1
|
Sharma R, Mittal A, Gupta V, Aggarwal NK. Production, purification and characterization of phytase from Pichia kudriavevii FSMP-Y17and its application in layers feed. Braz J Microbiol 2024:10.1007/s42770-024-01492-x. [PMID: 39162933 DOI: 10.1007/s42770-024-01492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Phytase, recognized for its ability to enhance the nutritional value of phytate-rich foods, has has gained significant prominence. The production of this enzyme has been significantly boosted while preserving economic efficiency by utilizing natural substrates and optimizing essential factors. This study focuses on optimizing phytase production through solid-state fermentation and evaluating its effectiveness in enhancing nutrient utilization in chicken diets. OBJECTIVE The objective is to optimize phytase production via solid-state fermentation, characterize purified phytase properties, and assess its impact on nutrient utilization in chicken diets. Through these objectives, we aim to deepen understanding of phytase's role in poultry nutrition and contribute to more efficient feed formulations for improved agricultural outcomes. METHODOLOGY We utilized solid-state fermentation with Pichia kudriavzevii FSMP-Y17 yeast on orange peel substrate, optimizing variables like temperature, pH, incubation time, and supplementing with glucose and ammonium sulfate. Following fermentation, we purified the phytase enzyme using standard techniques, characterizing its properties, including molecular weight, optimal temperature and pH, substrate affinity, and kinetic parameters. RESULTS The optimized conditions yielded a remarkable phytase yield of 7.0 U/gds. Following purification, the enzyme exhibited a molecular weight of 64 kDa and displayed optimal activity at 55 °C and pH 5.5, with kinetic parameters (Km = 3.39 × 10-3 M and a Vmax of 7.092 mM/min) indicating efficient substrate affinity. CONCLUSION The addition of purified phytase to chicken diets resulted in significant improvements in nutrient utilization and overall performance, including increased feed intake, improved feed conversion ratio, enhanced bird growth, better phosphorus retention, and improved egg production and quality. By addressing challenges associated with phytate-rich diets, such as reduced nutrient availability and environmental pollution, phytase utilization promotes animal welfare and sustainability in poultry production.
Collapse
Affiliation(s)
- Ritu Sharma
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Arpana Mittal
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Varun Gupta
- Gobind Ballabh Pant University of Agriculture and Technology, Pant Nagar, Uttarakhand, India
| | - Neeraj K Aggarwal
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| |
Collapse
|
2
|
Fu Y, Zhou J, Schroyen M, Zhang H, Wu S, Qi G, Wang J. Decreased eggshell strength caused by impairment of uterine calcium transport coincide with higher bone minerals and quality in aged laying hens. J Anim Sci Biotechnol 2024; 15:37. [PMID: 38439110 PMCID: PMC10910863 DOI: 10.1186/s40104-023-00986-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/28/2023] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Deteriorations in eggshell and bone quality are major challenges in aged laying hens. This study compared the differences of eggshell quality, bone parameters and their correlations as well as uterine physiological characteristics and the bone remodeling processes of hens laying eggs of different eggshell breaking strength to explore the mechanism of eggshell and bone quality reduction and their interaction. A total of 240 74-week-old Hy-line Brown laying hens were selected and allocated to a high (HBS, 44.83 ± 1.31 N) or low (LBS, 24.43 ± 0.57 N) eggshell breaking strength group. RESULTS A decreased thickness, weight and weight ratio of eggshells were observed in the LBS, accompanied with ultrastructural deterioration and total Ca reduction. Bone quality was negatively correlated with eggshell quality, marked with enhanced structures and increased components in the LBS. In the LBS, the mammillary knobs and effective layer grew slowly. At the initiation stage of eggshell calcification, a total of 130 differentially expressed genes (DEGs, 122 upregulated and 8 downregulated) were identified in the uterus of hens in the LBS relative to those in the HBS. These DEGs were relevant to apoptosis due to the cellular Ca overload. Higher values of p62 protein level, caspase-8 activity, Bax protein expression and lower values of Bcl protein expression and Bcl/Bax ratio were seen in the LBS. TUNEL assay and hematoxylin-eosin staining showed a significant increase in TUNEL-positive cells and tissue damages in the uterus of the LBS. Although few DEGs were identified at the growth stage, similar uterine tissue damages were also observed in the LBS. The expressions of runt-related transcription factor 2 and osteocalcin were upregulated in humeri of the LBS. Enlarged diameter and more structural damages of endocortical bones and decreased ash were observed in femurs of the HBS. CONCLUSION The lower eggshell breaking strength may be attributed to a declined Ca transport due to uterine tissue damages, which could affect eggshell calcification and lead to a weak ultrastructure. Impaired uterine Ca transport may result in reduced femoral bone resorption and increased humeral bone formation to maintain a higher mineral and bone quality in the LBS.
