1
|
Peters K, Lerma Clavero A, Kullenberg F, Kopsida M, Dahlgren D, Heindryckx F, Lennernäs H, Sjöblom M. Melatonin mitigates chemotherapy-induced small intestinal atrophy in rats and reduces cytotoxicity in murine intestinal organoids. PLoS One 2024; 19:e0307414. [PMID: 39226257 PMCID: PMC11371236 DOI: 10.1371/journal.pone.0307414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/04/2024] [Indexed: 09/05/2024] Open
Abstract
Cancer continues to pose a significant global health challenge, with gastrointestinal (GI) cancers among the most prevalent and deadly forms. These cancers often lead to high mortality rates and demand the use of potent cytotoxic chemotherapeutics. For example, 5-fluorouracil (5-FU) forms the backbone of chemotherapy regimens for various GI cancers, including colorectal cancer. While these chemotherapeutics efficiently kill cancer cells, they frequently cause off-target effects such as chemotherapy-induced mucositis (CIM), characterized by debilitating symptoms like pain, nausea, and diarrhoea, necessitating medical intervention. In this study, we elucidated the potential of melatonin and misoprostol to reduce 5-FU-induced small intestinal mucositis. Morphological and cellular changes in the jejunum, along with colonic faecal water content were quantified in rats as markers for CIM. Additionally, the effects of melatonin were investigated in vitro on 5-FU treated murine intestinal organoids. The results showed that melatonin prevented villus atrophy in the rat jejunal mucosa and upheld cell viability in murine intestinal organoids. In contrast, misoprostol alone or in combination with melatonin did not significantly affect CIM caused by 5-FU. These in vivo and in vitro experiments provided promising insights that melatonin may be used as a preventive and/or adjuvant combination therapy to prevent and reduce CIM, holding the potential to enhance cancer treatment outcomes and improve patient quality-of-life.
Collapse
Affiliation(s)
- Karsten Peters
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ada Lerma Clavero
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Fredrik Kullenberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Maria Kopsida
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - David Dahlgren
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Femke Heindryckx
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Markus Sjöblom
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Mitchell J, Sutton K, Elango JN, Borowska D, Perry F, Lahaye L, Santin E, Arsenault RJ, Vervelde L. Chicken intestinal organoids: a novel method to measure the mode of action of feed additives. Front Immunol 2024; 15:1368545. [PMID: 38835764 PMCID: PMC11148291 DOI: 10.3389/fimmu.2024.1368545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
There is a rapidly growing interest in how the avian intestine is affected by dietary components and feed additives. The paucity of physiologically relevant models has limited research in this field of poultry gut health and led to an over-reliance on the use of live birds for experiments. The development of complex 3D intestinal organoids or "mini-guts" has created ample opportunities for poultry research in this field. A major advantage of the floating chicken intestinal organoids is the combination of a complex cell system with an easily accessible apical-out orientation grown in a simple culture medium without an extracellular matrix. The objective was to investigate the impact of a commercial proprietary blend of organic acids and essential oils (OA+EO) on the innate immune responses and kinome of chicken intestinal organoids in a Salmonella challenge model. To mimic the in vivo prolonged exposure of the intestine to the product, the intestinal organoids were treated for 2 days with 0.5 or 0.25 mg/mL OA+EO and either uninfected or infected with Salmonella and bacterial load in the organoids was quantified at 3 hours post infection. The bacteria were also treated with OA+EO for 1 day prior to challenge of the organoids to mimic intestinal exposure. The treatment of the organoids with OA+EO resulted in a significant decrease in the bacterial load compared to untreated infected organoids. The expression of 88 innate immune genes was investigated using a high throughput qPCR array, measuring the expression of 88 innate immune genes. Salmonella invasion of the untreated intestinal organoids resulted in a significant increase in the expression of inflammatory cytokine and chemokines as well as genes involved in intracellular signaling. In contrast, when the organoids were treated with OA+EO and challenged with Salmonella, the inflammatory responses were significantly downregulated. The kinome array data suggested decreased phosphorylation elicited by the OA+EO with Salmonella in agreement with the gene expression data sets. This study demonstrates that the in vitro chicken intestinal organoids are a new tool to measure the effect of the feed additives in a bacterial challenge model by measuring innate immune and protein kinases responses.
