1
|
Cappelli J, Khacho P, Wang B, Sokolovski A, Bakkar W, Raymond S, Ahlskog N, Pitney J, Wu J, Chudalayandi P, Wong AYC, Bergeron R. Glycine-induced NMDA receptor internalization provides neuroprotection and preserves vasculature following ischemic stroke. iScience 2022; 25:103539. [PMID: 34977503 PMCID: PMC8689229 DOI: 10.1016/j.isci.2021.103539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 11/24/2021] [Indexed: 11/26/2022] Open
Abstract
Ischemic stroke is the second leading cause of death worldwide. Following an ischemic event, neuronal death is triggered by uncontrolled glutamate release leading to overactivation of glutamate sensitive N-methyl-d-aspartate receptor (NMDAR). For gating, NMDARs require not only the binding of glutamate, but also of glycine or a glycine-like compound as a co-agonist. Low glycine doses enhance NMDAR function, whereas high doses trigger glycine-induced NMDAR internalization (GINI) in vitro. Here, we report that following an ischemic event, in vivo, GINI also occurs and provides neuroprotection in the presence of a GlyT1 antagonist (GlyT1-A). Mice pretreated with a GlyT1-A, which increases synaptic glycine levels, exhibited smaller stroke volume, reduced cell death, and minimized behavioral deficits following stroke induction by either photothrombosis or endothelin-1. Moreover, we show evidence that in ischemic conditions, GlyT1-As preserve the vasculature in the peri-infarct area. Therefore, GlyT1 could be a new target for the treatment of ischemic stroke. GINI is a dynamic phenomenon which dampens NMDAR-mediated excitotoxicity during stroke GlyT1-antagonists (GlyT1-As) trigger GINI during stroke in vivo GlyT1-As mitigate post-stroke behavioral deficits and preserve peri-infarct vasculature GlyT1 could be a novel and viable therapeutic target for ischemic stroke
Collapse
Affiliation(s)
- Julia Cappelli
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Pamela Khacho
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Boyang Wang
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Alexandra Sokolovski
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Wafae Bakkar
- Ottawa Hospital Research Institute, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Sophie Raymond
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Nina Ahlskog
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Julian Pitney
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Junzheng Wu
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Prakash Chudalayandi
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Adrian Y C Wong
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| | - Richard Bergeron
- Cellular and Molecular Medicine Department, University of Ottawa, 451 Smyth Road, Roger Guindon Building, Room 3501N, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
2
|
Strzelecki D, Kotlicka-Antczak M, Kaczmarek B, Jerczyńska H, Wysokiński A. Serum levels of neuropeptide Y in patients with chronic schizophrenia during treatment augmentation with sarcosine (results of the double-blind randomized controlled PULSAR study). Hum Psychopharmacol 2021; 36:e2770. [PMID: 33245168 DOI: 10.1002/hup.2770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/18/2020] [Accepted: 11/11/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Modulation of glutamatergic neurotransmission in schizophrenia by sarcosine leads to a reduction in primary negative symptoms, while its metabolic profile is safe. In order to extend research in the area, we assessed serum levels of neuropeptide Y (NPY), a hypothalamic hormone related to anxiety and depression, also involved in mechanisms inducing weight gain. Additionally, we analyzed associations between NPY concentrations and its changes with severity of symptoms and metabolic parameters. METHODS A prospective 6-month, randomized, double-blind placebo-controlled trial was completed by 57 subjects with chronic schizophrenia with predominant negative symptoms and stable antipsychotic treatment. The participants received 2 g of sarcosine (n = 28) or placebo (n = 29) daily. We assessed serum NPY concentrations and severity of symptoms (with the Positive and Negative Syndrome Scale [PANSS] and Calgary Depression Scale for Schizophrenia) at the beginning of the study, after 6 weeks and 6 months. RESULTS Sarcosine did not affect NPY levels in all time points. The highest decrease in NPY concentrations was observed in the subjects who were initially depressed, who became euthymic at the last visit. We noticed an improvement in the total PANSS score, and negative symptom and general psychopathology subscales in the sarcosine group, however, without any correlation with NPY levels. CONCLUSION The use of sarcosine does not change NPY levels. Peripheral NPY concentrations may be related to depressive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Łódź, Poland
| | | | - Bartosz Kaczmarek
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Łódź, Poland
