1
|
Liu K, Liu Y, Chu M. Detection of polymorphisms in six genes and their association analysis with litter size in sheep. Anim Biotechnol 2024; 35:2309954. [PMID: 38294691 DOI: 10.1080/10495398.2024.2309954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Litter size in sheep is a complex trait controlled by micro-effective polygenes. APAF1, CLSTN2, CTH, PLCB1, PLCB4, and CHST11 are all involved in mammalian reproduction. However, the effects of these genes on litter size in sheep are still unclear. Therefore, in this study, we used Sequenom MassARRAY® SNP assay technology to type the single nucleotide polymorphisms (SNPs) loci of six genes in five sheep breeds. The results showed that most sheep breeds contain three genotypes at each locus. Then, we conducted population genetic analysis on the SNPs of six genes and found that the polymorphic information content in all sheep breeds ranged from 0 to 0.37, and most sheep breeds were in Hardy-Weinberg equilibrium (p > 0.05). In addition, association analysis in Small Tail Han sheep indicated that the rs399534524 locus in CLSTN2 was highly associated with first parity litter size, and litter size in ewes with CT genotype was higher than that in ewes with CC genotype or TT genotype. Furthermore, the rs407142552 locus in CTH was highly associated with second parity litter size in Small Tail Han sheep, and litter size in ewes with CT genotype was higher than that in ewes with TT genotype. Finally, we predicted the CTH and CLSTN2 protein interaction network and found that HTR1E, NOM1, CCDC174 and ALPK3 interact with CLSTN2 and have been reported as candidate genes related to litter size in sheep. These results suggest that they may be useful genetic markers for increasing litter size in sheep.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yufang Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
2
|
Tu TC, Lin CJ, Liu MC, Hsu ZT, Chen CF. Comparison of genomic prediction accuracy using different models for egg production traits in Taiwan country chicken. Poult Sci 2024; 103:104063. [PMID: 39098301 DOI: 10.1016/j.psj.2024.104063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
In local chickens targeted for niche markets, genotyping costs are relatively high due to the small population size and diverse breeding goals. The single-step genomic best linear unbiased prediction (ssGBLUP) model, which combines pedigree and genomic information, has been introduced to increase the accuracy of genomic estimated breeding value (GEBV). Therefore, this model may be more beneficial than the genomic BLUP (GBLUP) model for genomic selection in local chickens. Additionally, the single-step genome-wide association study (ssGWAS) can be used to extend the ssGBLUP model results to animals with available phenotypic information but without genotypic data. In this study, we compared the accuracy of (G)EBVs using the pedigree-based BLUP (PBLUP), GBLUP, and ssGBLUP models. Moreover, we conducted single-SNP GWAS (SNP-GWAS), GBLUP-GWAS, and ssGWAS methods to identify genes associated with egg production traits in the NCHU-G101 chicken to understand the feasibility of using genomic selection in a small population. The average prediction accuracy of (G)EBV for egg production traits using the PBLUP, GBLUP, and ssGBLUP models is 0.536, 0.531, and 0.555, respectively. In total, 22 suggestive- and 5% Bonferroni genome-wide significant-level SNPs for total egg number (EN), average laying rate (LR), average clutch length, and total clutch number are detected using 3 GWAS methods. These SNPs are mapped onto Gallus gallus chromosomes (GGA) 4, 6, 10, 18, and 25 in NCHU-G101 chicken. Furthermore, through SNP-GWAS and ssGWAS methods, we identify 2 genes on GGA4 associated with EN and LR: ENSGALG00000023172 and PPARGC1A. In conclusion, the ssGBLUP model demonstrates superior prediction accuracy, performing on average 3.41% than the PBLUP model. The implications of our gene results may guide future selection strategies for Taiwan Country chickens. Our results highlight the applicability of the ssGBLUP model for egg production traits selection in a small population, specifically NCHU-G101 chicken in Taiwan.
