1
|
Agarwal K, Manza P, Chapman M, Nawal N, Biesecker E, McPherson K, Dennis E, Johnson A, Volkow ND, Joseph PV. Inflammatory Markers in Substance Use and Mood Disorders: A Neuroimaging Perspective. Front Psychiatry 2022; 13:863734. [PMID: 35558424 PMCID: PMC9086785 DOI: 10.3389/fpsyt.2022.863734] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022] Open
Abstract
Chronic exposure to addictive drugs in substance use disorders and stressors in mood disorders render the brain more vulnerable to inflammation. Inflammation in the brain, or neuroinflammation, is characterized by gliosis, microglial activation, and sustained release of cytokines, chemokines, and pro-inflammatory factors compromising the permeability of the blood-brain barrier. There is increased curiosity in understanding how substance misuse and/or repeated stress exposure affect inflammation and contribute to abnormal neuronal activity, altered neuroplasticity, and impaired cognitive control, which eventually promote compulsive drug-use behaviors and worsen mood disorders. This review will emphasize human imaging studies to explore the link between brain function and peripheral markers of inflammation in substance use disorders and mood disorders.
Collapse
Affiliation(s)
- Khushbu Agarwal
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,Section of Sensory Science and Metabolism, Division of Intramural Research, U.S. Department of Health and Human Services, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Peter Manza
- Laboratory of Neuroimaging, Department of Health and Human Services, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Marquis Chapman
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nafisa Nawal
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Erin Biesecker
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Katherine McPherson
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Evan Dennis
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Allison Johnson
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nora D Volkow
- Laboratory of Neuroimaging, Department of Health and Human Services, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Paule V Joseph
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,Section of Sensory Science and Metabolism, Division of Intramural Research, U.S. Department of Health and Human Services, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Afjeh SSA, Shams J, Hamednia S, Bushehri B, Olfat A, Omrani MD. The impact of BDNF variant on bipolar susceptibility, suicidal behavior, and response to lithium carbonate in bipolar patients. Meta Gene 2021. [DOI: 10.1016/j.mgene.2020.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
3
|
Çinar RK. Neuroserpin in Bipolar Disorder. Curr Top Med Chem 2020; 20:518-523. [PMID: 32003693 DOI: 10.2174/1568026620666200131125526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 09/20/2019] [Accepted: 11/30/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Neuroserpin is a serine protease inhibitor predominantly expressed in the nervous system functioning mainly in neuronal migration and axonal growth. Neuroprotective effects of neuroserpin were shown in animal models of stroke, brain, and spinal cord injury. Postmortem studies confirmed the involvement of neuroserpin in Alzheimer's disease. Since altered adult neurogenesis was postulated as an aetiological mechanism for bipolar disorder, the possible effect of neuroserpin gene expression in the disorder was evaluated. METHODS Neuroserpin mRNA expression levels were examined in the peripheral blood of bipolar disorder type I manic and euthymic patients and healthy controls using the polymerase chain reaction method. The sample comprised of 60 physically healthy, middle-aged men as participants who had no substance use disorder. RESULTS The gene expression levels of neuroserpin were found lower in the bipolar disorder patients than the healthy controls (p=0.000). The neuroserpin levels did not differ between mania and euthymia (both 96% down-regulated compared to the controls). CONCLUSION Since we detected differences between the patients and the controls, not the disease states, the dysregulation in the neuroserpin gene could be interpreted as a result of the disease itself.
Collapse
Affiliation(s)
- Rugül Köse Çinar
- Department of Psychiatry, Trakya University School of Medicine, Edirne, Turkey
| |
Collapse
|
4
|
D'Addario C, Bellia F, Benatti B, Grancini B, Vismara M, Pucci M, De Carlo V, Viganò C, Galimberti D, Fenoglio C, Scarpini E, Maccarrone M, Dell'Osso B. Exploring the role of BDNF DNA methylation and hydroxymethylation in patients with obsessive compulsive disorder. J Psychiatr Res 2019; 114:17-23. [PMID: 31004918 DOI: 10.1016/j.jpsychires.2019.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/20/2019] [Accepted: 04/05/2019] [Indexed: 01/12/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a clinically heterogeneous neuropsychiatric condition associated with profound disability, whose susceptibility, stemming from genetic and environmental factors that intersect with each other, is still under investigation. In this perspective, we sought to explore the transcriptional regulation of Brain Derived Neurotrophic Factor (BDNF), a promising candidate biomarker in both development and etiology of different neuropsychiatric conditions, in peripheral blood mononuclear cells from OCD patients and healthy controls. In particular, we focused on BDNF gene expression and interrogated in depth DNA methylation and hydroxymethylation at gene promoters (exons I, IV and IX) in a sample of OCD patients attending a tertiary OCD Clinic to receive guidelines-recommended treatment, and matched controls. Our preliminary data showed a significant increase in BDNF gene expression and a significant correlation with changes in the two epigenetic modifications selectively at promoter exon I, with no changes in the other promoters under study. We can conclude that transcriptional regulation of BDNF in OCD engages epigenetic mechanisms, and can suggest that this is likely evoked by the long-term pharmacotherapy. It is important to underline that many different factors need to be taken into account (i.e. age, sex, duration of illness, treatment), and thus further studies are mandatory to investigate their role in the epigenetic regulation of BDNF gene. Of note, we provide unprecedented evidence for the importance of analyzing 5-hydroxymethylcytosine levels to correctly evaluate 5-methylcytosine changes.
