538-024-00335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
The quality of broiler meat affects consumers' purchasing decisions. Numerous studies have shown that phosphorylation of proteins in muscle can affect muscle quality. Here, metabolomics and transcriptomics were used to systematically identify the genetic regulation of differences in meat flavor among different broiler. By constructing the meat flavor-related metabolite-gene networks, we identified that protein phosphatase magnesium/manganese-dependent 1J (PPM1J), which is known to regulate a range of biological processes by modulating reversible protein phosphorylation, was a differentially expressed gene with the highest connectivity to meat flavor-related metabolites. Gain- and loss-of-function analysis revealed that PPM1J induced muscular atrophy, improved meat quality and regulated the composition of glycerophospholipids. More importantly, phosphoproteome and metabolome results found that PPM1J participates in the regulation of meat quality feature and glycerophospholipids composition by catalyzing protein dephosphorylation. Our study provides a basis for further understanding the molecular mechanism of meat quality feature and glycerophospholipids composition in broiler.
Collapse
Affiliation(s)
- Manting Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Xin Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Yanan Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Shuang Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Chenglong Jin
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Weiguang Xia
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Wei Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Bolin Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.
| | - Chuntian Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China.
| |
Collapse
|
9
|
Li Z, Mushtaq M, Khan M, Fu J, Rahman A, Long Y, Liu Y, Zi X, Sun D, Ge C, Wang K. Evaluation of the Growth Performance and Meat Quality of Different F1 Crosses of Tengchong Snow and Xichou Black Bone Chicken Breeds. Animals (Basel) 2024; 14:3099. [PMID: 39518822 PMCID: PMC11544985 DOI: 10.3390/ani14213099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Unlike other chicken breeds, Xichuan Black Bone (XBB) chickens are an established breed in China with excellent production performance and unique characteristics, including black meat, beaks, skin, bones, and legs, and they produce blue-shelled eggs. The Tengchong Snow (TS) chicken breed has relatively lower growth performance than commercial breeds but is considered one of the main genetic treasures of black meat in China. To improve the production and meat quality traits of the TS chickens by hybridization, the current study aimed to investigate the growth performance, carcass indices, meat quality physical properties, and muscle fiber traits of fiber traits of F1 crosses of TS with XBB chickens. Three groups of crossbreeding combinations were produced: (1) XT group (XBB × TS ), (2) TX group (TS × XBB ), and (3) TT group (TS × TS ), with the TT group used as a control. A total of 725 healthy chicks (XT group: 247, TX group: 180, TT group: 298) were reared up to 20 weeks of age to estimate the growth performance and associated meat parameters. The results showed that the XT and TX groups had higher body weight and body size compared with the TT group (p < 0.05). Similarly, breast width, breast length, width of body, and carcass weights were also greater (p < 0.05) in the XT and TX groups compared with the TT group. Meat physical properties, including color, water-holding capacity, and tenderness, were improved (p < 0.05) for the XT and TX group compared to the TT group. The XT group had the better color of the leg muscles with the unique orientation of muscle fibers. Based on the results, the XT group is more in line with the future breeding direction as they have greater body weight, larger size, and lower abdominal fat. This study is a baseline technical reference for the protection, evaluation, and utilization of germplasm resources of Tengchong Snow chicken for screening the best matching lines and combinations with local chickens.
Collapse
Affiliation(s)
- Zijian Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.L.); (Y.L.); (X.Z.); (C.G.)
| | - Maida Mushtaq
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650201, China; (M.M.); (M.K.); (J.F.); (D.S.)
| | - Muhammad Khan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650201, China; (M.M.); (M.K.); (J.F.); (D.S.)
| | - Jing Fu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650201, China; (M.M.); (M.K.); (J.F.); (D.S.)
| | - Abdur Rahman
- Department of Animal Sciences, University of Veterinary and Animal Sciences, Jhang Campus, Jhang 35091, Pakistan;
| | - Yingxiang Long
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.L.); (Y.L.); (X.Z.); (C.G.)
| | - Yong Liu
- College of Animal Science and Technology, Yunnan Open University, Kunming 650101, China;
| | - Xiannian Zi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.L.); (Y.L.); (X.Z.); (C.G.)
| | - Dawei Sun
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650201, China; (M.M.); (M.K.); (J.F.); (D.S.)
| | - Changrong Ge
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.L.); (Y.L.); (X.Z.); (C.G.)
| | - Kun Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.L.); (Y.L.); (X.Z.); (C.G.)
| |
Collapse
|
10
|
Chaosap C, Sivapirunthep P, Adeyemi KD. Influence of age at slaughter and sex on carcass characteristics, meat quality, fatty acids, and ribonucleotides in white-tailed yellow native chickens. Trop Anim Health Prod 2024; 56:313. [PMID: 39356375 DOI: 10.1007/s11250-024-04121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024]
Abstract
This study investigated the effects of age and sex on carcass and meat characteristics of one of Thailand's major indigenous chicken breeds, the white-tailed yellow native chicken (NC). A total of 120 one-day-old NC (60 males and 60 females) were raised, and harvested at either 16, 20 or 24 weeks. The results showed that body, carcass, breast and fillet weights did not differ (P > 0.05) between 16- and 20-week-old NC, but were lower (P < 0.05) than those of 24-week-old NC. Male NC had higher (P < 0.05) body, carcass, wing, back and thigh weights than female NC. Neither sex nor age affected muscle pH, sarcomere length, redness and yellowness, guanosine monophosphate, and hypoxanthine. The interaction between age and sex was significant (P < 0.05) for %dressing, %leg, L*, C14:1, C18:1n9 and C20:4n6. Shear force was lower in 16-week-old NC (P < 0.05). The 24-week-old NC had lower (P < 0.05) C13:0, C16:0, C18:0, C18:2n6t, C20:4n6, C22:6n-3, intramuscular fat and inosine 5'-monophosphate levels and higher (P < 0.05) C18:2n6c, C18:3n-3 and C20:3n-6 levels than the 16- and 20-week-old NC. Male NC had higher (P < 0.05) C13:0-, C14:0-, C18:2n6t-, C20:3n-6- and lower inosine levels than female NC. In conclusion, these data highlight age- and sex-specific differences in carcass and meat quality of NC and provide relevant information to support consumer-oriented decisions on the production, processing and nutritional value of NC.
Collapse
Affiliation(s)
- Chanporn Chaosap
- Department of Agricultural Education, School of Industrial Education and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| | - Panneepa Sivapirunthep
- Department of Agricultural Education, School of Industrial Education and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Kazeem D Adeyemi
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB 1515, Ilorin, Kwara State, Nigeria
| |
Collapse
|
11
|
Guo X, Wang H, Liu M, Xu JM, Liu YN, Zhang H, He XX, Wang JX, Wei W, Ren DL, Jiang RS. Weighted gene co-expression network analysis identifies important modules and hub genes involved in the regulation of breast muscle yield in broilers. Anim Biosci 2024; 37:1673-1682. [PMID: 38665081 PMCID: PMC11366510 DOI: 10.5713/ab.23.0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/24/2024] [Accepted: 03/10/2024] [Indexed: 09/03/2024] Open
Abstract
OBJECTIVE Increasing breast meat production is one of the primary goals of the broiler industry. Over the past few decades, tremendous progress has been made in genetic selection and the identification of candidate genes for improving the breast muscle mass. However, the molecular network contributing to muscle production traits in chickens still needs to be further illuminated. METHODS A total of 150 1-day-old male 817 broilers were reared in a floor litter system. At the market age of 50 d, eighteen healthy 817 broilers were slaughtered and the left pectoralis major muscle sample from each bird was collected for RNA-seq sequencing. The birds were then plucked and eviscerated and the whole breast muscle was removed and weighed. Breast muscle yield was calculated as the ratio of the breast muscle weight to the eviscerated weight. To identify the co-expression networks and hub genes contributing to breast muscle yield in chickens, we performed weighted gene co-expression network analysis (WGCNA) based on the 18 transcriptome datasets of pectoralis major muscle from eighteen 817 broilers. RESULTS The WGCNA analysis classified all co-expressed genes in the pectoral muscle of 817 broilers into 44 modules. Among these modules, the turquoise and skyblue3 modules were found to be most significantly positively (r = 0.78, p = 1e-04) and negatively (r = -0.57, p = 0.01) associated with breast meat yield, respectively. Further analysis identified several hub genes (e.g., DLX3, SH3RF2, TPM1, CAV3, MYF6, and CFL2) that involved in muscle structure and muscle development were identified as potential regulators of breast meat production. CONCLUSION The present study has advanced our understanding of the molecular regulatory networks contributing to muscle growth and breast muscle production and will contribute to the molecular breeding of chickens in the future.