Collapse
Affiliation(s)
- Tsung-Che Tu
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; Ray Hsing Agricultural Biotechnology Co. Ltd., Yunlin 633, Taiwan
| | - Chen-Jyuan Lin
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - Ming-Che Liu
- Ray Hsing Agricultural Biotechnology Co. Ltd., Yunlin 633, Taiwan
| | - Zhi-Ting Hsu
- Ray Hsing Agricultural Biotechnology Co. Ltd., Yunlin 633, Taiwan
| | - Chih-Feng Chen
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
3
|
Tan Y, Huang X, Xu C, Huang Y, Li S, Yin Z. Integrating Genomics and Transcriptomics to Identify Candidate Genes for Egg Production in Taihe Black-Bone Silky Fowls ( Gallus gallus domesticus Brisson). Int J Mol Sci 2024; 25:9373. [PMID: 39273321 PMCID: PMC11395579 DOI: 10.3390/ijms25179373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The Taihe Black-Bone Silky Fowl (Gallus gallus domesticus Brisson) possesses significant value in terms of consumption, medicinal applications, and ornamental appeal, representing a precious genetic resource and traditional Chinese medicinal material. However, considerable variation exists within populations regarding egg-laying performance. This study integrates a whole-genome selection signal analysis (SSA) with a transcriptome analysis to identify genes associated with egg-laying traits in Taihe Black-Bone Silky Fowls. We identified 31 candidate genes under selection from the high-yield chicken (HC) and low-yield chicken (LC) groups. Additionally, through RNA-seq analysis, 257 common differentially expressed genes (DEGs) were identified from four comparative groups. Two overlapping genes-LPL and SETBP1-were found in both the selected gene and DEG lists. These selected genes and DEGs were enriched in pathways related to ovarian development, including the lysosome pathway, the ECM-receptor interaction pathway, the TGF-beta signaling pathway, the Wnt signaling pathway, the PPAR signaling pathway, and the glycerolipid metabolism pathway. These research findings contribute to the breeding of Taihe Black-Bone Silky Fowls with high egg production traits and provide a theoretical foundation for exploring the regulatory mechanisms of avian reproduction.
Collapse
Affiliation(s)
- Yuting Tan
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xuan Huang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Chunhui Xu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yunyan Huang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Shibao Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Zhaozheng Yin
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Cai D, Zhou Z, Cai B, Wang Z, Ju X, Kong S, Yang X, Lin D, Nie Q. Metabolomics reveals the reasons for the occurrence of Pendulous-comb related to egg production performance. Poult Sci 2024; 103:103867. [PMID: 38820880 PMCID: PMC11167520 DOI: 10.1016/j.psj.2024.103867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
The chicken comb is an essential secondary sexual characteristic to measure sexual maturity and is closely related to reproductive performance. Pendulous comb (PC) and upright comb (UC) are 2 common comb phenotypes in hens, which have been highly associated with egg production performance. However, the reasons for the formation of PC remain undetermined. In this study, we first characterized the PC and UC chicken at start (at 175 d age), peak (at 217 d age), and postlaying (at 300 d age) and found that PC and UC could transform for each other. Furthermore, we suggested that PC chicken demonstrated better egg production performance than UC chicken, especially characterizing comb type in the start-laying period. Moreover, we performed histological evaluation of PC and UC tissue, which suggested that the low density of collagen fibers and acid mucopolysaccharides might lead to the formation of PC. To further explore the possible reasons for PC formation, we performed an untargeted metabolomic analysis of serum between PC and UC chicken in the start, peak, and postlaying periods. The enrichment analysis of period-unique differentially expressed metabolites (DEMs) between PC and UC showed that the different metabolic pathways and nutritional levels might contribute to the formation of PC in the different laying periods. Our research provided critical insights into the phenotypic diversity of chicken comb, establishing a foundation for early selection of chicken egg production performance.
