1
|
Zhou X, Xu Y, Fang C, Ye C, Liang W, Fan Z, Ma X, Liu A, Zhang X, Luo Q. Integrated Transcriptomic-Metabolomic Analysis Reveals the Effect of Different Light Intensities on Ovarian Development in Chickens. Int J Mol Sci 2024; 25:8704. [PMID: 39201389 PMCID: PMC11354726 DOI: 10.3390/ijms25168704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Light is a key environmental factor regulating reproduction in avians. However, the mechanism of light intensity regulating ovarian development is still unclear. In this study, 5-week-old (5 wk) partridge broiler breeders were randomly divided into a low-light-intensity group (LL group) and a natural-light-intensity group (NL group) (n = 100). In the rearing period (5 wk to 22 wk), the light intensity of the LL group and NL group were 0.41 ± 0.05 lux and 45.39 ± 1.09 lux, and in the laying period (23 wk to 32 wk) they were 23.92 ± 0.06 lux and 66.93 ± 0.76 lux, respectively. Samples were collected on 22 wk and 32 wk. The results showed that the LL group had a later age at first egg and a longer laying period than the NL group. Serum P4 and LH levels in the LL group were higher than in the NL group on 22 wk (p < 0.05). On 32 wk, P4, E2, LH and FSH levels in the LL group were lower than in the NL group (p < 0.05). Ovarian transcriptomics and metabolomics identified 128 differentially expressed genes (DEGs) and 467 differential metabolites (DMs) on 22 wk; 155 DEGs and 531 DMs on 32 wk between two groups. An enrichment analysis of these DEGs and DMs identified key signaling pathways, including steroid hormone biosynthesis, neuroactive ligand-receptor interaction. In these pathways, genes such as CYP21A1, SSTR2, and NPY may regulate the synthesis of metabolites, including tryptamine, triglycerides, and phenylalanine. These genes and metabolites may play a dominant role in the light-intensity regulation of ovarian development and laying performance in broiler breeders.
Collapse
Affiliation(s)
- Xiaoli Zhou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yuhang Xu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Cheng Fang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Chutian Ye
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Weiming Liang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhexia Fan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Xuerong Ma
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Aijun Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Qingbin Luo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Maina AN, Schulze H, Kiarie EG. Response of broiler breeder pullets when fed hydrolyzed whole yeast from placement to 22 wk of age. Poult Sci 2024; 103:103383. [PMID: 38176370 PMCID: PMC10806125 DOI: 10.1016/j.psj.2023.103383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
The study examined the effects of feeding broiler breeder pullets hydrolyzed whole yeast (HY) from hatch to 22 wk of age (WOA). A total of 524-day-old Ross 708 pullets were placed in floor pens (∼24 birds/pen) for the starter (0-4 WOA) and grower (5-18 WOA) phases, then transferred to the egg production facility and redistributed to ∼20 birds/pen for the prelay phase (19-22 WOA). Two diets were allocated to pens (0-18 WOA; n = 11) and (19-22 WOA; n-12). The diets were a control corn and soybean meal diet formulated to meet specifications and control plus 0.05% HY (HY). Birds had ad libitum access to feed in the first week and daily feed allocation based on pen BW from 2 WOA. Birds had free access to water throughout the trial. Body weight (BW) and uniformity (BW CV) were monitored. Boosters for infectious bronchitis and New Castle disease vaccines were administered at 18 WOA, and samples of pullets bled for antibody titer 5-day later. One pullet/pen was randomly selected, weighed, bled for plasma biochemistry, and necropsied for organ weights, ceca digesta for short-chain fatty acids (SCFA), and leg bones morphometry. In the starter and grower phases, birds fed HY were lighter and gained less (P < 0.05) than control birds. However, there were no diet effects (P > 0.05) on growth, the BW prelay phase, or BW uniformity throughout the trial. There were no (P > 0.05) diet effects on breast, gastrointestinal, liver and bursa weights, serum antibody titers, plasma biochemistry, SCFA and bone attributes. However, pullets fed HY had heavier (P = 0.047) spleen and tended to have lower (P = 0.080) plasma concentrations of aspartate aminotransferase (AST) relative to control pullets. In conclusion, the parameters assessed showed no negative consequences of feeding HY to broiler breeder pullets. However, effects on the spleen and plasma AST may indicate modest modulation of immunity and metabolism. The impact of the provision of HY during broiler breeder pullet phase on reproductive performance and chick quality should be investigated.
Collapse
Affiliation(s)
- Anderson N Maina
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|