1
|
Bömmer T, Schmidt LM, Meier K, Kricheldorff J, Stecher H, Herrmann CS, Thiel CM, Janitzky K, Witt K. Impact of Stimulation Duration in taVNS-Exploring Multiple Physiological and Cognitive Outcomes. Brain Sci 2024; 14:875. [PMID: 39335371 PMCID: PMC11430400 DOI: 10.3390/brainsci14090875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a non-invasive neuromodulation technique that modulates the noradrenergic activity of the locus coeruleus (LC). Yet, there is still uncertainty about the most effective stimulation and reliable outcome parameters. In a double blind, sham-controlled study including a sample of healthy young individuals (N = 29), we compared a shorter (3.4 s) and a longer (30 s) stimulation duration and investigated the effects of taVNS (real vs. sham) on saliva samples (alpha amylase and cortisol concentration), pupil (pupillary light reflex and pupil size at rest) and EEG data (alpha and theta activity at rest, ERPs for No-Go signals), and cognitive tasks (Go/No-Go and Stop Signal Tasks). Salivary alpha amylase concentration was significantly increased in the real as compared to sham stimulation for the 30 s stimulation condition. In the 3.4 s stimulation condition, we found prolonged reaction times and increased error rates in the Go/No-Go task and increased maximum acceleration in the pupillary light reflex. For the other outcomes, no significant differences were found. Our results show that prolonged stimulation increases salivary alpha-amylase, which was expected from the functional properties of the LC. The finding of longer response times to short taVNS stimulation was not expected and cannot be explained by an increase in LC activity. We also discuss the difficulties in assessing pupil size as an expression of taVNS-mediated LC functional changes.
Collapse
Affiliation(s)
- Till Bömmer
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
| | - Luisa M Schmidt
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
| | - Katharina Meier
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
| | - Julius Kricheldorff
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
| | - Heiko Stecher
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky University, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Christiane M Thiel
- Biological Psychology Lab, Department of Psychology, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Kathrin Janitzky
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, 26129 Oldenburg, Germany
| |
Collapse
|
2
|
Luna FG, Lupiáñez J, König S, Garscha U, Fischer R. Can transcutaneous auricular vagus nerve stimulation mitigate vigilance loss? Examining the effects of stimulation at individualized versus constant current intensity. Psychophysiology 2024:e14670. [PMID: 39169561 DOI: 10.1111/psyp.14670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
According to the arousal model of vigilance, the locus coeruleus-norepinephrine (LC-NE) system modulates sustained attention over long periods by regulating physiological arousal. Recent research has proposed that transcutaneous auricular vagus nerve stimulation (taVNS) modulates indirect physiological markers of LC-NE activity, although its effects on vigilance have not yet been examined. Aiming to develop a safe and noninvasive procedure to prevent vigilance failures in prolonged tasks, the present study examined whether taVNS can mitigate vigilance loss while modulating indirect markers of LC-NE activity. Following a preregistered protocol (https://osf.io/tu2xy/), 50 participants completed three repeated sessions in a randomized order, in which either active taVNS at individualized intensity set by participant, active taVNS set at 0.5 mA for all participants, or sham taVNS, was delivered while performing an attentional and vigilance task (i.e., ANTI-Vea). Changes in salivary alpha-amylase and cortisol concentrations were measured as markers of LC-NE activity. Self-reports of feelings associated with stimulation and guessing rate of active/sham conditions supported the efficacy of the single-blind procedure. Contrary to our predictions, the observed vigilance decrement was not modulated by active taVNS. Pairwise comparisons showed a mitigation by active taVNS on cortisol reduction across time. Interestingly, Spearman's correlational analyses showed some interindividual effects of taVNS on indirect markers of LC-NE, evidenced by positive associations between changes in salivary alpha-amylase and cortisol in active but not sham taVNS. We highlight the relevance of replicating and extending the present outcomes, investigating further parameters of stimulation and its effects on other indirect markers of LC-NE activity.