Collapse
Affiliation(s)
- Danfeng Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Zhen Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Bolin Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Zhijun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China; College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Lin'an 311300, China
| | - Xing Ju
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Shaofen Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Xin Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Duo Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Qinghua Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
5
|
Lei Q, Zhang S, Wang J, Qi C, Liu J, Cao D, Li F, Han H, Liu W, Li D, Tang C, Zhou Y. Genome-wide association studies of egg production traits by whole genome sequencing of Laiwu Black chicken. Poult Sci 2024; 103:103705. [PMID: 38598913 DOI: 10.1016/j.psj.2024.103705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Compared to high-yield commercial laying hens, Chinese indigenous chicken breeds have poor egg laying capacity due to the lack of intensive selection. However, as these breeds have not undergone systematic selection, it is possible that there is a greater abundance of genetic variations related to egg laying traits. In this study, we assessed 5 egg number (EN) traits at different stages of the egg-laying period: EN1 (from the first egg to 23 wk), EN2 (from 23 to 35 wk), EN3 (from 35 to 48 wk), EN4 (from the first egg to 35 wk), and EN5 (from the first egg to 48 wk). To investigate the molecular mechanisms underlying egg number traits in a Chinese local chicken breed, we conducted a genome-wide association study (GWAS) using data from whole-genome sequencing (WGS) of 399 Laiwu Black chickens. We obtained a total of 3.01 Tb of raw data with an average depth of 7.07 × per individual. A total of 86 genome-wide suggestive or significant single-nucleotide polymorphisms (SNP) contained within a set of 45 corresponding candidate genes were identified and found to be associated with stages EN1-EN5. The genes vitellogenin 2 (VTG2), lipase maturation factor 1 (LMF1), calcium voltage-gated channel auxiliary subunit alpha2delta 3 (CACNA2D3), poly(A) binding protein cytoplasmic 1 (PABPC1), programmed cell death 11 (PDCD11) and family with sequence similarity 213 member A (FAM213A) can be considered as the candidate genes associated with egg number traits, due to their reported association with animal reproduction traits. Noteworthy, results suggests that VTG2 and PDCD11 are not only involved in the regulation of EN3, but also in the regulation of EN5, implies that VTG2 and PDCD11 have a significant influence on egg production traits. Our study offers valuable genomic insights into the molecular genetic mechanisms that govern egg number traits in a Chinese indigenous egg-laying chicken breed. These findings have the potential to enhance the egg-laying performance of chickens.
Collapse
Affiliation(s)
- Qiuxia Lei
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Shuer Zhang
- Shandong Animal Husbandry General Station, 250023, Ji'nan, China
| | - Jie Wang
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Chao Qi
- Shandong Animal Husbandry General Station, 250023, Ji'nan, China
| | - Jie Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Dingguo Cao
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Haixia Han
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Wei Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Dapeng Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Cunwei Tang
- Fujian Sunnzer Biological Technology Development Co. Ltd., 354100, Guang'ze, China
| | - Yan Zhou
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China.; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China..
| |
Collapse
|
6
|
Chen A, Zhao X, Wen J, Zhao X, Wang G, Zhang X, Ren X, Zhang Y, Cheng X, Yu X, Mei X, Wang H, Guo M, Jiang X, Wei G, Wang X, Jiang R, Guo X, Ning Z, Qu L. Genetic parameter estimation and molecular foundation of chicken egg-laying trait. Poult Sci 2024; 103:103627. [PMID: 38593551 PMCID: PMC11015155 DOI: 10.1016/j.psj.2024.103627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
The age of first egg (AFE) in chicken can affect early and even life-time egg production performance to some extent, and therefore is an important economic trait that affects production efficiency. To better understand the genetic patterns of AFE and other production traits including body weight at first egg (BWA), first egg weight (FEW), and total egg number from AFE to 58 wk of age (total-EN), we recorded the production performance of 2 widely used layer breeds, white leghorn (WL) and Rhode Island Red (RIR) and estimated genetic parameters based on pedigree and production data. The results showed that the heritability of AFE in both breeds ranged from 0.4 to 0.6, and AFE showed strong positive genetic and phenotypic correlations to BWA as well as FEW, while showing strong negative genetic and phenotypic correlations with total-EN. Furtherly, by genome-wide association analysis study (GWAS), we identified 12 and 26 significant SNPs to be related to AFE in the 2-layer breeds, respectively. A total of 18 genes were identified that could affect AFE based on the significant SNP annotations obtained, but there were no gene overlapped in the 2 breeds indicating the genetic foundation of AFE could differ from breed to breed. Our results provided a deeper understanding of genetic patterns and molecular basement of AFE in different breeds and could help in the selection of egg production traits.