Collapse
Affiliation(s)
- Jordan Mitchell
- Division of Immunology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences (R(D)SVS), University of Edinburgh, Edinburgh, United Kingdom
| | - Kate Sutton
- Division of Immunology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences (R(D)SVS), University of Edinburgh, Edinburgh, United Kingdom
| | | | - Dominika Borowska
- Division of Immunology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences (R(D)SVS), University of Edinburgh, Edinburgh, United Kingdom
| | - Famatta Perry
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | | | | | - Ryan J Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences (R(D)SVS), University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Fasina YO, Suarez DL, Ritter GD, Gerken EC, Farnell YZ, Wolfenden R, Hargis B. Unraveling frontiers in poultry health (part 1) - Mitigating economically important viral and bacterial diseases in commercial Chicken and Turkey production. Poult Sci 2024; 103:103500. [PMID: 38417326 PMCID: PMC10907857 DOI: 10.1016/j.psj.2024.103500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/21/2024] [Indexed: 03/01/2024] Open
Abstract
This symposium offered up-to-date perspectives on field experiences and the latest research on significant viral and bacterial diseases affecting poultry. A highlight was the discussion on the use of enteroids as advanced in vitro models for exploring disease pathogenesis. Outcomes of this symposium included identifying the urgent need to improve the prevention and control of avian influenza by focusing research on vaccine effectiveness. In this regard, efforts should focus on enhancing the relatedness of vaccine antigen to the field (challenge) virus strain and improving immunogenicity. It was also revealed that gangrenous dermatitis could be controlled through withholding or restricting the administration of ionophores during broiler life cycle, and that administration of microscopic polymer beads (gel) based-live coccidia vaccines to chicks could be used to reduce necrotic enteritis-induced mortality. It was emphasized that effective diagnosis of re-emerging Turkey diseases (such as blackhead, fowl cholera, and coccidiosis) and emerging Turkey diseases such as reoviral hepatitis, reoviral arthritis, Ornithobacterium rhinotracheale infection, and strepticemia require complementarity between investigative research approaches and production Veterinarian field approaches. Lastly, it was determined that the development of a variety of functionally-specific enteroids would expedite the delineation of enteric pathogen mechanisms and the identification of novel vaccine adjuvants.
Collapse
Affiliation(s)
- Yewande O Fasina
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA.
| | - David L Suarez
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS-USDA, Athens, GA 30605, USA
| | | | | | - Yuhua Z Farnell
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
| | | | - Billy Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville AR 72701, USA
| |
Collapse
|
4
|
Paredes-López DM, Robles-Huaynate RA, Soto-Vásquez MR, Perales-Camacho RA, Morales-Cauti SM, Beteta-Blas X, Aldava-Pardave U. Modulation of Gut Microbiota, and Morphometry, Blood Profiles and performance of Broiler Chickens Supplemented with Piper aduncum, Morinda citrifolia, and Artocarpus altilis leaves Ethanolic Extracts. Front Vet Sci 2024; 11:1286152. [PMID: 38511194 PMCID: PMC10953691 DOI: 10.3389/fvets.2024.1286152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
Bioactive plants such as P. aduncum, M. citrifolia, and A. altilis might improve intestinal health as an alternative to antibiotic growth promoters. The objective of this study was to determine the effect of the ethanolic extracts (EEs) of these plants on the intestinal health of broiler chickens. Cobb 500 chickens (n = 352) were distributed into eight treatments with four replicates and 11 chickens each. T1 received a base diet, and T2 received a base diet with 0.005% zinc bacitracin. T3, T5, and T7 were supplemented with 0.005% of P. aduncum, M. citrifolia, and A. altilis EE in the diet while T4, T6, and T8 with 0.01% of the extract. The EEs were supplemented with drinking water from 1 to 26 days of age. The following