Collapse
Affiliation(s)
- Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Hao Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Meng Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Jin-Mei Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Ya-Nan Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Hong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Xin-Xin He
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Jiang-Xian Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Wei Wei
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Da-Long Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Run-Shen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| |
Collapse
|
12
|
Dunisławska A, Biesek J, Adamski M. Growth performance, carcass composition, and qualitative meat features of broiler chickens after galactooligosaccharides and sodium butyrate in ovo administration. Poult Sci 2024; 103:104094. [PMID: 39096828 PMCID: PMC11345557 DOI: 10.1016/j.psj.2024.104094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 08/05/2024] Open
Abstract
The study aimed to analyze the growth performance, feed indicators, and quantitative and qualitative physicochemical features of carcass and meat from broiler chickens after rearing, stimulated in ovo on d 12 of incubation with various substances. In the experiment, 1,200 hatching eggs from meat-type hen Ross 308 parental flock were incubated. On d 12, the injection was performed. Group CON-0 was noninjected. Group CON-S was injected with saline. In the GOS group, the procedure was performed in ovo with galactooligosaccharides (dissolved 3.5 mg of GOS in 0.2 mL of NaCl). In the SB group, butyric acid sodium salt was administered in a 0.3% SB dissolved in 0.2 mL NaCl. After hatching, 336, 1-day-old chicks per group were transferred to the broiler house and kept in 7 pens with 12 chickens per group for 42 d. The body weight and feed intake indicators were calculated. Next, 40 birds were selected (n = 10 per group) and taken to analyze carcass composition and meat quality (pH, color, WHC, drip loss, chemical composition). Compared to the experimental groups, the highest body weight indicators were found in groups CON-0 and CON-S. The feed conversion ratio was the lowest in the SB group on d 36 to 42 (P < 0.05). The European Efficiency Production Factor in groups GOS and SB was lower than in group CON-S (P = 0.005). The GOS group showed higher pH24hours in the pectoral muscles than the CON-S group (P = 0.011). The leg muscles showed better WHC in the CON-S, GOS, and SB groups than in the CON-0 group (P < 0.001). A lower intramuscular fat of the pectoral and leg muscle content was demonstrated, especially in the SB group. Injection of galactooligosaccharides and sodium butyrate in ovo adversely affected broiler production but did not alter carcass composition. It varied pectoral muscles' pH and chemical composition and improved water holding capacity and chemical composition in leg muscles.
Collapse
Affiliation(s)
- Aleksandra Dunisławska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland
| | - Jakub Biesek
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland.
| | - Marek Adamski
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland
| |
Collapse
|
13
|
Yue 岳珂 K, Cao 曹芹芹 QQ, Shaukat A, Zhang 张才 C, Huang 黄淑成 SC. Insights into the evaluation, influential factors and improvement strategies for poultry meat quality: a review. NPJ Sci Food 2024; 8:62. [PMID: 39251637 PMCID: PMC11385947 DOI: 10.1038/s41538-024-00306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Poultry meat, an essential source of animal protein, requires stringent safety and quality measures to address public health concerns and growing international attention. This review examines both direct and indirect factors that compromise poultry meat quality in intensive farming systems. It highlights the integration of rapid and micro-testing with traditional methods to assess meat safety. The paper advocates for adopting probiotics, prebiotics, and plant extracts to improve poultry meat quality.
Collapse
Affiliation(s)
- Ke Yue 岳珂
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Qin-Qin Cao 曹芹芹
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, 430070, China
| | - Cai Zhang 张才
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shu-Cheng Huang 黄淑成
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
14
|
Tiven NC, Simanjorang TM. Effect of Substitution of Beef and Broiler Meat with Tuna Meat on Chemical and Sensory Quality of Meatballs. Food Technol Biotechnol 2024; 62:314-325. [PMID: 39497693 PMCID: PMC11531680 DOI: 10.17113/ftb.62.03.24.8278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/01/2024] [Indexed: 11/07/2024] Open
Abstract
Research background Tuna meat is rich in protein and polyunsaturated fatty acids (PUFA), but low in cholesterol and fat, which makes it an excellent candidate for replacing beef and broiler chicken to produce higher quality meatballs. The aim of this study is to determine how substituting beef and broiler meat with tuna meat affects the chemical and sensory characteristics of meatballs. Experimental approach In this study, 1000 g of meatballs were prepared from 60 % of beef or broiler chicken. Each meat was replaced with tuna meat at mass fractions of 0, 20 and 40 %. The meat was finely ground and mixed with mass fractions (in %) of: tapioca flour 20, garlic 1.2, salt 2, ground pepper 0.5, egg white 0.3 and ice cubes 16. The tested variables included the chemical quality (moisture, protein, fat, ash, cholesterol and fatty acids) and sensory quality (colour, aroma, elasticity, texture and taste) of the meatballs. The data obtained were statistically analysed using a completely randomised factorial design analysis of variance. Results and conclusions The results show that increasing the mass fraction of tuna as a substitute for beef and broiler meat significantly increased (p<0.01) the moisture, protein and PUFA mass fractions and colour, but decreased (p<0.01) the cholesterol and fat mass fraction of the meatballs. A significant interaction (p<0.01) was observed between the tuna mass fraction and the type of meat, which affected the mass fractions of moisture, protein, cholesterol and fat as well as colour of the meatballs. In particular, increasing the tuna mass fraction to 40 % significantly increased (p<0.01) the moisture mass fraction of the beef meatballs, as well as the protein mass fraction and colour of the beef and chicken meatballs. However, the moisture mass fraction of chicken meatballs and the fat and cholesterol mass fraction of beef and chicken meatballs decreased significantly (p<0.01). In conclusion, replacing 40 % of beef and chicken meatballs with tuna can improve protein content and colour, and reduce fat and cholesterol content. Novelty and scientific contribution These results suggest that tuna can be used as a substitute for beef and chicken to produce higher quality meatballs that are rich in protein but low in cholesterol and fat. This approach can also be applied to other processed meat products such as sausages and nuggets to improve their nutritional quality.
Collapse
Affiliation(s)
- Nafly Comilo Tiven
- Department of Animal Husbandry, Faculty of Agriculture, Pattimura University, Jl. Ir. M. Putuhena Kampus Unpatti-Poka, 97233 Ambon, Maluku, Indonesia
| | - Tienni Mariana Simanjorang
- Department of Agricultural Socio-Economic, Faculty of Agriculture, Pattimura University, Jl. Ir. M. Putuhena Kampus Unpatti-Poka, 97233 Ambon, Maluku, Indonesia
| |
Collapse
|
15
|
Zhang D, Xu F, Liu Y. Research progress on regulating factors of muscle fiber heterogeneity in poultry: a review. Poult Sci 2024; 103:104031. [PMID: 39033575 PMCID: PMC11295477 DOI: 10.1016/j.psj.2024.104031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/23/2024] Open
Abstract
Control of meat quality traits is an important goal of any farm animal production, including poultry. A better understanding of the biochemical properties of muscle fiber properties that drive muscle development and ultimately meat quality constitutes one of the major challenging topics in animal production and meat science. In this paper, the existing classification methods of skeletal muscle fibers in poultry were reviewed and the relationship between contractile and metabolic characteristics of muscle fibers and poultry meat quality was described. Finally, a comprehensive review of multiple potential factors affecting muscle fiber distribution and conversion is presented, including breed, sex, hormones, growth performance, diet, muscle position, exercise, and ambient temperature. We emphasize that knowledge of muscle fiber typing is essential to better understand how to control muscle characteristics throughout the life cycle of animals to better manage the final quality of poultry meat.