Collapse
Affiliation(s)
- Anqi Chen
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Zhao
- Xingrui Agricultural Stock Breeding, Baoding Hebei Province, 072550 China
| | - Junhui Wen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Xiurong Zhao
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gang Wang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xinye Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xufang Ren
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yalan Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xue Cheng
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaofan Yu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaohan Mei
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huie Wang
- Xinjiang Production and Construction Corps, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar 843300, China
| | - Menghan Guo
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Jiang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guozhen Wei
- Qingliu Animal Husbandry, Veterinary and Aquatic Products Center, Sanming, China
| | - Xue Wang
- VVBK Animal Medical Diagnostic Technology (Beijing) Co. Ltd, Beijing, China
| | - Runshen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lujiang Qu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Xinjiang Production and Construction Corps, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar 843300, China.
| |
Collapse
|
7
|
Chen A, Zhao X, Wen J, Zhao X, Wang G, Zhang X, Ren X, Zhang Y, Cheng X, Yu X, Mei X, Wang H, Guo M, Jiang X, Wei G, Wang X, Jiang R, Guo X, Ning Z, Qu L. Genetic parameter estimation and molecular foundation of chicken beak shape. Poult Sci 2024; 103:103666. [PMID: 38703454 PMCID: PMC11087718 DOI: 10.1016/j.psj.2024.103666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 05/06/2024] Open
Abstract
The bird beak is mainly functioned as feeding and attacking, and its shape has extremely important significance for survival and reproduction. In chickens, since beak shape could lead to some disadvantages including pecking and waste of feed, it is important to understand the inheritance of chicken beak shape. In the present study, we firstly established 4 indicators to describe the chicken beak shapes, including upper beak length (UL), lower beak length (LL), distance between upper and lower beak tips (DB) and upper beak curvature (BC). And then, we measured the 4 beak shape indicators as well as some production traits including body weight (BW), shank length (SL), egg weight (EW), eggshell strength (ES) of a layer breed, Rhode Island Red (RIR), in order to estimate genetic parameters of chicken beak shape. The heritabilities of UL and LL were 0.41 and 0.37, and the heritabilities of DB and BC were 0.22 and 0.21, indicating that beak shape was a highly or mediumly heritable. There were significant positive genetic and phenotypic correlations among UL, LL, and DB. And UL was positively correlated with body weight (BW18) and shank length (SL18) at 18 weeks of age in genetics, and DB was positively correlated with BC in terms of genetics and phenotype. We also found that layers of chicken cages played a role on beak shape, which could be attributed to the difference of lightness in different cage layers. By a genome-wide association study (GWAS) for the chicken UL, we identified 9 significant candidate genes associated with UL in RIR. For the variants with low minor allele frequencies (MAF <0.01) and outside of high linkage disequilibrium (LD) regions, we also conducted rare variant association studies (RVA) and GWAS to find the association between genotype and phenotype. We also analyzed transcriptomic data from multiple tissues of chicken embryos and revealed that all of the 9 genes were highly expressed in beak of chicken embryos, indicating their potential function for beak development. Our results provided the genetic foundation of chicken beak shape, which could help chicken breeding on beak related traits.