| | - Hanna Jerczyńska
- Central Scientific Laboratory (CoreLab), Medical University of Lodz, Łódź, Poland
| | - Adam Wysokiński
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
3
|
Marchi M, Galli G, Magarini FM, Mattei G, Galeazzi GM. Sarcosine as an add-on treatment to antipsychotic medication for people with schizophrenia: a systematic review and meta-analysis of randomized controlled trials. Expert Opin Drug Metab Toxicol 2021; 17:483-493. [PMID: 33538213 DOI: 10.1080/17425255.2021.1885648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: N-methyl-glycine (sarcosine) may improve symptoms of schizophrenia via NMDA-receptor modulation. We undertook a systematic review and meta-analysis to determine the short- and long-term effectiveness of sarcosine for schizophrenia.Research design and methods: The databases Medline, Scopus, EMBASE, Cochrane Library, and PsycINFO were searched. We included six independent randomized controlled trials of sarcosine as add-on treatment to current antipsychotic medication, involving 234 adult participants with schizophrenia, and reporting data on symptom severity. Standardized mean differences (SMDs) were used to assess continuous outcomes.Results: In all of the trials, sarcosine was administered orally at 2 g/day. Treatment with sarcosine did not show a significant effect size at any of the pre-established time points (2, 4, 6, or >6 weeks), due to marked quantitative heterogeneity. However, sarcosine was associated with significant reductions of symptom severity in the subgroups of people with chronic schizophrenia and no treatment resistance (namely, without added-on clozapine) in relation to the SMD after 6 weeks treatment at -0.36 and -0.31, respectively.Conclusions: People with chronic and non-refractory schizophrenia may benefit from the use of sarcosine as an add-on treatment to antipsychotic medication. Due to the good tolerability of this compound, future trials with larger sample sizes appear worthwhile.
Collapse
Affiliation(s)
- Mattia Marchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giacomo Galli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Maria Magarini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giorgio Mattei
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Labor, Development and Innovation, Marco Biagi Department of Economics & Marco Biagi Foundation, University of Modena and Reggio Emilia, Modena, Italy
| | - Gian Maria Galeazzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
4
|
Pei JC, Luo DZ, Gau SS, Chang CY, Lai WS. Directly and Indirectly Targeting the Glycine Modulatory Site to Modulate NMDA Receptor Function to Address Unmet Medical Needs of Patients With Schizophrenia. Front Psychiatry 2021; 12:742058. [PMID: 34658976 PMCID: PMC8517243 DOI: 10.3389/fpsyt.2021.742058] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
Schizophrenia is a severe mental illness that affects ~1% of the world's population. It is clinically characterized by positive, negative, and cognitive symptoms. Currently available antipsychotic medications are relatively ineffective in improving negative and cognitive deficits, which are related to a patient's functional outcomes and quality of life. Negative symptoms and cognitive deficits are unmet by the antipsychotic medications developed to date. In recent decades, compelling animal and clinical studies have supported the NMDA receptor (NMDAR) hypofunction hypothesis of schizophrenia and have suggested some promising therapeutic agents. Notably, several NMDAR-enhancing agents, especially those that function through the glycine modulatory site (GMS) of NMDAR, cause significant reduction in psychotic and cognitive symptoms in patients with schizophrenia. Given that the NMDAR-mediated signaling pathway has been implicated in cognitive/social functions and that GMS is a potential therapeutic target for enhancing the activation of NMDARs, there is great interest in investigating the effects of direct and indirect GMS modulators and their therapeutic potential. In this review, we focus on describing preclinical and clinical studies of direct and indirect GMS modulators in the treatment of schizophrenia, including glycine, D-cycloserine, D-serine, glycine transporter 1 (GlyT1) inhibitors, and D-amino acid oxidase (DAO or DAAO) inhibitors. We highlight some of the most promising recently developed pharmacological compounds designed to either directly or indirectly target GMS and thus augment NMDAR function to treat the cognitive and negative symptoms of schizophrenia. Overall, the current findings suggest that indirectly targeting of GMS appears to be more beneficial and leads to less adverse effects than direct targeting of GMS to modulate NMDAR functions. Indirect GMS modulators, especially GlyT1 inhibitors and DAO inhibitors, open new avenues for the treatment of unmet medical needs for patients with schizophrenia.