Collapse
Affiliation(s)
- Donghao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Feng Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
16
|
Wang Y, Zhang D, Liu Y. Research Progress on the Regulating Factors of Muscle Fiber Heterogeneity in Livestock: A Review. Animals (Basel) 2024; 14:2225. [PMID: 39123750 PMCID: PMC11311112 DOI: 10.3390/ani14152225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The type of muscle fiber plays a crucial role in the growth, development, and dynamic plasticity of animals' skeletal muscle. Additionally, it is a primary determinant of the quality of both fresh and processed meat. Therefore, understanding the regulatory factors that contribute to muscle fibers' heterogeneity is of paramount importance. Recent advances in sequencing and omics technologies have enabled comprehensive cross-verification of research on the factors affecting the types of muscle fiber across multiple levels, including the genome, transcriptome, proteome, and metabolome. These advancements have facilitated deeper exploration into the related biological questions. This review focused on the impact of individual characteristics, feeding patterns, and genetic regulation on the proportion and interconversion of different muscle fibers. The findings indicated that individual characteristics and feeding patterns significantly influence the type of muscle fiber, which can effectively enhance the type and distribution of muscle fibers in livestock. Furthermore, non-coding RNA, genes and signaling pathways between complicated regulatory mechanisms and interactions have a certain degree of impact on muscle fibers' heterogeneity. This, in turn, changes muscle fiber profile in living animals through genetic selection or environmental factors, and has the potential to modulate the quality of fresh meat. Collectively, we briefly reviewed the structure of skeletal muscle tissue and then attempted to review the inevitable connection between the quality of fresh meat and the type of muscle fiber, with particular attention to potential events involved in regulating muscle fibers' heterogeneity.
Collapse
Affiliation(s)
| | | | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China; (Y.W.); (D.Z.)
| |
Collapse
|
17
|
Salgado Pardo JI, Navas González FJ, González Ariza A, León Jurado JM, Carolino N, Carolino I, Delgado Bermejo JV, Camacho Vallejo ME. Data-Mining Methodology to Improve the Scientific Production Quality in Turkey Meat and Carcass Characterization Studies. Animals (Basel) 2024; 14:2107. [PMID: 39061569 PMCID: PMC11273658 DOI: 10.3390/ani14142107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The present research aims to describe how turkey meat and carcass quality traits define the interest of the scientific community through the quality standards of journals in which studies are published. To this end, an analysis of 92 research documents addressing the study of turkey carcass and meat quality over the last 57 years was performed. Meat and carcass quality attributes were dependent variables and included traits related to carcass dressing, muscle fiber, pH, colorimetry, water-holding capacity, texture, and chemical composition. The independent variables comprised publication quality traits, including journal indexation, database, journal impact factor (JIF), quartile, publication area, and JIF percentage. For each dependent variable, a data-mining chi-squared automatic interaction detection (CHAID) decision tree was developed. Carcass or piece yield was the only variable that did not show an impact on the publication quality. Moreover, color and pH measurements taken at 72 h postmortem showed a negative impact on publication interest. On the other hand, variables including water-retaining attributes, colorimetry, pH, chemical composition, and shear force traits stood out among the quality-enhancing variables due to their low inclusion in papers, while high standards improved power.
Collapse
Affiliation(s)
- José Ignacio Salgado Pardo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (J.I.S.P.); (F.J.N.G.); (J.V.D.B.)
| | - Francisco Javier Navas González
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (J.I.S.P.); (F.J.N.G.); (J.V.D.B.)
| | | | | | - Nuno Carolino
- Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal; (N.C.); (I.C.)
- Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação da Fonte Boa—Estação Zootécnica Nacional, 2005-424 Santarém, Portugal
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para a Ciência Animal e Veterinária, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Inês Carolino
- Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal; (N.C.); (I.C.)
- Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação da Fonte Boa—Estação Zootécnica Nacional, 2005-424 Santarém, Portugal
- Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Juan Vicente Delgado Bermejo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (J.I.S.P.); (F.J.N.G.); (J.V.D.B.)
| | | |
Collapse
|
18
|
Wang Q, Xu J, Bao M, Wang H, Sun X, Ji D, Wang J, Li Y. Weighted gene co-expression network analysis reveals genes related to growth performance in Hu sheep. Sci Rep 2024; 14:13043. [PMID: 38844572 PMCID: PMC11156982 DOI: 10.1038/s41598-024-63850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Hu sheep are a unique breed in our country with great reproductive potential, the extent of whose breeding has been steadily rising in recent years. The study subjects in this experiment were 8-month-old Hu sheep (n = 112). First of all, the growth performance, slaughter performance and meat quality of their eye muscle quality were assessed, meanwhile their live weight, carcass weight, body length, body height, chest circumference, chest depth and tube circumference were respectively 33.81 ± 5.47 kg, 17.43 ± 3.21 kg, 60.36 ± 4.41 cm, 63.25 ± 3.88 cm, 72.03 ± 5.02 cm, 30.70 ± 2.32 cm and 7.36 ± 0.56 cm, with a significant difference between rams and ewes (P < 0.01). Following that, transcriptome sequencing was done, and candidate genes related to growth performance were identified using the weighted co-expression network analysis (WGCNA) approach, which was used to identified 15 modules, with the turquoise and blue modules having the strongest association with growth and slaughter performance, respectively. We discovered hub genes such as ARHGAP31, EPS8, AKT3, EPN1, PACS2, KIF1C, C12H1orf115, FSTL1, PTGFRN and IFIH1 in the gene modules connected with growth and slaughter performance. Our research identifies the hub genes associated with the growth and slaughter performance of Hu sheep, which play an important role in their muscle growth, organ and cartilage development, blood vessel development and energy metabolic pathways. Our findings might lead to the development of potentially-useful biomarkers for the selection of growth and slaughterer performance-related attributes of sheep and other livestock.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jie Xu
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Menghuan Bao
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Huining Wang
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - XiaoMei Sun
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Dejun Ji
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jian Wang
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, 225009, China
| | - Yongjun Li
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
19
|
Xiao L, Qi L, Fu R, Nie Q, Zhang X, Luo W. A large-scale comparison of the meat quality characteristics of different chicken breeds in South China. Poult Sci 2024; 103:103740. [PMID: 38701629 PMCID: PMC11087722 DOI: 10.1016/j.psj.2024.103740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Meat quality traits are essential for producing high-quality broilers, but the genetic improvement has been limited by the complexity of measurement methods and the numerous traits involved. To systematically understand the meat quality characteristics of different broiler breeds, this study collected data on slaughter performance, skin color, fat deposition, and meat quality traits of 434 broilers from 12 different breeds in South China. The results showed that there was no significant difference in the live weight and slaughter weight of various broiler breeds at their respective market ages. Commercial broiler breeds such as Xiaobai and Huangma chickens had higher breast muscle and leg muscle rates. The skin and abdominal fat of Huangma chickens cultivated in the consumer market in South China exhibited significantly higher levels of yellowness compared to other varieties. Concerning fat traits, we observed that Wenchang chickens exhibited a strong ability to fat deposition, while the younger breeds showed lower fat deposition. Additionally, there were significant positive correlations found among different traits, including traits related to weight, traits related to fat, and skin color of different parts. Hierarchical clustering analysis revealed that fast-growing and large broiler Xiaobai chickens formed a distinct cluster based on carcass characteristics, skin color, and meat quality traits. Principal component analysis (PCA) was used to extract multiple principal components as substitutes for complex meat quality indicators, establishing a chicken meat quality evaluation model to differentiate between different breeds of chickens. At the same time, we identified 46, 22, and 20 SNP loci and their adjacent genes that were significantly associated with muscle mass traits, fat deposition, and skin color through genome-wide association studies (GWAS). The above results are helpful for systematically understanding the differences and characteristics of meat quality traits among different breeds.