parameters were evaluated: hematological profiles at 28 days of age, blood metabolites profiles at 14, 21, and 28 days; Escherichia coli, Staphylococcus aureus, and Lactobacillus sp. abundance in the ileum mucosa and content at 21 and 28 days, and histomorphometry of the duodenum, jejunum, and ileum mucosa at 14, 21, and 28 d. Final weight (FW), weight gain (WG), feed intake (FI), and feed conversion rate (FCR) were evaluated at seven, 21, and 33 days of age. M. citrifolia and A. altilis EE at 0.01% increased blood glucose levels at 21 and 28 days of age, respectively, and P. aduncum and M. citrifolia EE at 0.01% increased triglycerides at 28 days of age; in addition, this EE did not have any effect on the AST and ALT profiles. The depths of the Lieberkühn crypts and the villi length to the crypt's depth ratio increased with age on supplementation with 0.01% M. citrifolia and A. altilis EE at 21 days of age (p < 0.05). In addition, the depth of the crypts increased at 28 days of age (p < 0.05) in chickens supplemented with 0.01% A. altilis EE. The 0.01% M. citrifolia EE in diet decreased in the Staphylococcus aureus population in the ileal microbiota (p < 0.05). The FW and WG during the fattening and in the three stages overall increased, and the FCR decreased; however, the FI and the carcass yield did not change in the broiler chickens supplemented with 0.01% M. citrifolia EE (p < 0.05). Conclusively, the M. citrifolia EE at 0.01% of the diet improved intestinal health and thus the performance indices of the broiler chickens and did not have a detrimental effect on any of the parameters evaluated, so it is postulated as a potential alternative to AGP in poultry.
Collapse
Affiliation(s)
| | - R. A. Robles-Huaynate
- Department of Animal Science, Universidad Nacional Agraria de la Selva, Tingo María, Peru
| | | | - Rosa Amelia Perales-Camacho
- Department of Animal and Public Health, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Siever Miguel Morales-Cauti
- Department of Animal and Public Health, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Xiomara Beteta-Blas
- Posgraduate School, Universidad Nacional Agraria de la Selva, Tingo María, Peru
| | | |
Collapse
|
5
|
Zdyrski C, Gabriel V, Gessler TB, Ralston A, Sifuentes-Romero I, Kundu D, Honold S, Wickham H, Topping NE, Sahoo DK, Bista B, Tamplin J, Ospina O, Piñeyro P, Arriaga M, Galan JA, Meyerholz DK, Allenspach K, Mochel JP, Valenzuela N. Establishment and characterization of turtle liver organoids provides a potential model to decode their unique adaptations. Commun Biol 2024; 7:218. [PMID: 38388772 PMCID: PMC10883927 DOI: 10.1038/s42003-024-05818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024] Open
Abstract
Painted turtles are remarkable for their freeze tolerance and supercooling ability along with their associated resilience to hypoxia/anoxia and oxidative stress, rendering them an ideal biomedical model for hypoxia-induced injuries (including strokes), tissue cooling during surgeries, and organ cryopreservation. Yet, such research is hindered by their seasonal reproduction and slow maturation. Here we developed and characterized adult stem cell-derived turtle liver organoids (3D self-assembled in vitro structures) from painted, snapping, and spiny softshell turtles spanning ~175My of evolution, with a subset cryopreserved. This development is, to the best of our knowledge, a first for this vertebrate Order, and complements the only other non-avian reptile organoids from snake venom glands. Preliminary characterization, including morphological, transcriptomic, and proteomic analyses, revealed organoids enriched in cholangiocytes. Deriving organoids from distant turtles and life stages demonstrates that our techniques are broadly applicable to chelonians, permitting the development of functional genomic tools currently lacking in herpetological research. Such platform could potentially support studies including genome-to-phenome mapping, gene function, genome architecture, and adaptive responses to climate change, with implications for ecological, evolutionary, and biomedical research.
Collapse
Affiliation(s)
- Christopher Zdyrski
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA.
- 3D Health Solutions Inc., Ames, IA, USA.