Collapse
Affiliation(s)
- Yu Fu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Precision Livestock and Nutrition Laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, B-5030, Belgium
| | - Jianmin Zhou
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Martine Schroyen
- Precision Livestock and Nutrition Laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, B-5030, Belgium
| | - Haijun Zhang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shugeng Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanghai Qi
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Alzawqari M, Shukry Atta M, Metwally A, Selim S, Wadaan M, Kim I, Cho S, Eltahan H, Alagawany M, Alhotan R, Al Sulaiman A, Hussein E, Saleh A. Growth performance, blood lipids, and fat digestibility of broilers fed diets supplemented with bile acid and xylanase. Arch Anim Breed 2023; 66:451-460. [PMID: 38205380 PMCID: PMC10776885 DOI: 10.5194/aab-66-451-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/01/2023] [Indexed: 01/12/2024] Open
Abstract
This study aimed to show the effect of bile acid (BA) and xylanase (Xyl) supplementation on the growth, fat digestibility, serum lipid metabolites, and ileal digesta viscosity of broilers. A total of 720 1 d old male broilers were allocated to one of nine treatments with four replicates in each under a factorial design arrangement of three levels of BA (0 %, 0.25 %, and 0.50 %) and three levels of Xyl (0 %, 0.05 %, and 0.10 %) supplementation. The duration of the experiment was 35 d (7-42 d). Growth performance, blood lipids, fat digestibility, and ileal digesta viscosity were determined. The experimental treatments did not affect feed intake (FI) and weight gain (WG). Supplementation of BA or Xyl did not significantly ameliorate the feed conversion rate (FCR) (p < 0.05 ). The addition of BA linearly increased fat digestibility. At 7-21 d of age, the addition of BA or Xyl had a significant (p < 0.05 ) increase in serum cholesterol (Chol) but no significant difference for other serum lipid parameters in broiler chickens fed with Xyl in the starter and grower periods. However, the supplementation of 0.5 % BA at 7-21 d of age significantly increased the Chol and low-density-lipoprotein (LDL) levels. The results of this trial revealed that the supplementation of xylanases had a great effect on the degradation of arabinoxylan from wheat, which led to a relatively greater reduction in ileal digesta viscosity; it was also found that supplementation of BA significantly increased the concentration of serum lipid metabolites, whereas BA and Xyl supplementation linearly increased the fat digestibility of the birds fed wheat and tallow diets.
Collapse
Affiliation(s)
- Mohammed H. Alzawqari
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 333516, Egypt
- Department of Animal Production, Faculty of Agriculture and Food Sciences, Ibb University, Ibb 70270, Yemen
| | - Mustafa Shukry Atta
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Abdallah Metwally
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Shaimaa Selim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, University of Menoufia, Shibin El-Kom 32514, Egypt
| | - Mohammad A. M. Wadaan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - In Ho Kim
- Animal Resource and Science Department, Dankook University, Cheonan 31116, Republic of Korea
| | - Sungbo Cho
- Animal Resource and Science Department, Dankook University, Cheonan 31116, Republic of Korea
| | - Hossam M. Eltahan
- Animal Resource and Science Department, Dankook University, Cheonan 31116, Republic of Korea
- Animal Production Research Institute, Agriculture Research Center, Ministry of Agriculture, Dokki 12611, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Rashed A. Alhotan
- Department of Animal Production, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ali R. Al Sulaiman
- Environmental Protection Technologies Institute, Sustainability and Environment Sector, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Elsayed Osman Hussein
- Al-Khumasia For Feed and Animal Products Riyadh – Olaya – Al Aqareyah 2 – Office 705 P.O. Box 8344, Riyadh 11982, Saudi Arabia
| | - Ahmed A. Saleh
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 333516, Egypt
| |
Collapse
|