Collapse
Affiliation(s)
- Ju-Chun Pei
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Da-Zhong Luo
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Shiang-Shin Gau
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Chia-Yuan Chang
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Chang CH, Lin CH, Liu CY, Chen SJ, Lane HY. Efficacy and cognitive effect of sarcosine (N-methylglycine) in patients with schizophrenia: A systematic review and meta-analysis of double-blind randomised controlled trials. J Psychopharmacol 2020; 34:495-505. [PMID: 32122256 DOI: 10.1177/0269881120908016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Sarcosine (N-methylglycine), a type 1 glycine transporter inhibitor (GlyT1), has shown therapeutic potential for treating schizophrenia; however, studies have reported conflicting results. This meta-analysis aimed to explore the efficacy and cognitive effect of sarcosine for schizophrenia. METHODS In this study, PubMed, Cochrane Systematic Reviews, and Cochrane Collaboration Central Register of Controlled Clinical Trials were searched electronically for double-blinded randomised controlled trials that used sarcosine for treating schizophrenia. We used the published trials up to November 2019 to investigate the efficacy of sarcosine in schizophrenia. We pooled studies by using a random-effect model for comparing sarcosine treatment effects. Patients who were diagnosed with schizophrenia according to the criteria of the Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition were recruited. Clinical improvement and cognitive function scores between baseline and after sarcosine use were compared using the standardised mean difference (SMD) with 95% confidence intervals (CIs). The heterogeneity of the included trials was evaluated through visual inspection of funnel plots and through the I2 statistic. RESULTS We identified seven trials with 326 participants with schizophrenia meeting the inclusion criteria. All these studies evaluated the overall clinical symptoms, and four of them evaluated overall cognitive functions. Sarcosine use achieved more significant effects than the use of its comparators in relieving overall clinical symptoms (SMD = 0.51, CI = 0.26-0.76, p < 0.01). Moreover, studies with the low Positive and Negative Syndrome Scale range of 70-79 showed significant effect size (ES)s of 0.67 (95% CI: 0.03-1.31, p = 0.04). In addition, trials enrolling patients with stable clinical symptoms had significant ESs: 0.53 (95% CI: 0.21-0.85, p < 0.01). Add-on sarcosine combined with first- and second-generation antipsychotics, except clozapine, had a positive effect. For overall cognitive functions, sarcosine showed a positive but insignificant effect compared with its comparators (SMD = 0.27, CI = -0.06 to 0.60, p = 0.10). The effects were correlated with increased female proportions and decreased illness duration, albeit nonsignificantly. CONCLUSIONS The meta-analysis suggests that sarcosine may be associated with treatment effect on overall clinical symptoms in patients with schizophrenia but not cognitive functions.
Collapse
Affiliation(s)
- Chun-Hung Chang
- Institute of Clinical Medical Science, China Medical University, Taichung.,Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung.,An Nan Hospital, China Medical University, Tainan
| | - Chieh-Hsin Lin
- Institute of Clinical Medical Science, China Medical University, Taichung.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung.,Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung
| | - Chieh-Yu Liu
- Department of Speech Language Pathology and Audiology, Biostatistical Consulting Lab, National Taipei University of Nursing and Health Sciences, Taipei
| | - Shaw-Ji Chen
- Department of Psychiatry, Mackay Memorial Hospital Taitung Branch, Taitung.,Department of Medicine, Mackay Medical College, New Taipei
| | - Hsien-Yuan Lane
- Institute of Clinical Medical Science, China Medical University, Taichung.,Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung.,Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung
| |
Collapse
|
6
|
Xue Z, Yin B, Wang H, Li M, Rao H, Liu X, Zhou X, Lu X. An organic indicator functionalized graphene oxide nanocomposite-based colorimetric assay for the detection of sarcosine. NANOSCALE 2016; 8:5488-96. [PMID: 26902537 DOI: 10.1039/c6nr00005c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Rapid detection of sarcosine is a key requirement for both diagnosis and treatment of disease. We report here a simple yet sensitive colorimetric nanocomposite platform for rapid detection of sarcosine in alkaline media. The approach exploited the benefits of a rapid color-producing reaction between an organic indicator, 1,2-naphthoquinone-4-sulphonic acid sodium salt (NQS), and the analyte of sarcosine species as well as the good catalytic ability of graphene oxide (GO) to the formation of highly colored products due to its good water dispersibility, extremely large surface area and facile surface modification. As a result, a NQS functionalized GO nanocomposite through π-π stacking has been demonstrated to be useful as a highly efficient catalyst system for the selective and sensitive colorimetric determination of sarcosine by providing a nanocomposite-amplified colorimetric response. Meanwhile, the strategy offered excellent selectivity toward sarcosine species against other amino acids as well as a satisfying detection limit of 0.73 μM. More importantly, by using an electrochemical method, a credible sensing mechanism of GO nanocomposite-based colorimetric platform for a special analyte determination can be easily verified and elucidated, which also provides an attractive alternative to conventional characterization strategies.
Collapse
Affiliation(s)
- Zhonghua Xue
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Bo Yin
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Hui Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Mengqian Li
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Honghong Rao
- School of chemistry & environmental science, Lanzhou City University, Lanzhou, 730070, China
| | - Xiuhui Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Xinbin Zhou
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|