- SMART Pharmacology, Precision One Health Initiative, University of Georgia, Athens, GA, USA.
| | - Vojtech Gabriel
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Thea B Gessler
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Itzel Sifuentes-Romero
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Debosmita Kundu
- Department of Statistics, Iowa State University, Ames, IA, USA
| | - Sydney Honold
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Hannah Wickham
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Nicholas E Topping
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | - Basanta Bista
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jeffrey Tamplin
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, USA
| | - Oscar Ospina
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Pablo Piñeyro
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA, USA
| | - Marco Arriaga
- Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Jacob A Galan
- Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | | | - Karin Allenspach
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- 3D Health Solutions Inc., Ames, IA, USA
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
- SMART Pharmacology, Precision One Health Initiative, University of Georgia, Athens, GA, USA
| | - Jonathan P Mochel
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- 3D Health Solutions Inc., Ames, IA, USA
- SMART Pharmacology, Precision One Health Initiative, University of Georgia, Athens, GA, USA
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
6
|
Kang TH, Lee SI. Establishment of a chicken intestinal organoid culture system to assess deoxynivalenol-induced damage of the intestinal barrier function. J Anim Sci Biotechnol 2024; 15:30. [PMID: 38369477 PMCID: PMC10874546 DOI: 10.1186/s40104-023-00976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/12/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Deoxynivalenol (DON) is a mycotoxin that has received recognition worldwide because of its ability to cause growth delay, nutrient malabsorption, weight loss, emesis, and a reduction of feed intake in livestock. Since DON-contaminated feedstuff is absorbed in the gastrointestinal tract, we used chicken organoids to assess the DON-induced dysfunction of the small intestine. RESULTS We established a culture system using chicken organoids and characterized the organoids at passages 1 and 10. We confirmed the mRNA expression levels of various cell markers in the organoids, such as KI67, leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5), mucin 2 (MUC2), chromogranin A (CHGA), cytokeratin 19 (CK19), lysozyme (LYZ), and microtubule-associated doublecortin-like kinase 1 (DCLK1), and compared the results to those of the small intestine. Our results showed that the organoids displayed functional similarities in permeability compared to the small intestine. DON damaged the tight junctions of the organoids, which resulted in increased permeability. CONCLUSIONS Our organoid culture displayed topological, genetic, and functional similarities with the small intestine cells. Based on these similarities, we confirmed that DON causes small intestine dysfunction. Chicken organoids offer a practical model for the research of harmful substances.
Collapse
Affiliation(s)
- Tae Hong Kang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-Sangbuk-Do, 37224, Republic of Korea
| | - Sang In Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-Sangbuk-Do, 37224, Republic of Korea.
- Research Institute for Innovative Animal Science, Kyungpook National University, 37224, Sangju, Gyeong-Sangbuk-Do, Republic of Korea.
| |
Collapse
|
7
|
Gabriel V, Zdyrski C, Sahoo DK, Ralston A, Wickham H, Bourgois-Mochel A, Ahmed B, Merodio MM, Paukner K, Piñeyro P, Kopper J, Rowe EW, Smith JD, Meyerholz D, Kol A, Viall A, Elbadawy M, Mochel JP, Allenspach K. Adult Animal Stem Cell-Derived Organoids in Biomedical Research and the One Health Paradigm. Int J Mol Sci 2024; 25:701. [PMID: 38255775 PMCID: PMC10815683 DOI: 10.3390/ijms25020701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Preclinical biomedical research is limited by the predictiveness of in vivo and in vitro models. While in vivo models offer the most complex system for experimentation, they are also limited by ethical, financial, and experimental constraints. In vitro models are simplified models that do not offer the same complexity as living animals but do offer financial affordability and more experimental freedom; therefore, they are commonly used. Traditional 2D cell lines cannot fully simulate the complexity of the epithelium of healthy organs and limit scientific progress. The One Health Initiative was established to consolidate human, animal, and environmental health while also tackling complex and multifactorial medical problems. Reverse translational research allows for the sharing of knowledge between clinical research in veterinary and human medicine. Recently, organoid technology has been developed to mimic the original organ's epithelial microstructure and function more reliably. While human and murine organoids are available, numerous other organoids have been derived from traditional veterinary animals and exotic species in the last decade. With these additional organoid models, species previously excluded from in vitro research are becoming accessible, therefore unlocking potential translational and reverse translational applications of animals with unique adaptations that overcome common problems in veterinary and human medicine.