Collapse
Affiliation(s)
- Liangchao Xiao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Lin Qi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Rong Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Wen Luo
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
20
|
Canoy TS, Wiedenbein ES, Bredie WLP, Meyer AS, Wösten HAB, Nielsen DS. Solid-State Fermented Plant Foods as New Protein Sources. Annu Rev Food Sci Technol 2024; 15:189-210. [PMID: 38109492 DOI: 10.1146/annurev-food-060721-013526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The current animal-based production of protein-rich foods is unsustainable, especially in light of continued population growth. New alternative proteinaceous foods are therefore required. Solid-state fermented plant foods from Africa and Asia include several mold- and Bacillus-fermented foods such as tempeh, sufu, and natto. These fermentations improve the protein digestibility of the plant food materials while also creating unique textures, flavors, and taste sensations. Understanding the nature of these transformations is of crucial interest to inspire the development of new plant-protein foods. In this review, we describe the conversions taking place in the plant food matrix as a result of these solid-state fermentations. We also summarize how these (nonlactic) plant food fermentations can lead to desirable flavor properties, such as kokumi and umami sensations, and improve the protein quality by removing antinutritional factors and producing additional essential amino acids in these foods.
Collapse
Affiliation(s)
- Tessa S Canoy
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark; ,
| | | | - Wender L P Bredie
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark; ,
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
21
|
Śmiecińska K, Stępień A, Daszkiewicz T. The fatty acid profile and the quality of breast and leg muscles in female and male pearl gray guinea fowl (Numida meleagris). Poult Sci 2024; 103:103385. [PMID: 38181477 PMCID: PMC10805938 DOI: 10.1016/j.psj.2023.103385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
The aim of this study was to evaluate the fatty acid (FA) profile and the quality of breast and leg muscles in male and female guinea fowl. In comparison with leg muscles, breast muscles had a higher content of dry matter and total protein, and contained less fat and total collagen (P ≤ 0.05). Sex had no effect on the chemical composition of the studied muscles or the FA profile of intramuscular fat (IMF) (P > 0.05). The IMF of breast muscles was characterized by higher proportions of total saturated fatty acids (SFAs) and polyunsaturated fatty acids (PUFAs), and lower proportions of total unsaturated fatty acids (UFAs) and monounsaturated fatty acids (MUFAs) (P ≤ 0.05) than the IMF of leg muscles. The physicochemical properties of guinea fowl meat were significantly influenced by muscle type (P ≤ 0.05), but not by sex (P > 0.05). Leg muscles were characterized by a higher pH, higher cooking loss, lower lightness (L*), lower drip loss, a higher contribution of redness (a*), and a lower contribution of yellowness (b*) than breast muscles (P ≤ 0.05). The experimental factors had no effect on the sensory attributes or the shear force values of the analyzed muscles (P > 0.05). The unique sensory attributes, high protein content, and low fat content of the analyzed muscles indicate that guinea fowl meat can be a dietary supplement and an addition to other types of meat consumed, especially that most guinea fowl are reared in extensive farming systems that contribute to sustainable food production.
Collapse
Affiliation(s)
- Katarzyna Śmiecińska
- Department of Commodity Science and Processing of Animal Raw Materials, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
| | - Adrian Stępień
- Department of Commodity Science and Processing of Animal Raw Materials, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Tomasz Daszkiewicz
- Department of Commodity Science and Processing of Animal Raw Materials, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
22
|
Zhu J, Wang Y, Su Y, Zheng M, Cui H, Chen Z. RNA sequencing identifies key genes involved in intramuscular fat deposition in chickens at different developmental stages. BMC Genomics 2024; 25:219. [PMID: 38413888 PMCID: PMC10900564 DOI: 10.1186/s12864-023-09819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/20/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Intramuscular fat (IMF) is an important factor in meat quality, and triglyceride (TG) and Phospholipids (PLIP), as the main components of IMF, are of great significance to the improvement of meat quality. RESULTS In this study, we used 30 RNA sequences generated from the transcriptome of chicken breast muscle tissues at different developmental stages to construct a gene expression matrix to map RNA sequence reads to the chicken genome and identify the transcript of origin. We used weighted gene co-expression network analysis (WGCNA) and identified 27 co-expression modules, 10 of which were related to TG and PLIP. We identified 150 highly-connected hub genes related to TG and PLIP, respectively, which were found to be mainly enriched in the adipocytokine signaling pathway, MAPK signaling pathway, mTOR signaling pathway, FoxO signaling pathway, and TGF-beta signaling pathway. Additionally, using the BioMart database, we identified 134 and 145 candidate genes related to fat development in the TG-related module and PLIP-related module, respectively. Among them, RPS6KB1, BRCA1, CDK1, RPS3, PPARGC1A, ACSL1, NDUFAB1, NDUFA9, ATP5B and PRKAG2 were identified as candidate genes related to fat development and highly-connected hub genes in the module, suggesting that these ten genes may be important candidate genes affecting IMF deposition. CONCLUSIONS RPS6KB1, BRCA1, CDK1, RPS3, PPARGC1A, ACSL1, NDUFAB1, NDUFA9, ATP5B and PRKAG2 may be important candidate genes affecting IMF deposition. The purpose of this study was to identify the co-expressed gene modules related to chicken IMF deposition using WGCNA and determine key genes related to IMF deposition, so as to lay a foundation for further research on the molecular regulation mechanism underlying chicken fat deposition.
Collapse
Affiliation(s)
- Jinmei Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yongli Wang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yongchun Su
- Guangxi Jingling Agriculture and animal Husbandry Group Co., LTD, Nanning, 530049, China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huanxian Cui
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Zhiwu Chen
- Guangxi Jingling Agriculture and animal Husbandry Group Co., LTD, Nanning, 530049, China.