Collapse
Affiliation(s)
- Anqi Chen
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Zhao
- Xingrui Agricultural Stock Breeding, Baoding 072550, Hebei Province, China
| | - Junhui Wen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Xiurong Zhao
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gang Wang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xinye Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xufang Ren
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yalan Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xue Cheng
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaofan Yu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaohan Mei
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huie Wang
- Xinjiang Production and Construction Corps, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar 843300, China
| | - Menghan Guo
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Jiang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guozhen Wei
- Qingliu Animal Husbandry, Veterinary and Aquatic Products Center, Sanming, China
| | - Xue Wang
- VVBK Animal Medical Diagnostic Technology (Beijing) Co., Ltd, Beijing, China
| | - Runshen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lujiang Qu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Xinjiang Production and Construction Corps, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar 843300, China.
| |
Collapse
|
8
|
Xu X, Fan S, Ji W, Qi S, Liu L, Cao Z, Bao Q, Zhang Y, Xu Q, Chen G. Transcriptome Profiling Unveils Key Genes Regulating the Growth and Development of Yangzhou Goose Knob. Int J Mol Sci 2024; 25:4166. [PMID: 38673752 PMCID: PMC11050116 DOI: 10.3390/ijms25084166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Goose is one of the most economically valuable poultry species and has a distinct appearance due to its possession of a knob. A knob is a hallmark of sexual maturity in goose (Anser cygnoides) and plays crucial roles in artificial selection, health status, social signaling, and body temperature regulation. However, the genetic mechanisms influencing the growth and development of goose knobs remain completely unclear. In this study, histomorphological and transcriptomic analyses of goose knobs in D70, D120, and D300 Yangzhou geese revealed differential changes in tissue morphology during the growth and development of goose knobs and the key core genes that regulate goose knob traits. Observation of tissue sections revealed that as age increased, the thickness of the knob epidermis, cuticle, and spinous cells gradually decreased. Additionally, fat cells in the dermis and subcutaneous connective tissue transitioned from loose to dense. Transcriptome sequencing results, analyzed through differential expression, Weighted Gene Co-expression Network Analysis (WGCNA), and pattern expression analysis methods, showed D70-vs.-D120 (up-regulated: 192; down-regulated: 423), D70-vs.-D300 (up-regulated: 1394; down-regulated: 1893), and D120-vs.-D300 (up-regulated: 1017; down-regulated: 1324). A total of 6243 differentially expressed genes (DEGs) were identified, indicating varied expression levels across the three groups in the knob tissues of D70, D120, and D300 Yangzhou geese. These DEGs are significantly enriched in biological processes (BP) such as skin morphogenesis, the regulation of keratinocyte proliferation, and epidermal cell differentiation. Furthermore, they demonstrate enrichment in pathways related to goose knob development, including ECM-receptor interaction, NF-kappa B, and PPAR signaling. Through pattern expression analysis, three gene expression clusters related to goose knob traits were identified. The joint analysis of candidate genes associated with goose knob development and WGCNA led to the identification of key core genes influencing goose knob development. These core genes comprise WNT4, WNT10A, TCF7L2, GATA3, ADRA2A, CASP3, SFN, KDF1, ERRFI1, SPRY1, and EVPL. In summary, this study provides a reference for understanding the molecular mechanisms of goose knob growth and development and provides effective ideas and methods for the genetic improvement of goose knob traits.