Collapse
Affiliation(s)
- Vojtech Gabriel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | | | - Dipak K. Sahoo
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
| | - Abigail Ralston
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
| | - Hannah Wickham
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | - Agnes Bourgois-Mochel
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
| | - Basant Ahmed
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | - Maria M. Merodio
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
| | - Karel Paukner
- Atherosclerosis Research Laboratory, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic;
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (P.P.); (J.D.S.)
| | - Jamie Kopper
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
| | - Eric W. Rowe
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | - Jodi D. Smith
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (P.P.); (J.D.S.)
| | - David Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA;
| | - Amir Kol
- Department of Pathology, University of California, Davis, CA 94143, USA; (A.K.); (A.V.)
| | - Austin Viall
- Department of Pathology, University of California, Davis, CA 94143, USA; (A.K.); (A.V.)
| | - Mohamed Elbadawy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30530, USA;
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Jonathan P. Mochel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30530, USA;
| | - Karin Allenspach
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30530, USA;
| |
Collapse
|
8
|
Wu H, Mu C, Xu L, Yu K, Shen L, Zhu W. Host-microbiota interaction in intestinal stem cell homeostasis. Gut Microbes 2024; 16:2353399. [PMID: 38757687 PMCID: PMC11110705 DOI: 10.1080/19490976.2024.2353399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
Intestinal stem cells (ISCs) play a pivotal role in gut physiology by governing intestinal epithelium renewal through the precise regulation of proliferation and differentiation. The gut microbiota interacts closely with the epithelium through myriad of actions, including immune and metabolic interactions, which translate into tight connections between microbial activity and ISC function. Given the diverse functions of the gut microbiota in affecting the metabolism of macronutrients and micronutrients, dietary nutrients exert pronounced effects on host-microbiota interactions and, consequently, the ISC fate. Therefore, understanding the intricate host-microbiota interaction in regulating ISC homeostasis is imperative for improving gut health. Here, we review recent advances in understanding host-microbiota immune and metabolic interactions that shape ISC function, such as the role of pattern-recognition receptors and microbial metabolites, including lactate and indole metabolites. Additionally, the diverse regulatory effects of the microbiota on dietary nutrients, including proteins, carbohydrates, vitamins, and minerals (e.g. iron and zinc), are thoroughly explored in relation to their impact on ISCs. Thus, we highlight the multifaceted mechanisms governing host-microbiota interactions in ISC homeostasis. Insights gained from this review provide strategies for the development of dietary or microbiota-based interventions to foster gut health.