| |
Collapse
|
23
|
Zhang Q, Zhang H, Jiang Y, Wang J, Wu D, Wu C, Che L, Lin Y, Zhuo Y, Luo Z, Nie K, Li J. Chromium propionate supplementation to energy- and protein-reduced diets reduces feed consumption but improves feed conversion ratio of yellow-feathered male broilers in the early period and improves meat quality. Poult Sci 2024; 103:103260. [PMID: 38096665 PMCID: PMC10762463 DOI: 10.1016/j.psj.2023.103260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 01/06/2024] Open
Abstract
Growth performance and carcass traits may be retarded by low nutrient density diets. Organic chromium propionate (CrProp) can improve growth, carcass traits, and meat quality in farmed lambs, white broilers, and fish. Limited data regarding CrProp's impacts on yellow-feathered broilers are available. Eight hundred yellow-feathered male broilers (1-day old) were randomly allocated to 4 dietary groups and reared for 56 d. The trial was a 2 (dietary nutrient density) ×2 (CrProp) factorial arrangement with 4 diets: regular nutrient diet and low nutrient density (LND, reduction in metabolizable energy by 81 kcal and crude protein by 0.43%) diet supplemented with or without 200 mg/kg CrProp. Broilers were euthanized at d 56 after blood collection. The results indicated that the LND diet led to greater average daily feed intake (ADFI) from d 1 to 42 and feed conversion ratio (FCR) from d 22 to 42 (P < 0.05). Supplementation of CrProp improved body weight (BW) from d 1 to 56, average daily gain (ADG), and FCR during d 1 to 42 but reduced ADFI during d 1 to 21, as well as lowered abdominal fat percentage (P < 0.05). Supplementation with CrProp to regular and LND diets reduced ADFI but improved FCR from d 1 to 21 (P < 0.05). The LND diet lowered total antioxidant capacity (T-AOC) concentration and total superoxide dismutase (T-SOD) activity in the jejunal mucosa. CrProp elevated T-AOC levels and glutathione peroxidase activity (GSH-Px, P < 0.05). Dietary CrProp upregulated (P < 0.05) the expression of fatty acid transporter (FABP1) gene and peptide transporter (Pept1) gene. CrProp administration increased jejunal FABP1 expression and lowered cooking loss of breast meat (P < 0.05) in the LND group while reducing shear force (P = 0.009) of broilers treated by regular diet. In summary, CrProp administration to the LND diet can improve growth performance in the starter period and meat quality on d 56, possibly through upregulated nutrient transporter gene expression in the jejunum and enhanced antioxidant capability.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Animal Resources and Science, Dankook University, Cheonan 31116, South Korea; Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongtao Zhang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yukun Jiang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Caimei Wu
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Zheng Luo
- Kemin (China) Technologies Co., Ltd., Zhuhai, China
| | - Kangkang Nie
- Kemin (China) Technologies Co., Ltd., Zhuhai, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
24
|
Wang W, Zhang T, Du L, Li K, Zhang L, Li H, Gao X, Xu L, Li J, Gao H. Transcriptomic analysis reveals diverse expression patterns underlying the fiber diameter of oxidative and glycolytic skeletal muscles in steers. Meat Sci 2024; 207:109350. [PMID: 37844514 DOI: 10.1016/j.meatsci.2023.109350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/18/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
Skeletal muscles consist of heterogeneous fibers with various contractile and metabolic properties that affect meat quality. The size of muscle fibers contributes to muscle mass and myopathy. Thus, improved understanding of the expression patterns underlying fiber size might open possibilities to change them using genetic methods. The aim of this study was to reveal transcriptomic landscapes of one oxidative (Psoas major) and three glycolytic (Longissimus lumborum, Triceps brachii, and Semimembranosus) muscles. Principal component analysis (PCA) showed significant differences in gene expression among the four muscles. Specifically, 2777 differentially expressed genes (DEGs) were detected between six pairwise comparisons of the four muscles. Weighted gene co-expression network analysis (WGCNA) identified six modules, which were significantly associated with muscle fiber diameter. We also identified 23 candidate genes, and enrichment analysis showed that biosynthesis of amino acids (bta01230), sarcomere (GO:0030017), and regulation of actin cytoskeleton (bta04810) overlapped in DEGs and WGCNA. Nineteen of these genes (e.g., EEF1A2, FARSB, and PINK1) have been reported to promote or inhibit muscle growth and development. Our findings contribute to the understanding of fiber size differences among oxidative and glycolytic muscles, which may provide a basis for breeding to improve meat yield.
Collapse
Affiliation(s)
- Wenxiang Wang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Tianliu Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lili Du
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Keanning Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lupei Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Haipeng Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
25
|
Wen C, Wang Q, Gu S, Jin J, Yang N. Emerging perspectives in the gut-muscle axis: The gut microbiota and its metabolites as important modulators of meat quality. Microb Biotechnol 2024; 17:e14361. [PMID: 37902307 PMCID: PMC10832551 DOI: 10.1111/1751-7915.14361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023] Open
Abstract
Animal breeding has made great genetic progress in increasing carcass weight and meat yield in recent decades. However, these improvements have come at the expense of meat quality. As the demand for meat quantity continues to rise, the meat industry faces the great challenge of maintaining and even increasing product quality. Recent research, including traditional statistical analyses and gut microbiota regulation research, has demonstrated that the gut microbiome exerts a considerable effect on meat quality, which has become increasingly intriguing in farm animals. Microbial metabolites play crucial roles as substrates or signalling factors to distant organs, influencing meat quality either beneficially or detrimentally. Interventions targeting the gut microbiota exhibit excellent potential as natural ways to foster the conversion of myofibres and promote intramuscular fat deposition. Here, we highlight the emerging roles of the gut microbiota in various dimensions of meat quality. We focus particularly on the effects of the gut microbiota and gut-derived molecules on muscle fibre metabolism and intramuscular fat deposition and attempt to summarize the potential underlying mechanisms.
Collapse
Affiliation(s)
- Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural AffairsChina Agricultural UniversityBeijingChina
- Department of Animal Genetics and Breeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversityHainanChina
| | - Qunpu Wang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural AffairsChina Agricultural UniversityBeijingChina
- Department of Animal Genetics and Breeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Shuang Gu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural AffairsChina Agricultural UniversityBeijingChina
- Department of Animal Genetics and Breeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Jiaming Jin
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural AffairsChina Agricultural UniversityBeijingChina
- Department of Animal Genetics and Breeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural AffairsChina Agricultural UniversityBeijingChina
- Department of Animal Genetics and Breeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversityHainanChina
| |
Collapse
|
26
|
An W, Huang Z, Mao Z, Jia G, Zhao H, Liu G, Chen X. Taurine promotes muscle fiber type transformation through CaN/NFATc1 signaling in porcine myoblasts. J Cell Physiol 2023; 238:2879-2887. [PMID: 37842836 DOI: 10.1002/jcp.31136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
This study investigated the effect of taurine (TAU) on the muscle fiber type transformation in porcine myoblasts and its molecular mechanisms. The findings revealed that TAU augmented the protein expression of slow MyHC and the enzyme activities of oxidative metabolism markers like malate dehydrogenase and succinic dehydrogenase. Conversely, it curtailed the expression of fast MyHC and glycolytic metabolism enzyme activity of lactate dehydrogenase. Moreover, TAU elevated the expression of genes associated with oxidative fiber while diminishing the expression of those linked to glycolytic fibers, suggesting that TAU promoted the muscle fiber type transformation from glycolytic fiber to oxidative fiber. Additionally, TAU notably enhanced the expression of key molecules of calcineurin (CaN)/nuclear factor of activated T cells c1 (NFATc1) signaling and the CaN activity in porcine myoblasts. However, CaN inhibitor cyclosporine A abolished these effects induced by TAU. Our results indicated that TAU regulated the muscle fiber type transformation from glycolytic to oxidative fiber by activation of CaN/NFATc1 signaling.
Collapse
Affiliation(s)
- Wenting An
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Zhengyu Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
27
|
Huang L, Guo Q, Wu Y, Jiang Y, Bai H, Wang Z, Chen G, Chang G. Carcass traits, proximate composition, amino acid and fatty acid profiles, and mineral contents of meat from Cherry Valley, Chinese crested, and crossbred ducks. Anim Biotechnol 2023; 34:2459-2466. [PMID: 35816470 DOI: 10.1080/10495398.2022.2096625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Duck meat is known for its taste and high nutritive value. To preserve local genetic diversity while maintaining commercial viability, we obtained a crossbreed (CB) between high-performing Cherry Valley (CV) and traditional Chinese crested (CC) ducks. We compared carcass traits and meat quality characteristics of CB and parental breeds. Meat from the above ducks at their respective marketable ages was evaluated for proximate composition, amino acid and fatty acid profiles, and selected mineral content. The live weights, carcass weights, and breast muscle percentage of CB were higher than CC but lower than CV; the leg muscle of CB was lower than CV and CC. CB had higher intramuscular fat content than CV; its collagen content was lower than CC but higher than CV in breast and thigh muscles. Additionally, the saturated fatty acid content of CB muscle was lower than CV and higher than CC. CB contained more monounsaturated fatty acids than CV and CC. Zn content was higher in CB breast than CV and CC. CB, obtained by crossing CV and CC, has partial advantages over both the breeds suggesting that these characteristics aligned with standards to breed ducks with high-quality meat.
Collapse
Affiliation(s)
- Lan Huang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Qixin Guo
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Yun Wu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Yong Jiang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Hao Bai
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Zhixiu Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| |
Collapse
|
28
|
Liu KL, He YF, Xu BW, Lin LX, Chen P, Iqbal MK, Mehmood K, Huang SC. Leg disorders in broiler chickens: a review of current knowledge. Anim Biotechnol 2023; 34:5124-5138. [PMID: 37850850 DOI: 10.1080/10495398.2023.2270000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Ensuring improved leg health is an important prerequisite for broilers to achieve optimal production performance and welfare status. Broiler leg disease is characterized by leg muscle weakness, leg bone deformation, joint cysts, arthritis, femoral head necrosis, and other symptoms that result in lameness or paralysis. These conditions significantly affect movement, feeding and broiler growth performance. Nowadays, the high incidence of leg abnormalities in broiler chickens has become an important issue that hampers the development of broiler farming. Therefore, it is imperative to prevent leg diseases and improve the health of broiler legs. This review mainly discusses the current prevalence of broiler leg diseases and describes the risk factors, diagnosis, and prevention of leg diseases to provide a scientific basis for addressing broiler leg health problems.