Collapse
Affiliation(s)
- Xinlei Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Suyu Fan
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Wangyang Ji
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Shangzong Qi
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Linyu Liu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Zhi Cao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Qiang Bao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Yang Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Qi Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Guohong Chen
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Pan R, Qi L, Xu Z, Zhang D, Nie Q, Zhang X, Luo W. Weighted single-step GWAS identified candidate genes associated with carcass traits in a Chinese yellow-feathered chicken population. Poult Sci 2024; 103:103341. [PMID: 38134459 PMCID: PMC10776626 DOI: 10.1016/j.psj.2023.103341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Carcass traits in broiler chickens are complex traits that are influenced by multiple genes. To gain deeper insights into the genetic mechanisms underlying carcass traits, here we conducted a weighted single-step genome-wide association study (wssGWAS) in a population of Chinese yellow-feathered chicken. The objective was to identify genomic regions and candidate genes associated with carcass weight (CW), eviscerated weight with giblets (EWG), eviscerated weight (EW), breast muscle weight (BMW), drumstick weight (DW), abdominal fat weight (AFW), abdominal fat percentage (AFP), gizzard weight (GW), and intestine length (IL). A total of 1,338 broiler chickens with phenotypic and pedigree information were included in this study. Of these, 435 chickens were genotyped using a 600K single nucleotide polymorphism chip for association analysis. The results indicate that the most significant regions for 9 traits explained 2.38% to 5.09% of the phenotypic variation, from which the region of 194.53 to 194.63Mb on chromosome 1 with the gene RELT and FAM168A identified on it was significantly associated with CW, EWG, EW, BMW, and DW. Meanwhile, the 5 traits have a strong genetic correlation, indicating that the region and the genes can be used for further research. In addition, some candidate genes associated with skeletal muscle development, fat deposition regulation, intestinal repair, and protection were identified. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses suggested that the genes are involved in processes such as vascular development (CD34, FGF7, FGFR3, ITGB1BP1, SEMA5A, LOXL2), bone formation (FGFR3, MATN1, MEF2D, DHRS3, SKI, STC1, HOXB1, HOXB3, TIPARP), and anatomical size regulation (ADD2, AKT1, CFTR, EDN3, FLII, HCLS1, ITGB1BP1, SEMA5A, SHC1, ULK1, DSTN, GSK3B, BORCS8, GRIP2). In conclusion, the integration of phenotype, genotype, and pedigree information without creating pseudo-phenotype will facilitate the genetic improvement of carcass traits in chickens, providing valuable insights into the genetic architecture and potential candidate genes underlying carcass traits, enriching our understanding and contributing to the breeding of high-quality broiler chickens.
Collapse
Affiliation(s)
- Rongyang Pan
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Xugang Yellow Poultry Seed Industry Group Co., Ltd, Jiangmen City, Guangdong Province, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Qi
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenqiang Xu
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dexiang Zhang
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wen Luo
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Xu W, Mu R, Gegen T, Ran T, Wu Q, Wen D, Wang F, Chen Z. Transcriptome analysis of hypothalamus and pituitary tissues reveals genetic mechanisms associated with high egg production rates in Changshun green-shell laying hens. BMC Genomics 2023; 24:792. [PMID: 38124055 PMCID: PMC10734086 DOI: 10.1186/s12864-023-09895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Changshun green-shell laying hens are unique to the Guizhou Province, China, and have high egg quality but relatively low yield. Egg production traits are regulated by the hypothalamus-pituitary-ovary axis. However, the underlying mechanism remains unclear. Thus, we conducted RNA sequencing of hypothalamic and pituitary tissues from low- and high-yielding Changshun green-shell laying hens to identify critical pathways and candidate genes involved in controlling the egg production rate. RESULTS More than 39 million clean reads per sample were obtained, and more than 82% were mapped to the Gallus gallus genome. Further analysis identified 1,817 and 1,171 differentially expressed genes (DEGs) in the hypothalamus and pituitary, respectively. Nineteen DEGs were upregulated in both the hypothalamus and pituitary of high-yielding chickens. The functions of these DEGs were mainly associated with ion transport or signal transduction. Gene set enrichment analysis revealed that the pathways enriched in the hypothalamus were mainly associated with gonadotropin-releasing hormone (GnRH) secretion, neurotransmitter release, and circadian rhythms. The pathways enriched in the pituitary were mainly associated with GnRH secretion, energy metabolism, and signal transduction. Five and four DEGs in the hypothalamus and pituitary, respectively, were selected randomly for qRT-PCR analysis. The expression trends determined via qRT-PCR were consistent with the RNA-seq results. CONCLUSIONS The current study identified 19 DEGs upregulated in both the hypothalamus and pituitary gland, which could provide an important reference for further studies on the molecular mechanisms underlying egg production in Changshun green-shell laying hens. In addition, enrichment analysis showed that GnRH secretion and signal transduction, especially neurotransmitter release, play crucial roles in the regulation of egg production.