Collapse
Affiliation(s)
- Haiqin Wu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Chunlong Mu
- Food Informatics, AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Laipeng Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Kaifan Yu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Le Shen
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Cui Y, Huang P, Duan H, Song S, Gan L, Liu Z, Lin Q, Wang J, Qi G, Guan J. Role of microencapsulated Lactobacillus plantarum in alleviating intestinal inflammatory damage through promoting epithelial proliferation and differentiation in layer chicks. Front Microbiol 2023; 14:1287899. [PMID: 38053557 PMCID: PMC10694250 DOI: 10.3389/fmicb.2023.1287899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
The alleviating effects of Lactobacillus plantarum in microencapsulation (LPM) on lipopolysaccharide (LPS)-induced intestinal inflammatory injury were investigated in layer chicks. A total of 252 healthy Hy-Line Brown layer chicks were randomly divided into six groups. Birds were injected with saline or LPS except for the control, and the diets of birds subjected to LPS were supplemented with nothing, L. plantarum, LPM, and wall material of LPM, respectively. The viable counts of LPM reached 109 CFU/g, and the supplemental levels of L. plantarum, LPM, and WM were 0.02 g (109 CFU), 1.0 g, and 0.98 g, per kilogram feed, respectively. LPS administration caused intestinal damage in layer chicks, evidenced by increased proinflammatory factors accompanied by poor intestinal development and morphology (p < 0.05). LPM/LPS significantly increased body weight, small intestine weight and length, villus height, villus height/crypt depth, and mRNA relative expression of tight junction protein genes (p < 0.05) and performed better than free L. plantarum. These findings could be attributed to the significant increase in viable counts of L. plantarum in the small intestine (p < 0.05), as well as the enhanced levels of Actinobacteriota, Lactobacillaceae, and Lactobacillus in intestinal microbiota (p < 0.05). Such results could further significantly increase goblet and PCNA+ cell percentage (p < 0.05); the mRNA relative expressions of epithelial cell, fast-cycling stem cell, quiescent stem cell, endocrine cell, and Paneth cell; and goblet and proliferative cell marker genes, including E-cadherin, Lgr-5, Bmi-1, ChA, Lysozome, Mucin-2, and PCNA (p < 0.05). Furthermore, the mRNA relative expressions of key genes involved in epithelial cell proliferation, namely, c-Myc, Cyclin-1, Wnt-3, Lrp-5, and Olfm-4, exhibited significant upregulation compared with the LPS treatment, as well as the differentiating genes Notch-1 and Hes-1 (p < 0.05). To sum up, microencapsulated L. plantarum supplementation could alleviate intestinal injury in layer chicks induced by LPS by promoting the proliferation and differentiation of intestinal epithelial cells, which could be attributed to the increase in viable count of L. plantarum in the gut and optimization in intestinal microbial flora.
Collapse
Affiliation(s)
- Yaoming Cui
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Peiyu Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Haitao Duan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Shijia Song
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Liping Gan
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Zhen Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Qiaohan Lin
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Jinrong Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Gunghai Qi
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjun Guan
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Cui C, Li L, Wu L, Wang X, Zheng Y, Wang F, Wei H, Peng J. Paneth cells in farm animals: current status and future direction. J Anim Sci Biotechnol 2023; 14:118. [PMID: 37582766 PMCID: PMC10426113 DOI: 10.1186/s40104-023-00905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/04/2023] [Indexed: 08/17/2023] Open
Abstract
A healthy intestine plays an important role in the growth and development of farm animals. In small intestine, Paneth cells are well known for their regulation of intestinal microbiota and intestinal stem cells (ISCs). Although there has been a lot of studies and reviews on human and murine Paneth cells under intestinal homeostasis or disorders, little is known about Paneth cells in farm animals. Most farm animals possess Paneth cells in their small intestine, as identified by various staining methods, and Paneth cells of various livestock species exhibit noticeable differences in cell shape, granule number, and intestinal distribution. Paneth cells in farm animals and their antimicrobial peptides (AMPs) are susceptible to multiple factors such as dietary nutrients and intestinal infection. Thus, the comprehensive understanding of Paneth cells in different livestock species will contribute to the improvement of intestinal health. This review first summarizes the current status of Paneth cells in pig, cattle, sheep, horse, chicken and rabbit, and points out future directions for the investigation of Paneth cells in the reviewed animals.
Collapse
Affiliation(s)
- Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lindeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinru Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Zheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangke Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 400700, China.