Collapse
Affiliation(s)
- Kai-Li Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Yan-Feng He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Bo-Wen Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Lu-Xi Lin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Pan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Muhammad Kashif Iqbal
- Institute of Continuing Education and Extension, Cholistan University of Veterinary and Animal Sciences Bahawalpur, Bahawalpur, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| |
Collapse
|
29
|
Salgado Pardo JI, Navas González FJ, González Ariza A, León Jurado JM, Galán Luque I, Delgado Bermejo JV, Camacho Vallejo ME. Study of Meat and Carcass Quality-Related Traits in Turkey Populations through Discriminant Canonical Analysis. Foods 2023; 12:3828. [PMID: 37893720 PMCID: PMC10606380 DOI: 10.3390/foods12203828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The present research aimed to determine the main differences in meat and carcass quality traits among turkey genotypes worldwide and describe the clustering patterns through the use of a discriminant canonical analysis (DCA). To achieve this goal, a comprehensive meta-analysis of 75 documents discussing carcass and meat characteristics in the turkey species was performed. Meat and carcass attributes of nine different turkey populations were collected and grouped in terms of the following clusters: carcass dressing traits, muscle fiber properties, pH, color-related traits, water-retaining characteristics, texture-related traits, and meat chemical composition. The Bayesian ANOVA analysis reported that the majority of variables statistically differed (p < 0.05), and the multicollinearity analysis revealed the absence of redundancy problems among variables (VIF < 5). The DCA reported that cold carcass weight, slaughter weight, sex-male, carcass/piece weight, and the protein and fat composition of meat were the traits explaining variability among different turkey genotypes (Wilks' lambda: 0.488, 0.590, 0.905, 0.906, 0.937, and 0.944, respectively). The combination of traits in the first three dimensions explained 94.93% variability among groups. Mahalanobis distances cladogram-grouped populations following a cluster pattern and suggest its applicability as indicative of a turkey genotype's traceability.
Collapse
Affiliation(s)
- José Ignacio Salgado Pardo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (J.I.S.P.); (F.J.N.G.); (I.G.L.); (J.V.D.B.)
| | - Francisco Javier Navas González
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (J.I.S.P.); (F.J.N.G.); (I.G.L.); (J.V.D.B.)
| | - Antonio González Ariza
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (J.I.S.P.); (F.J.N.G.); (I.G.L.); (J.V.D.B.)
- Agropecuary Provincial Centre, Diputación Provincial de Córdoba, 14071 Córdoba, Spain;
| | | | - Inés Galán Luque
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (J.I.S.P.); (F.J.N.G.); (I.G.L.); (J.V.D.B.)
| | - Juan Vicente Delgado Bermejo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (J.I.S.P.); (F.J.N.G.); (I.G.L.); (J.V.D.B.)
| | | |
Collapse
|
30
|
Lee B, Kim DH, Lee J, Cressman MD, Choi YM, Lee K. Greater numbers and sizes of muscle bundles in the breast and leg muscles of broilers compared to layer chickens. Front Physiol 2023; 14:1285938. [PMID: 37877096 PMCID: PMC10590882 DOI: 10.3389/fphys.2023.1285938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Meat-type (broiler) and egg-type (layer) chickens were bred by intensive selection over the years, resulting in more numbers and larger sizes of myofibers. Although the characteristics are important parameters in muscle growth and meat quality, muscle bundle characteristics have not been studied in poultry. Therefore, this study aimed to compare the histological characteristics of myofibers and muscle bundles in muscles between male broiler (Ross broiler breed) chickens and layer (Hy-Line) chickens. Chicken muscles, pectoralis major (PM) and gastrocnemius (GM), were sampled at the age of 49 days and stained to analyze histological characteristics. Expectedly, body weights (BWs) and weights of PM and GM muscles in 49-day-old broilers were significantly heavier than those in layers. Within PM, broilers exhibited greater number and cross-sectional area (CSA) of myofibers than layers (3.3- and 3.3-fold, respectively). The total number and CSA of PM muscle bundles were approximately 1.5 and 6.6 times greater, respectively, in broilers than layers. Moreover, broilers exhibited 2 times greater number of myofibers per bundle of PM muscle than layers. Within GM, myofiber number and CSA were 2.3- and 2.4-fold greater, respectively, in broilers than layers. In addition, the total number of muscle bundles and bundle CSA were 2.5- and 2.1-fold greater, respectively, in broilers than in the layers. The novel findings of the current study provide evidence that greater muscle mass of broilers occurs by both hyperplasia and hypertrophy of muscle bundles and myofibers.
Collapse
Affiliation(s)
- Boin Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, Republic of Korea
| | - Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Michael D. Cressman
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Young Min Choi
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, Republic of Korea
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
31
|
Liu L, Chen Q, Yin L, Tang Y, Lin Z, Zhang D, Liu Y. A Comparison of the Meat Quality, Nutritional Composition, Carcass Traits, and Fiber Characteristics of Different Muscular Tissues between Aged Indigenous Chickens and Commercial Laying Hens. Foods 2023; 12:3680. [PMID: 37835333 PMCID: PMC10573064 DOI: 10.3390/foods12193680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The aim of this study is to assess the differences in the meat quality, nutritional composition, carcass traits, and myofiber characteristics between Hy-Line grey chickens (HLG, commercial breed) and Guangyuan grey chickens (GYG, indigenous breed). A total of 20 55-week-old chickens were selected for slaughter. The HLG exhibited a larger carcass weight, breast muscle weight, and abdominal fat weight (p < 0.05). The GYG exhibited a higher crude protein content, lower shear force, and smaller fiber size in the thigh muscles, whereas the HLG presented higher pH values and lower inosine-5'-monophosphate content in the breast muscles (p < 0.05). Darker meat based on higher redness and yellowness values was observed in the GYG instead of the HLG (p < 0.05). The research results also revealed parameter differences between different muscle types. Simultaneously, a correlation analysis showed significant correlations between the meat quality traits and myofiber characteristics (p < 0.05). In conclusion, aged indigenous chickens perform better in terms of tenderness and nutritional value in the thigh muscles, and may exhibit a better flavor in the breast muscles, but have a smaller breast muscle weight. Therefore, the current investigation provides a theoretical basis for the different needs of consumers and the processing of meat from old laying hens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
32
|
Liu L, Yin L, Yuan Y, Tang Y, Lin Z, Liu Y, Yang J. Developmental Characteristics of Skeletal Muscle during the Embryonic Stage in Chinese Yellow Quail ( Coturnix japonica). Animals (Basel) 2023; 13:2317. [PMID: 37508093 PMCID: PMC10376076 DOI: 10.3390/ani13142317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The quail is an important research model, and the demand for quail meat has been increasing in recent years; therefore, it is worthwhile investigating the development of embryonic skeletal muscle and the expression patterns of regulatory genes. In this study, the expression of MyoD and Pax7 in the breast muscle (m. pectoralis major) and leg muscle (m. biceps femoris) of quail embryos on days 10 through 17 were determined using qRT-PCR. Paraffin sections of embryonic muscle were analyzed to characterize changes over time. Results showed that MyoD and Pax7 were expressed in both breast and leg muscles and played a significant role in embryonic muscle development. Compared to breast muscle, leg muscle grew faster and had greater weight and myofiber size. The findings suggested that embryonic day 12 (E12) may be a key point for muscle development. Correlation analysis showed that MyoD expression was significantly negatively correlated with muscle and embryo weight, whereas Pax7 gene expression had no significant correlation with these characteristics. These fundamental results provide a theoretical basis for understanding the characteristics and transition points of skeletal muscle development in quail embryos and an important reference for farmers raising quail from eggs.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lingqian Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaohan Yuan
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiandong Yang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
33
|
Choi J, Kong B, Bowker BC, Zhuang H, Kim WK. Nutritional Strategies to Improve Meat Quality and Composition in the Challenging Conditions of Broiler Production: A Review. Animals (Basel) 2023; 13:ani13081386. [PMID: 37106949 PMCID: PMC10135100 DOI: 10.3390/ani13081386] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Poultry meat is becoming one of the most important animal protein sources for human beings in terms of health benefits, cost, and production efficiency. Effective genetic selection and nutritional programs have dramatically increased meat yield and broiler production efficiency. However, modern practices in broiler production result in unfavorable meat quality and body composition due to a diverse range of challenging conditions, including bacterial and parasitic infection, heat stress, and the consumption of mycotoxin and oxidized oils. Numerous studies have demonstrated that appropriate nutritional interventions have improved the meat quality and body composition of broiler chickens. Modulating nutritional composition [e.g., energy and crude protein (CP) levels] and amino acids (AA) levels has altered the meat quality and body composition of broiler chickens. The supplementation of bioactive compounds, such as vitamins, probiotics, prebiotics, exogenous enzymes, plant polyphenol compounds, and organic acids, has improved meat quality and changed the body composition of broiler chickens.