Collapse
Affiliation(s)
- Claudio D'Addario
- University of Teramo, Bioscience, Teramo, Italy; Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden.
| | | | - Beatrice Benatti
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano, Italy
| | - Benedetta Grancini
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano, Italy
| | - Matteo Vismara
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano, Italy
| | | | - Vera De Carlo
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano, Italy
| | - Caterina Viganò
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano, Italy
| | - Daniela Galimberti
- University of Milan, Dino Ferrari Center, Milan, Italy; Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Neurodegenerative Diseases Unit, Milan, Italy
| | - Chiara Fenoglio
- University of Milan, Dino Ferrari Center, Milan, Italy; Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Neurodegenerative Diseases Unit, Milan, Italy
| | - Elio Scarpini
- University of Milan, Dino Ferrari Center, Milan, Italy; Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Neurodegenerative Diseases Unit, Milan, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy; Fondazione IRCCS Santa Lucia, Unit of Lipid Neurochemistry, Rome, Italy
| | - Bernardo Dell'Osso
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Milano, Italy; CRC "Aldo Ravelli", University of Milan, Milano, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA.
| |
Collapse
|
5
|
The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders. Transl Psychiatry 2016; 6:e958. [PMID: 27874848 PMCID: PMC5314126 DOI: 10.1038/tp.2016.214] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/09/2016] [Accepted: 09/12/2016] [Indexed: 12/17/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. The human BDNF gene consists of 11 exons, and distinct BDNF transcripts are produced through the use of alternative promoters and splicing events. The majority of the BDNF transcripts can be detected not only in the brain but also in the blood cells, although no study has yet investigated the differential expression of BDNF transcripts at the peripheral level. This review provides a description of the human BDNF gene structure as well as a summary of clinical and preclinical evidence supporting the role of BDNF in the pathogenesis of psychiatric disorders. We will discuss several mechanisms as possibly underlying BDNF modulation, including epigenetic mechanisms. We will also discuss the potential use of peripheral BDNF as a biomarker for psychiatric disorders, focusing on the factors that can influence BDNF gene expression and protein levels. Within this context, we have also characterized, for we believe the first time, the expression of BDNF transcripts in the blood, with the aim to provide novel insights into the molecular mechanisms and signaling that may regulate peripheral BDNF gene expression levels.
Collapse
|
6
|
Ferensztajn-Rochowiak E, Tarnowski M, Samochowiec J, Michalak M, Ratajczak MZ, Rybakowski JK. Increased mRNA expression of peripheral glial cell markers in bipolar disorder: The effect of long-term lithium treatment. Eur Neuropsychopharmacol 2016; 26:1516-1521. [PMID: 27474686 DOI: 10.1016/j.euroneuro.2016.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/05/2016] [Accepted: 07/13/2016] [Indexed: 01/13/2023]
Abstract
Neuroinflammation, with microglial activation as an important element, plays a role in the pathogenesis of bipolar disorder (BD). Also, in mood disorders, pathological changes have been demonstrated in macroglial cells, such as astrocyctes and oligodendrocytes. Postmortem brain studies of BD patients to assess glial cells, such as astrocytes and oligodendrocytes and their markers such as glial fibrillary acidic protein (GFAP), Olig1 and Olig2, produced controversial results. On the other hand, investigation of these markers in the peripheral blood of such patients has not been performed so far. In this study, we examined the mRNA levels of GFAP, Olig1 and Olig2, in the peripheral blood of three groups: 15 BD subjects with a duration of illness at least 10 years (mean 20±9 years) but never treated with lithium, 15 subjects with BD treated continuously with lithium for 8-40 years (mean 16±8 years), and 15 control subjects. The groups were age-and sex-matched. Expression of mRNA markers was measured by real-time quantitative reverse transcription PCR (RQ-PCR). We observed increased mRNA levels of the Olig1 and Olig 2 glial markers studied in the BD patients not taking lithium, compared with the control subjects and increased mRNA level of GFAP, compared with lithium-treated patients. In the lithium-treated BD patients GFAP and Olig1 expression was at similar levels to that in the control group. However, Olig 2 expression was even higher than in the BD patients not taking lithium. The possible mechanisms concerning the higher expression of peripheral mRNA markers in BD patients may involve ongoing inflammatory process, compensatory mechanisms and regenerative responses. The beneficial effect of lithium may be related to its anti-inflammatory properties.
Collapse
Affiliation(s)
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian University of Medicine, Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian University of Medicine, Szczecin, Poland
| | - Michal Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | - Mariusz Z Ratajczak
- Department of Physiology, Pomeranian University of Medicine, Szczecin, Poland; Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|