| |
Collapse
|
11
|
Lacroix-Lamandé S, Bernardi O, Pezier T, Barilleau E, Burlaud-Gaillard J, Gagneux A, Velge P, Wiedemann A. Differential Salmonella Typhimurium intracellular replication and host cell responses in caecal and ileal organoids derived from chicken. Vet Res 2023; 54:63. [PMID: 37525204 PMCID: PMC10391861 DOI: 10.1186/s13567-023-01189-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/20/2023] [Indexed: 08/02/2023] Open
Abstract
Chicken infection with Salmonella Typhimurium is an important source of foodborne human diseases. Salmonella colonizes the avian intestinal tract and more particularly the caecum, without causing symptoms. This thus poses a challenge for the prevention of foodborne transmission. Until now, studies on the interaction of Salmonella with the avian gut intestine have been limited by the absence of in vitro intestinal culture models. Here, we established intestinal crypt-derived chicken organoids to better decipher the impact of Salmonella intracellular replication on avian intestinal epithelium. Using a 3D organoid model, we observed a significantly higher replication rate of the intracellular bacteria in caecal organoids than in ileal organoids. Our model thus recreates intracellular environment, allowing Salmonella replication of avian epithelium according to the intestinal segment. Moreover, an inhibition of the cellular proliferation was observed in infected ileal and caecal organoids compared to uninfected organoids. This appears with a higher effect in ileal organoids, as well as a higher cytokine and signaling molecule response in infected ileal organoids at 3 h post-infection (hpi) than in caecal organoids that could explain the lower replication rate of Salmonella observed later at 24 hpi. To conclude, this study demonstrates that the 3D organoid is a model allowing to decipher the intracellular impact of Salmonella on the intestinal epithelium cell response and illustrates the importance of the gut segment used to purify stem cells and derive organoids to specifically study epithelial cell -Salmonella interaction.
Collapse
Affiliation(s)
| | | | - Tiffany Pezier
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France
| | | | - Julien Burlaud-Gaillard
- Plateforme IBiSA de Microscopie Électronique, Université de Tours et CHRU de Tours, Tours, France
| | - Anissa Gagneux
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France
| | - Philippe Velge
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France
| | - Agnès Wiedemann
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France.
- IRSD, Institut de Recherche en Santé Digestive, ENVT, INRAE, INSERM, Université́ de Toulouse, UPS, Toulouse, France.
| |
Collapse
|
12
|
Johnson CN, Arsenault RJ, Piva A, Grilli E, Swaggerty CL. A microencapsulated feed additive containing organic acids and botanicals has a distinct effect on proliferative and metabolic related signaling in the jejunum and ileum of broiler chickens. Front Physiol 2023; 14:1147483. [PMID: 37035681 PMCID: PMC10075360 DOI: 10.3389/fphys.2023.1147483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Well designed and formulated natural feed additives have the potential to provide many of the growth promoting and disease mitigating characteristics of in-feed antibiotics, particularly feed additives that elicit their effects on targeted areas of the gut. Here, we describe the mechanism of action of a microencapsulated feed additive containing organic acids and botanicals (AviPlus®P) on the jejunum and ileum of 15-day-old broiler-type chickens. Day-of-hatch chicks were provided ad libitum access to feed containing either 0 or 500 g/MT of the feed additive for the duration of the study. Fifteen days post-hatch, birds were humanely euthanized and necropsied. Jejunum and ileum tissue samples were collected and either flash frozen or stored in RNA-later as appropriate for downstream applications. Chicken-specific kinome peptide array analysis was conducted on the jejunum and ileum tissues, comparing the tissues from the treated birds to those from their respective controls. Detailed analysis of peptides representing individual kinase target sites revealed that in the ileum there was a broad increase in the signal transduction pathways centering on activation of HIF-1α, AMPK, mTOR, PI3K-Akt and NFκB. These signaling responses were largely decreased in the jejunum relative to control birds. Gene expression analysis agrees with the kinome data showing strong immune gene expression in the ileum and reduced expression in the jejunum. The microencapsulated blend of organic acids and botanicals elicit a more anti-inflammatory phenotype and reduced signaling in the jejunum while resulting in enhanced immunometabolic responses in the ileum.
