1
|
Luo X, Zhou Y, Yuan S, Chen X, Zhang B. The changes in metabolomics profile induced by intermittent theta burst stimulation in major depressive disorder: an exploratory study. BMC Psychiatry 2023; 23:550. [PMID: 37516823 PMCID: PMC10387200 DOI: 10.1186/s12888-023-05044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Recently, there has been an ongoing interest in the mechanism of intermittent theta burst stimulation (iTBS) in major depressive disorder. Studying the metabolite changes induced by iTBS may help to understand the mechanism. METHODS Eleven participants with major depressive disorder received 10 days iTBS treatment. Magnetic resonance imaging (MRI) was used to target the region of the left dorsolateral prefrontal cortex (DLPFC) in each participant. We analyzed the effects of iTBS on metabolites using high-throughput profiling and assessed its impact on depressive symptoms. These analyses were considered exploratory, and no correction for multiple comparisons was applied. RESULTS Among the 318 measured metabolites, a significant increase in cystine, asymmetric dimethylarginine (ADMA), 1-methylhistidine, indoleacetic acid (IAA), diethanolamine (DEA), dopa, riboflavin-5'-monophosphate (FMN), and a significant decrease in alphalinolenic acid (ALA), gamma-linolenic acid (GLA), serotonin, linoleic acid (LA) (p < 0.05) were detected in the patients after iTBS treatment. In Pearson correlation analysis, the plasma levels of LA, FMN and ADMA at baseline were significantly related to the reduction rate of the 17-item Hamilton Depression Rating Scale and the Patient Health Questionnaire-9 scores (p < 0.05). CONCLUSIONS Our study highlights that LA, FMN, ADMA and their relationship with oxidative stress, may be key factors in the antidepressant efficacy of iTBS.
Collapse
Affiliation(s)
- Xin Luo
- Psychiatric & Psychological Neuroimage Laboratory (PsyNI Lab), The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuwen Zhou
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China
| | - Shiqi Yuan
- Psychiatric & Psychological Neuroimage Laboratory (PsyNI Lab), The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyu Chen
- Psychiatric & Psychological Neuroimage Laboratory (PsyNI Lab), The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
2
|
Hanson AJ, Banks WA, Bettcher LF, Pepin R, Raftery D, Navarro SL, Craft S. Cerebrospinal Fluid Metabolomics: Pilot Study of Using Metabolomics to Assess Diet and Metabolic Interventions in Alzheimer's Disease and Mild Cognitive Impairment. Metabolites 2023; 13:569. [PMID: 37110227 PMCID: PMC10145981 DOI: 10.3390/metabo13040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Brain glucose hypometabolism is an early sign of Alzheimer's disease (AD), and interventions which offset this deficit, such as ketogenic diets, show promise as AD therapeutics. Conversely, high-fat feeding may exacerbate AD risk. We analyzed the metabolomic profile of cerebrospinal fluid (CSF) in a pilot study of older adults who underwent saline and triglyceride (TG) infusions. Older adults (12 cognitively normal (CN), age 65.3 ± 8.1, and 9 with cognitive impairment (CI), age 70.9 ± 8.6) underwent a 5 h TG or saline infusion on different days using a random crossover design; CSF was collected at the end of infusion. Aqueous metabolites were measured using a targeted mass spectroscopy (MS) platform focusing on 215 metabolites from over 35 different metabolic pathways. Data were analyzed using MetaboAnalyst 4.0 and SAS. Of the 215 targeted metabolites, 99 were detectable in CSF. Only one metabolite significantly differed by treatment: the ketone body 3-hydroxybutyrate (HBA). Post hoc analyses showed that HBA levels were associated with age and markers of metabolic syndrome and demonstrated different correlation patterns for the two treatments. When analyzed by cognitive diagnosis group, TG-induced increases in HBA were over 3 times higher for those with cognitive impairment (change score CN +9.8 uM ± 8.3, CI +32.4 ± 7.4, p = 0.0191). Interestingly, individuals with cognitive impairment had higher HBA levels after TG infusion than those with normal cognition. These results suggest that interventions that increase plasma ketones may lead to higher brain ketones in groups at risk for AD and should be confirmed in larger intervention studies.
Collapse
Affiliation(s)
- Angela J. Hanson
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - William A. Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98102, USA
| | - Lisa F. Bettcher
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98109, USA
| | - Robert Pepin
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98109, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98109, USA
| | - Sandi L. Navarro
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Suzanne Craft
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27109, USA
| |
Collapse
|
3
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023; 8:132. [PMID: 36941259 PMCID: PMC10026263 DOI: 10.1038/s41392-023-01399-3] [Citation(s) in RCA: 195] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
Collapse
Affiliation(s)
- Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
4
|
Giron CG, Lin TTZ, Kan RLD, Zhang BBB, Yau SY, Kranz GS. Non-Invasive Brain Stimulation Effects on Biomarkers of Tryptophan Metabolism: A Scoping Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms23179692. [PMID: 36077088 PMCID: PMC9456364 DOI: 10.3390/ijms23179692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Abnormal activation of the kynurenine and serotonin pathways of tryptophan metabolism is linked to a host of neuropsychiatric disorders. Concurrently, noninvasive brain stimulation (NIBS) techniques demonstrate high therapeutic efficacy across neuropsychiatric disorders, with indications for modulated neuroplasticity underlying such effects. We therefore conducted a scoping review with meta-analysis of eligible studies, conforming with the PRISMA statement, by searching the PubMed and Web of Science databases for clinical and preclinical studies that report the effects of NIBS on biomarkers of tryptophan metabolism. NIBS techniques reviewed were electroconvulsive therapy (ECT), transcranial magnetic stimulation (TMS), and transcranial direct current stimulation (tDCS). Of the 564 search results, 65 studies were included with publications dating back to 1971 until 2022. The Robust Bayesian Meta-Analysis on clinical studies and qualitative analysis identified general null effects by NIBS on biomarkers of tryptophan metabolism, but moderate evidence for TMS effects on elevating serum serotonin levels. We cannot interpret this as evidence for or against the effects of NIBS on these biomarkers, as there exists several confounding methodological differences in this literature. Future controlled studies are needed to elucidate the effects of NIBS on biomarkers of tryptophan metabolism, an under-investigated question with substantial implications to clinical research and practice.
Collapse
Affiliation(s)
- Cristian G. Giron
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tim T. Z. Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Rebecca L. D. Kan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bella B. B. Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Suk Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Correspondence:
| |
Collapse
|