1
|
Kott J, Mooney-Leber S, Shoubah F, Brummelte S. Effectiveness of different corticosterone administration methods to elevate corticosterone serum levels, induce depressive-like behavior, and affect neurogenesis levels in female rats. Neuroscience 2016; 312:201-14. [DOI: 10.1016/j.neuroscience.2015.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022]
|
2
|
Pekary AE, Sattin A, Lloyd RL. Ketamine modulates TRH and TRH-like peptide turnover in brain and peripheral tissues of male rats. Peptides 2015; 69:66-76. [PMID: 25882008 DOI: 10.1016/j.peptides.2015.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 01/10/2023]
Abstract
Major depression is the largest single healthcare burden with treatments of slow onset and often limited efficacy. Ketamine, a NMDA antagonist used extensively as a pediatric and veterinary anesthetic, has recently been shown to be a rapid acting antidepressant, making it a potential lifesaver for suicidal patients. Side effects and risk of abuse limit the chronic use of ketamine. More complete understanding of the neurobiochemical mechanisms of ketamine should lead to safer alternatives. Some of the physiological and pharmacological actions of ketamine are consistent with increased synthesis and release of TRH (pGlu-His-Pro-NH2), and TRH-like peptides (pGlu-X-Pro-NH2) where "X" can be any amino acid residue. Moreover, TRH-like peptides are themselves potential therapeutic agents for the treatment of major depression, anxiety, bipolar disorder, epilepsy, Alzheimer's and Parkinson's diseases. For these reasons, male Sprague-Dawley rats were anesthetized with 162 mg/kg ip ketamine and then infused intranasally with 20 μl of sterile saline containing either 0 or 5 mg/ml Glu-TRH. One, 2 or 4h later, the brain levels of TRH and TRH-like peptides were measured in various brain regions and peripheral tissues. At 1h in brain following ketamine only, the levels of TRH and TRH-like peptides were significantly increased in 52 instances (due to increased biosynthesis and/or decreased release) or decreased in five instances. These changes, listed by brain region in order of decreasing number of significant increases (↑) and/or decreases (↓), were: hypothalamus (9↑); piriform cortex (8↑); entorhinal cortex (7↑); nucleus accumbens (7↑); posterior cingulate (5↑); striatum (4↑); frontal cortex (2↑,3↓); amygdala (3↑); medulla oblongata (1↑,2↓); cerebellum (2↑); hippocampus (2↑); anterior cingulate (2↑). The corresponding changes in peripheral tissues were: adrenals (8↑); epididymis (4↑); testis (1↑,3↓); pancreas (1↑); prostate (1↑). We conclude that TRH and TRH-like peptides may be downstream mediators of the rapid antidepressant actions of ketamine.
Collapse
Affiliation(s)
- A Eugene Pekary
- Research Services, VA Greater Los Angeles Healthcare System, University of California, Los Angeles, CA 90073, United States; Center for Ulcer Research and Education, VA Greater Los Angeles Healthcare System, University of California, Los Angeles, CA 90073, United States; Department of Medicine, University of California, Los Angeles, CA 90073, United States.
| | - Albert Sattin
- Research Services, VA Greater Los Angeles Healthcare System, University of California, Los Angeles, CA 90073, United States; Psychiatry Services, VA Greater Los Angeles Healthcare System, University of California, Los Angeles, CA 90073, United States; Departments of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA 90073, United States; Brain Research Institute, University of California, Los Angeles, CA 90073, United States
| | - Robert L Lloyd
- Department of Psychology, University of Minnesota, 332 Bohannon Hall, 10 University Drive, Duluth, MN 55812-2494, United States
| |
Collapse
|
3
|
Action control is mediated by prefrontal BDNF and glucocorticoid receptor binding. Proc Natl Acad Sci U S A 2012. [PMID: 23185000 DOI: 10.1073/pnas.1208342109] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Stressor exposure biases decision-making strategies from those based on the relationship between actions and their consequences to others restricted by stimulus-response associations. Chronic stressor exposure also desensitizes glucocorticoid receptors (GR) and diminishes motivation to acquire food reinforcement, although causal relationships are largely not established. We show that a history of chronic exposure to the GR ligand corticosterone or acute posttraining GR blockade with RU38486 makes rodents less able to perform actions based on their consequences. Thus, optimal GR binding is necessary for the consolidation of new response-outcome learning. In contrast, medial prefrontal (but not striatal) BDNF can account for stress-related amotivation, in that selective medial prefrontal cortical Bdnf knockdown decreases break-point ratios in a progressive-ratio task. Knockdown also increases vulnerability to RU38486. Despite the role of BDNF in dendritic spine reorganization, deep-layer spine remodeling does not obviously parallel progressive-ratio response patterns, but treatment with the Na(+)-channel inhibitor riluzole reverses corticosteroid-induced motivational deficits and restores prefrontal BDNF expression after corticosterone. We argue that when prefrontal neurotrophin systems are compromised, and GR-mediated hypothalamic-pituitary-adrenal axis feedback is desensitized (as in the case of chronic stress hormone exposure), amotivation and inflexible maladaptive response strategies that contribute to stress-related mood disorders result.