Collapse
Affiliation(s)
- Janghan Choi
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Byungwhi Kong
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Brian C Bowker
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Hong Zhuang
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
34
|
Kohn TA, Anley MJ, Magwaza SN, Adamson L, Hoffman LC, Brand TS. Muscle fiber type and metabolic profiles of four muscles from the African black ostrich. Meat Sci 2023; 200:109156. [PMID: 36898231 DOI: 10.1016/j.meatsci.2023.109156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/20/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Muscle fiber type, fiber cross-sectional area (CSA), enzyme activities (citrate synthase (CS), 3-hydroxyacetyl Co A dehydrogenase (3HAD), lactate dehydrogenase (LDH) and phosphofructokinase (PFK)) and glycogen content were analyzed in the M. iliotibialis cranialis (ITC), M. iliotibialis lateralis, M. gastrocnemius (G) and M. fibularis longus (FL) muscles from 24 ostriches. Type I and II fiber proportions were similar across the 4 muscles, but the ITC had overall the smallest fibers. CS activity was the highest in the ITC, but similar between the remainder of the muscles. 3HAD activities were very low in all muscles, ranging between 1.9 and 2.7 μmol/min/g protein, indicating poor β-oxidation. The ITC also had the lowest PFK activity. Glycogen content averaged ∼85 mmol/kg dry weight across the muscles with large intramuscular variations. The 4 ostrich muscles present with low fat oxidation capacity and low glycogen content, which could have significant implications on meat quality attributes.
Collapse
Affiliation(s)
- Tertius A Kohn
- Department of Human Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa; Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535. South Africa.
| | - Megan J Anley
- Department of Human Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - S'thandiwe N Magwaza
- Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535. South Africa
| | - Luqmaan Adamson
- Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535. South Africa
| | - Louw C Hoffman
- Department of Animal Sciences, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Australia
| | - Tertius S Brand
- Animal Sciences, Department of Agriculture, Western Cape Government, Private Bag X1, Elsenburg 7607, South Africa; Department of Animal Sciences, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
35
|
Tan X, He Y, He Y, Yan Z, Chen J, Zhao R, Sui X, Zhang L, Du X, Irwin DM, Zhang S, Li B. Comparative Proteomic Analysis of Glycolytic and Oxidative Muscle in Pigs. Genes (Basel) 2023; 14:genes14020361. [PMID: 36833290 PMCID: PMC9957308 DOI: 10.3390/genes14020361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
The quality of meat is highly correlated with muscle fiber type. However, the mechanisms via which proteins regulate muscle fiber types in pigs are not entirely understood. In the current study, we have performed proteomic profiling of fast/glycolytic biceps femoris (BF) and slow/oxidative soleus (SOL) muscles and identified several candidate differential proteins among these. We performed proteomic analyses based on tandem mass tags (TMTs) and identified a total of 26,228 peptides corresponding to 2667 proteins among the BF and SOL muscle samples. Among these, we found 204 differentially expressed proteins (DEPs) between BF and SOL muscle, with 56 up-regulated and 148 down-regulated DEPs in SOL muscle samples. KEGG and GO enrichment analyses of the DEPs revealed that the DEPs are involved in some GO terms (e.g., actin cytoskeleton, myosin complex, and cytoskeletal parts) and signaling pathways (PI3K-Akt and NF-kappa B signaling pathways) that influence muscle fiber type. A regulatory network of protein-protein interaction (PPI) between these DEPs that regulates muscle fiber types was constructed, which demonstrates how three down-regulated DEPs, including PFKM, GAPDH, and PKM, interact with other proteins to potentially control the glycolytic process. This study offers a new understanding of the molecular mechanisms in glycolytic and oxidative muscles as well as a novel approach for enhancing meat quality by transforming the type of muscle fibers in pigs.
Collapse
Affiliation(s)
- Xiaofan Tan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yu He
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuqiao He
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiwei Yan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Chen
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ruixue Zhao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Sui
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Lei Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xuehai Du
- Liaoning Provincial Animal Husbandry Development Center, Liaoning Province Agricultural Development Service Center, Shenyang 110032, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Bojiang Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Correspondence:
| |
Collapse
|
36
|
Ge Q, Guo S, Chen S, Wu Y, Jia Z, Kang Z, Xiong G, Yu H, Wu M, Liu R. A comparative study of vacuum tumbling and immersion marination on quality, microstructure, and protein changes of Xueshan chicken. Front Nutr 2022; 9:1064521. [PMID: 36505261 PMCID: PMC9727197 DOI: 10.3389/fnut.2022.1064521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Marination is a common technology in meat processing with advantages of enhancing tenderness, water retention, and overall quality. This study was conducted to investigate the effect of vacuum tumbling and immersion marination on meat quality, microstructure, water mobility, protein changes, and denaturation of Xueshan chicken. Results showed that vacuum tumbling significantly increased the marinating rate of chicken, tenderness, meat texture, and water retention. Meanwhile, vacuum tumbling decreased total sulfhydryl content alongside an increased protein surface hydrophobicity and free sulfhydryl content, indicating that vacuum tumbling elevated the degree of protein denaturation. Further, the peak area corresponding to the relaxation time T22 after vacuum tumbling was significantly higher than that of immersion marination, suggesting that the stability of the immobilized water of chicken was reduced by vacuum tumbling. Compared to immersion marination, vacuum tumbling improved myofibril fragmentation index (MFI) presenting fewer myofibrillar protein bands in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gel and more damaged muscular cells. Overall, vacuum tumbling could improve the marination absorptivity, protein degradation, and denaturation, resulting in changes in myofibril structure and meat quality of Xueshan chicken.
Collapse
Affiliation(s)
- Qingfeng Ge
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuyang Guo
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Sheng Chen
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuehao Wu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhaoyang Jia
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhuangli Kang
- Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, School of Tourism and Cuisine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guoyuan Xiong
- Engineering Laboratory for Agro-Products Processing, Anhui Agricultural University, Hefei, China
| | - Hai Yu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mangang Wu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rui Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
37
|
Wei W, Zha C, Jiang A, Chao Z, Hou L, Liu H, Huang R, Wu W. A Combined Differential Proteome and Transcriptome Profiling of Fast- and Slow-Twitch Skeletal Muscle in Pigs. Foods 2022; 11:foods11182842. [PMID: 36140968 PMCID: PMC9497725 DOI: 10.3390/foods11182842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle fiber types can contribute in part to affecting pork quality parameters. Biceps femoris (Bf) (fast muscle or white muscle) and Soleus (Sol) (slow muscle or red muscle) are two typical skeletal muscles characterized by obvious muscle fiber type differences in pigs. However, the critical proteins and potential regulatory mechanisms regulating porcine skeletal muscle fibers have yet to be clearly defined. In this study, the isobaric Tag for Relative and Absolute Quantification (iTRAQ)-based proteome was used to identify the key proteins affecting the skeletal muscle fiber types with Bf and Sol, by integrating the previous transcriptome data, while function enrichment analysis and a protein–protein interaction (PPI) network were utilized to explore the potential regulatory mechanisms of skeletal muscle fibers. A total of 126 differentially abundant proteins (DAPs) between the Bf and Sol were identified, and 12 genes were found to be overlapping between differentially expressed genes (DEGs) and DAPs, which are the critical proteins regulating the formation of skeletal muscle fibers. Functional enrichment and PPI analysis showed that the DAPs were mainly involved in the skeletal-muscle-associated structural proteins, mitochondria and energy metabolism, tricarboxylic acid cycle, fatty acid metabolism, and kinase activity, suggesting that PPI networks including DAPs are the main regulatory network affecting muscle fiber formation. Overall, these data provide valuable information for understanding the molecular mechanism underlying the formation and conversion of muscle fiber types, and provide potential markers for the evaluation of meat quality.