Collapse
Affiliation(s)
- Wenbin Xu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China
- Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun, 558000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ren Mu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China.
- Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun, 558000, China.
| | - Tuya Gegen
- Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun, 558000, China
- Library, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Tiantian Ran
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China
| | - Qi Wu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China
- Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun, 558000, China
| | - Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China
| | - Fen Wang
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China
| | - Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China.
- Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun, 558000, China.
| |
Collapse
|
11
|
Xiong X, Liu J, Rao Y. Whole Genome Resequencing Helps Study Important Traits in Chickens. Genes (Basel) 2023; 14:1198. [PMID: 37372379 DOI: 10.3390/genes14061198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The emergence of high-throughput sequencing technology promotes life science development, provides technical support to analyze many life mechanisms, and presents new solutions to previously unsolved problems in genomic research. Resequencing technology has been widely used for genome selection and research on chicken population structure, genetic diversity, evolutionary mechanisms, and important economic traits caused by genome sequence differences since the release of chicken genome sequence information. This article elaborates on the factors influencing whole genome resequencing and the differences between these factors and whole genome sequencing. It reviews the important research progress in chicken qualitative traits (e.g., frizzle feather and comb), quantitative traits (e.g., meat quality and growth traits), adaptability, and disease resistance, and provides a theoretical basis to study whole genome resequencing in chickens.
Collapse
Affiliation(s)
- Xinwei Xiong
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang 330032, China
| | - Jianxiang Liu
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang 330032, China
| | - Yousheng Rao
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang 330032, China
| |
Collapse
|
12
|
Li L, Quan J, Gao C, Liu H, Yu H, Chen H, Xia C, Zhao S. Whole-genome resequencing to unveil genetic characteristics and selection signatures of specific pathogen-free ducks. Poult Sci 2023; 102:102748. [PMID: 37209656 DOI: 10.1016/j.psj.2023.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/22/2023] Open
Abstract
Specific pathogen-free ducks are important high-grade laboratory animals, with a key role in research related to poultry biosecurity, production, and breeding. However, the genetic characteristics of experimental duck varieties remain poorly explored. Herein we performed whole-genome resequencing to construct a single nucleotide polymorphism genetic map of the genomes of 3 experimental duck varieties [Jinding ducks (JD), Shaoxing ducks (SX), and Fujian Shanma ducks (SM)] to determine their genetic characteristics and identify selection signatures. Subsequent analyses of population structure and genetic diversity revealed that each duck variety formed a monophyletic group, with SM showing richer genetic diversity than JD and SX. Further, on exploring shared selection signatures, we found 2 overlapping genomic regions on chromosome Z of all experimental ducks, which comprised immune response-related genes (IL7R and IL6ST). Moreover, growth and skeletal development (IGF1R and GDF5), meat quality (FoxO1), and stress resistance (HSP90B1 and Gpx8-b) candidate gene loci were identified in strongly selected signatures specific to JD, SM, and SX, respectively. Our results identified the population genetic basis of experimental ducks at the whole-genome level, providing a framework for future molecular investigations of genetic variations and phenotypic changes. We believe that such studies will eventually contribute to the management of experimental animal resources.
Collapse
Affiliation(s)
- Lanlan Li
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, PR China; College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, PR China.
| | - Hongyi Liu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, PR China
| | - Haibo Yu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, PR China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, PR China
| | - Changyou Xia
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, PR China
| | - Shengguo Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|