Collapse
|
4
|
Antidepressant-like properties of oral riluzole and utility of incentive disengagement models of depression in mice. Psychopharmacology (Berl) 2012; 219:805-14. [PMID: 21779782 PMCID: PMC3674097 DOI: 10.1007/s00213-011-2403-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 06/30/2011] [Indexed: 01/22/2023]
Abstract
RATIONALE The neuroprotective agent riluzole has antidepressant-like properties in humans, but its mechanisms of action are unclear. Despite the increasing utility of transgenic and knockout mice in addressing such issues, previous studies aimed at characterizing biochemical mechanisms have been conducted in rats. OBJECTIVES We sought to optimize an oral riluzole administration protocol with antidepressant-like consequences in C57BL/6 mice, a common background strain in genetically modified mice. METHODS Riluzole (6-60 μg/ml) was dissolved in tap water and replaced regular drinking water for up to 3 weeks; sensitivity to tail suspension, forced swimming, and the locomotor response to extinction training in a model of "incentive disengagement" were tested. Peripheral and central effects of long-term 60-μg/ml treatment were also evaluated. RESULTS Riluzole had dose-dependent antidepressant-like effects in the forced swim test, and like chronic fluoxetine, exerted antidepressant-like actions in an adaptation of the "incentive disengagement" model at the highest concentration tested. This 60-μg/ml concentration also restored hippocampal brain-derived neuroptrophic factor (BDNF) expression after chronic corticosteroid exposure and increased glutamate glial transporter 1 (GLT-1, or EAAT2) expression without significantly affecting baseline locomotor activity, thymus and adrenal gland weights, or blood serum corticosterone. The lowest 6-μg/ml concentration increased locomotor activity, potentially consistent with an anxiolytic-like effect. CONCLUSIONS Riluzole's therapeutic potential for treating mood disorders may involve GLT-1 and BDNF, and we suggest this protocol could be used to further characterize its precise long-term biochemical mechanisms of action in animal models of depression.
Collapse
|
5
|
Waters P, McCormick CM. Caveats of chronic exogenous corticosterone treatments in adolescent rats and effects on anxiety-like and depressive behavior and hypothalamic-pituitary-adrenal (HPA) axis function. BIOLOGY OF MOOD & ANXIETY DISORDERS 2011; 1:4. [PMID: 22738136 PMCID: PMC3377168 DOI: 10.1186/2045-5380-1-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/27/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Administration of exogenous corticosterone is an effective preclinical model of depression, but its use has involved primarily adult rodents. Using two different procedures of administration drawn from the literature, we explored the possibility of exogenous corticosterone models in adolescence, a time of heightened risk for mood disorders in humans. METHODS In experiment 1, rats were injected with 40 mg/kg corticosterone or vehicle from postnatal days 30 to 45 and compared with no injection controls on behavior in the elevated plus maze (EPM) and the forced swim test (FST). Experiment 2 consisted of three treatments administered to rats from postnatal days 30 to 45 or as adults (days 70 to 85): either corticosterone (400 μg/ml) administered in the drinking water along with 2.5% ethanol, 2.5% ethanol or water only. In addition to testing on EPM, blood samples after the FST were obtained to measure plasma corticosterone. Analysis of variance (ANOVA) and alpha level of P < 0.05 were used to determine statistical significance. RESULTS In experiment 1, corticosterone treatment of adolescent rats increased anxiety in the EPM and decreased immobility in the FST compared to no injection control rats. However, vehicle injected rats were similar to corticosterone injected rats, suggesting that adolescent rats may be highly vulnerable to stress of injection. In experiment 2, the intake of treated water, and thus doses delivered, differed for adolescents and adults, but there were no effects of treatment on behavior in the EPM or FST. Rats that had ingested corticosterone had reduced corticosterone release after the FST. Ethanol vehicle also affected corticosterone release compared to those ingesting water only, but differently for adolescents than for adults. CONCLUSIONS The results indicate that several challenges must be overcome before the exogenous corticosterone model can be used effectively in adolescents.