Collapse
Affiliation(s)
- Wei Wei
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengwan Zha
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiwen Jiang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Liming Hou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruihua Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Tel.: +86-25-84399762
| |
Collapse
|
38
|
Identification of Four Chicken Breeds by Hyperspectral Imaging Combined with Chemometrics. Processes (Basel) 2022. [DOI: 10.3390/pr10081484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The current study aims to explore the potential of the combination of hyperspectral imaging and chemometrics in the rapid identification of four chicken breeds. The hyperspectral data of four chicken breeds were collected in the range of 400–900 nm. Five pretreatment methods were used to pretreat the original spectra. The important characteristic wavelength variables were extracted by random frog (RF), successive projection algorithm (SPA), and competitive adaptive reweighted sampling (CARS) algorithms. The classification models were established by using support vector machine (SVM), k-nearest neighbor (KNN), and partial least squares-discriminant analysis (PLS-DA). The results showed that the mean normalization pretreatment method was preferable, and overall classification accuracy of SVM-based models was higher than that of KNN-based and PLS-DA-based models. The correct classification rate (CCR) of the full-spectrum SVM model (Full-SVM) could reach 96.25%. The SPA method extracted 13 important wavelengths, and the SVM model based on SPA (SPA-SVM) achieved 90% CCR. This study can provide a theoretical reference for the discriminant analysis of chicken breeds.
Collapse
|
39
|
Comparative Analyses of Production Performance, Meat Quality, and Gut Microbial Composition between Two Chinese Goose Breeds. Animals (Basel) 2022; 12:ani12141815. [PMID: 35883362 PMCID: PMC9312094 DOI: 10.3390/ani12141815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Poultry is one of the most frequently consumed meats in the world and plays an important role in the daily life of people. Goose meat is consumed by consumers because it contains a relatively high proportion of polyunsaturated fatty acids. Meat quality traits, production performance, and cecal microbiota diversity in two goose breeds (Zi goose and Xianghai flying goose) were evaluated in this study. Understanding these aspects not only provides a reference for the exploration of the relationship between the cecal microbiota and production performance but also guidelines for the human consumption of healthy poultry meat. Abstract Goose meat is consumed by consumers because it contains a relatively high proportion of polyunsaturated fatty acids (PUFAs). This study was conducted to explore the main differences in production performance, breast meat quality traits, and cecal microbiota compositions between the Zi goose (ZG) and Xianghai flying goose (FG). The production performance and breast meat quality trait analyses showed that compared with the ZG, the FG had a higher right breast muscle index, ileum villi height/crypt depth ratio (VH/CD), and cecum fermentation rate (higher short-chain fatty acid (SFCA) concentration); a lower abdominal fat index; a higher proportion of PUFAs; and a lower shear force. Spearman’s correlation coefficients between the cecal microbiota composition and production performance indexes suggested that the genus Faecalibacterium was positively associated with production performance; in contrast, the genus Candidatus Saccharimonas was negatively correlated with production performance; moreover, the Ruminococcus torques group, Parasutterella, and Methanobrevibacter were negatively related to the VH/CD. Taken together, in this particular trial, FG had better production performance, healthier meat quality traits, and better intestinal digestion and absorption capacities than ZG. These results not only provide a useful data reference for the production of healthy geese for human consumption but can also help guide the utilization of goose breed resources.
Collapse
|
40
|
Untargeted Metabolomics Reveals the Effect of Selective Breeding on the Quality of Chicken Meat. Metabolites 2022; 12:metabo12050367. [PMID: 35629871 PMCID: PMC9144515 DOI: 10.3390/metabo12050367] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 12/25/2022] Open
Abstract
The selection for improved body weight is an effective approach in animal breeding. Guangxi Partridge chickens have differentiated into two lines under selective breeding, which include line S and line D that have shown statistically significant differences in body weight. However, the meat quality analysis in our study indicated that the quality of breast and thigh muscles in line S chickens changed, which included increased values of L*, b*, and drip loss and decreased a* value, pH, and shear force in skeletal muscles. To illuminate the effect of selection on skeletal muscles, LC-MS/MS metabolomics was performed to explore differentiated metabolites in divergent tissues from the two chicken lines. The results of principal component analysis and orthogonal projection to latent structures discriminant analysis suggested that metabolites of different groups were separated, which suggested that selective breeding certainly affected metabolism of skeletal muscles. KEGG analysis identified that valine, leucine, and isoleucine biosynthesis, glycerophospholipid metabolism, and glutathione metabolism noteworthily changed in breast muscle. Amino sugars and nucleotide sugar metabolism, ascorbate and aldarate metabolism, the pentose phosphate pathway, pentose and glucuronate interconversions, fructose and mannose metabolism, and glycerophospholipid metabolism were remarkedly identified in thigh muscle. These screened pathways suggested oxidative stress in breast and thigh muscles, which corresponded with our previous results. Therefore, this study determined that glycerophospholipid metabolism conservatively functioned in muscle flavor and development but exhibited different anti-oxidative patterns in different skeletal muscles. Overall, the present study identified several differentiated metabolites and pathways for exploring differences in meat quality between different broiler populations.
Collapse
|
41
|
Huo W, Weng K, Li Y, Zhang Y, Zhang Y, Xu Q, Chen G. Comparison of muscle fiber characteristics and glycolytic potential between slow- and fast-growing broilers. Poult Sci 2021; 101:101649. [PMID: 34986445 PMCID: PMC8743216 DOI: 10.1016/j.psj.2021.101649] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022] Open
Abstract
Muscle fiber characteristics had beneficial effects on meat masses and meat quality in broilers. Its number is determined at birth and directly affects the growth and development of muscle fibers after birth. However, whether the muscle fiber characteristics in different types of chickens are different at birth has not been fully documented. In this study, the 1-day-old Xueshan chicken (slow-growing broiler) and Ross 308 broiler (fast-growing broiler) were selected, respectively, and the fiber type distribution, fiber density, and fiber size in the breast (pectoralis major, PM) and leg (gastrocnemius, GAS) muscles were detected. The results showed that the PM only made up of type IIB fibers regardless of breed, and that few type I fibers (approximately 17.55%) was identified in GAS of Ross 308 broiler. The PM muscles had significantly higher fiber density, lower cross-sectional area and diameter than those of GAS muscles in both 2 breeds (P < 0.05). The highest fiber density was observed in PM of Xueshan chicken. Furthermore, the muscle fiber characteristics were partly controlled by glycolytic potential (GP), and the GP was also invesgated. The GP in PM and GAS of Ross 308 broiler were higher than in Xueshan chicken (P < 0.05). Taken together, 1-day-old Xueshan chicken exhibited higher fiber density and lower GP compared to 1-day-old Ross 308 broiler, especially in PM, which could not only reveal the differences of muscle characteristics among different types of chickens, but also explore a new way to improve the masses and quality of poultry meat.
Collapse
Affiliation(s)
- Weiran Huo
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Kaiqi Weng
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yi Li
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yu Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yang Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qi Xu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Guohong Chen
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|