Collapse
Affiliation(s)
- Casey N. Johnson
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
| | - Ryan J. Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Andrea Piva
- DIMEVET, University of Bologna, Bologna, Italy
- Vetagro S.p.A, Reggio Emilia, Italy
| | - Ester Grilli
- DIMEVET, University of Bologna, Bologna, Italy
- Vetagro Inc., Chicago, IL, United States
| | - Christina L. Swaggerty
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
- *Correspondence: Christina L. Swaggerty,
| |
Collapse
|
13
|
Nash T, Vervelde L. Advances, challenges and future applications of avian intestinal in vitro models. Avian Pathol 2022; 51:317-329. [PMID: 35638458 DOI: 10.1080/03079457.2022.2084363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There is a rapidly growing interest in how the avian intestine is affected by dietary components and probiotic microorganisms, as well as its role in the spread of infectious diseases in both the developing and developed world. A paucity of physiologically relevant models has limited research in this essential field of poultry gut health and led to an over-reliance on the use of live birds for experiments. The intestine is characterized by a complex cellular composition with numerous functions, unique dynamic locations and interdependencies making this organ challenging to recreate in vitro. This review illustrates the in vitro tools that aim to recapitulate this intestinal environment; from the simplest cell lines, which mimic select features of the intestine but lack anatomical and physiological complexity, to the more recently developed complex 3D enteroids, which recreate more of the intestine's intricate microanatomy, heterogeneous cell populations and signalling gradients. We highlight the benefits and limitations of in vitro intestinal models and describe their current applications and future prospective utilizations in intestinal biology and pathology research. We also describe the scope to improve on the current systems to include, for example, microbiota and a dynamic mechanical environment, vital components which enable the intestine to develop and maintain homeostasis in vivo. As this review explains, no one model is perfect, but the key to choosing a model or combination of models is to carefully consider the purpose or scientific question.
Collapse
Affiliation(s)
- Tessa Nash
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - Lonneke Vervelde
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Oost MJ, Ijaz A, van Haarlem DA, van Summeren K, Velkers FC, Kraneveld AD, Venema K, Jansen CA, Pieters RHH, Ten Klooster JP. Chicken-derived RSPO1 and WNT3 contribute to maintaining longevity of chicken intestinal organoid cultures. Sci Rep 2022; 12:10563. [PMID: 35732901 PMCID: PMC9217957 DOI: 10.1038/s41598-022-14875-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
Intestinal organoids are advanced cellular models, which are widely used in mammalian studies to mimic and study in vivo intestinal function and host–pathogen interactions. Growth factors WNT3 and RSPO1 are crucial for the growth of intestinal organoids. Chicken intestinal organoids are currently cultured with mammalian Wnt3a and Rspo1, however, maintaining their longevity has shown to be challenging. Based on the limited homology between mammalian and avian RSPO1, we expect that chicken-derived factors are required for the organoid cultures. Isolated crypts from embryonic tissue of laying hens were growing in the presence of chicken WNT3 and RSPO1, whereas growth in the presence of mammalian Wnt3a and Rspo1 was limited. Moreover, the growth was increased by using Prostaglandin E2 (PGE2) and a Forkhead box O1-inhibitor (FOXO1-inhibitor), allowing to culture these organoids for 15 passages. Furthermore, stem cells maintained their ability to differentiate into goblets, enterocytes and enteroendocrine cells in 2D structures. Overall, we show that chicken intestinal organoids can be cultured for multiple passages using chicken-derived WNT3 and RSPO1, PGE2, and FOXO1-inhibitor.
Collapse
Affiliation(s)
- Miriam J Oost
- Centre for Healthy Eating and Food Innovation, Faculty of Science and Engineering, Maastricht University, Campus Venlo, Venlo, The Netherlands
| | - Adil Ijaz
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Daphne A van Haarlem
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Kitty van Summeren
- Innovative Testing in Life Sciences and Chemistry, Research Centre Healthy and Sustainable Living, University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - Francisca C Velkers
- Division Farm Animal Health, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Koen Venema
- Centre for Healthy Eating and Food Innovation, Faculty of Science and Engineering, Maastricht University, Campus Venlo, Venlo, The Netherlands
| | - Christine A Jansen
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Raymond H H Pieters
- Innovative Testing in Life Sciences and Chemistry, Research Centre Healthy and Sustainable Living, University of Applied Sciences Utrecht, Utrecht, The Netherlands.,Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jean Paul Ten Klooster
- Innovative Testing in Life Sciences and Chemistry, Research Centre Healthy and Sustainable Living, University of Applied Sciences Utrecht, Utrecht, The Netherlands.
| |
Collapse
|