Collapse
Affiliation(s)
- Patti Waters
- Department of Psychology and Centre for Neuroscience, Brock University, St Catharines, Ontario, Canada
| | - Cheryl M McCormick
- Department of Psychology and Centre for Neuroscience, Brock University, St Catharines, Ontario, Canada
| |
Collapse
|
6
|
|
7
|
Sattin A, Pekary AE, Blood J. Rapid modulation of TRH and TRH-like peptide release in rat brain and peripheral tissues by prazosin. Peptides 2011; 32:1666-76. [PMID: 21718733 DOI: 10.1016/j.peptides.2011.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/11/2011] [Accepted: 06/13/2011] [Indexed: 11/28/2022]
Abstract
Hyperresponsiveness to norepinephrine contributes to post-traumatic stress disorder (PTSD). Prazosin, a brain-active blocker of α(1)-adrenoceptors, originally used for the treatment of hypertension, has been reported to alleviate trauma nightmares, sleep disturbance and improve global clinical status in war veterans with PTSD. Thyrotropin-releasing hormone (TRH, pGlu-His-Pro-NH(2)) may play a role in the pathophysiology and treatment of neuropsychiatric disorders such as major depression, and PTSD (an anxiety disorder). To investigate whether TRH or TRH-like peptides (pGlu-X-Pro-NH(2), where "X" can be any amino acid residue) participate in the therapeutic effects of prazosin, male rats were injected with prazosin and these peptides then measured in brain and endocrine tissues. Prazosin stimulated TRH and TRH-like peptide release in those tissues with high α(1)-adrenoceptor levels suggesting that these peptides may play a role in the therapeutic effects of prazosin.
Collapse
Affiliation(s)
- Albert Sattin
- Psychiatry Services, VA Greater Los Angeles Healthcare System, CA 90073, USA
| | | | | |
Collapse
|
8
|
Abstract
TRH-like peptides are characterized by substitution of basic amino acid histidine (related to authentic TRH) with neutral or acidic amino acid, like glutamic acid, phenylalanine, glutamine, tyrosine, leucin, valin, aspartic acid and asparagine. The presence of extrahypothalamic TRH-like peptides was reported in peripheral tissues including gastrointestinal tract, placenta, neural tissues, male reproductive system and certain endocrine tissues. Work deals with the biological function of TRH-like peptides in different parts of organisms where various mechanisms may serve for realisation of biological function of TRH-like peptides as negative feedback to the pituitary exerted by the TRH-like peptides, the role of pEEPam such as fertilization-promoting peptide, the mechanism influencing the proliferative ability of prostatic tissues, the neuroprotective and antidepressant function of TRH-like peptides in brain and the regulation of thyroid status by TRH-like peptides.
Collapse
Affiliation(s)
- R Bílek
- Institute of Endocrinology, Prague, Czech Republic.
| | | | | |
Collapse
|
9
|
Pekary AE, Stevens SA, Blood JD, Sattin A. Rapid modulation of TRH and TRH-like peptide release in rat brain, pancreas, and testis by a GSK-3beta inhibitor. Peptides 2010; 31:1083-93. [PMID: 20338209 DOI: 10.1016/j.peptides.2010.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 03/15/2010] [Indexed: 02/06/2023]
Abstract
Antidepressants have been shown to be neuroprotective and able to reverse damage to glia and neurons. Thyrotropin-releasing hormone (TRH) is an endogenous antidepressant-like neuropeptide that reduces the expression of glycogen synthase kinase-3beta (GSK-3beta), an enzyme that hyperphosphorylates tau and is implicated in bipolar disorder, diabetes and Alzheimer's disease. In order to understand the potential role of GSK-3beta in the modulation of depression by TRH and TRH-like peptides and the therapeutic potential of GSK-3beta inhibitors for neuropsychiatric and metabolic diseases, young adult male Sprague-Dawley (SD) rats were (a) injected ip with 1.8mg/kg of GSK-3beta inhibitor VIII (GSKI) and sacrificed 0, 2, 4, 6, and 8h later or (b) injected with 0, 0.018, 0.18 or 1.8mg/kg GSKI and bled 4h later. Levels of TRH and TRH-like peptides were measured in various brain regions involved in mood regulation, pancreas and reproductive tissues. Large, 3-15-fold, increases of TRH and TRH-like peptide levels in cerebellum, for example, as well as other brain regions were noted at 2 and 4h. In contrast, a nearly complete loss of TRH and TRH-like peptides from testis within 2h and pancreas by 4h following GSKI injection was observed. We have previously reported similar acute effects of corticosterone in brain and peripheral tissues. Incubation of a decapsulated rat testis with either GSKI or corticosterone accelerated release of TRH, and TRH-like peptides. Glucocorticoids, via inhibition of GSK3-beta activity, may thus be involved in the inhibition of TRH and TRH-like peptide release in brain, thereby contributing to the depressogenic effect of this class of steroids. Corticosterone-induced acceleration of release of these peptides from testis may contribute to the decline in reproductive function and redirection of energy needed during life-threatening emergencies. These contrasting effects of glucocorticoid on peptide release appear to be mediated by GSK-3beta.
Collapse
Affiliation(s)
- Albert Eugene Pekary
- Research Services, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States.
| | | | | | | |
Collapse
|
10
|
Perry M, Li Q, Kennedy RT. Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal Chim Acta 2009; 653:1-22. [PMID: 19800472 PMCID: PMC2759352 DOI: 10.1016/j.aca.2009.08.038] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/25/2009] [Accepted: 08/27/2009] [Indexed: 12/18/2022]
Abstract
Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluble gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest.
Collapse
Affiliation(s)
- Maura Perry
- University of Michigan, Department of Chemistry, 930 N. University, Ann Arbor, MI 48109-1055, USA
| | | | | |
Collapse
|