Collapse
Affiliation(s)
- Fernando G Luna
- Institute of Psychology, University of Greifswald, Greifswald, Germany
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juan Lupiáñez
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center, University of Granada, Granada, Spain
| | - Stefanie König
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Ulrike Garscha
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Rico Fischer
- Institute of Psychology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
3
|
Giraudier M, Ventura-Bort C, Weymar M. Effects of Transcutaneous Auricular Vagus Nerve Stimulation on the P300: Do Stimulation Duration and Stimulation Type Matter? Brain Sci 2024; 14:690. [PMID: 39061430 PMCID: PMC11274684 DOI: 10.3390/brainsci14070690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has attracted increasing interest as a neurostimulation tool with potential applications in modulating cognitive processes such as attention and memory, possibly through the modulation of the locus-coeruleus noradrenaline system. Studies examining the P300 brain-related component as a correlate of noradrenergic activity, however, have yielded inconsistent findings, possibly due to differences in stimulation parameters, thus necessitating further investigation. In this event-related potential study involving 61 participants, therefore, we examined how changes in taVNS parameters, specifically stimulation type (interval vs. continuous stimulation) and duration, influence P300 amplitudes during a visual novelty oddball task. Although no effects of stimulation were found over the whole cluster and time window of the P300, cluster-based permutation tests revealed a distinct impact of taVNS on the P300 response for a small electrode cluster, characterized by larger amplitudes observed for easy targets (i.e., stimuli that are easily discernible from standards) following taVNS compared to sham stimulation. Notably, our findings suggested that the type of stimulation significantly modulated taVNS effects on the P300, with continuous stimulation showing larger P300 differences (taVNS vs. sham) for hard targets and standards compared to interval stimulation. We observed no interaction effects of stimulation duration on the target-related P300. While our findings align with previous research, further investigation is warranted to fully elucidate the influence of taVNS on the P300 component and its potential utility as a reliable marker for neuromodulation in this field.
Collapse
Affiliation(s)
- Manon Giraudier
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Campus Golm, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany; (C.V.-B.); (M.W.)
| | | | | |
Collapse
|
4
|
Bahadori M, Bhutani N, Dalla Bella S. Enhancement of temporal processing via transcutaneous vagus nerve stimulation. Brain Stimul 2024; 17:925-927. [PMID: 39004414 DOI: 10.1016/j.brs.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024] Open
Affiliation(s)
- Mehrdad Bahadori
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Canada; Department of Psychology, University of Montreal, Canada; Centre for Research on Brain, Language and Music (CRBLM), Canada.
| | | | - Simone Dalla Bella
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Canada; Department of Psychology, University of Montreal, Canada; Centre for Research on Brain, Language and Music (CRBLM), Canada; University of Economics and Human Sciences in Warsaw, Warsaw, Poland.
| |
Collapse
|
5
|
Wienke C, Grueschow M, Haghikia A, Zaehle T. Phasic, Event-Related Transcutaneous Auricular Vagus Nerve Stimulation Modifies Behavioral, Pupillary, and Low-Frequency Oscillatory Power Responses. J Neurosci 2023; 43:6306-6319. [PMID: 37591736 PMCID: PMC10490471 DOI: 10.1523/jneurosci.0452-23.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/19/2023] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) has been proposed to activate the locus ceruleus-noradrenaline (LC-NA) system. However, previous studies failed to find consistent modulatory effects of taVNS on LC-NA biomarkers. Previous studies suggest that phasic taVNS may be capable of modulating LC-NA biomarkers such as pupil dilation and alpha oscillations. However, it is unclear whether these effects extend beyond pure sensory vagal nerve responses. Critically, the potential of the pupillary light reflex as an additional taVNS biomarker has not been explored so far. Here, we applied phasic active and sham taVNS in 29 subjects (16 female, 13 male) while they performed an emotional Stroop task (EST) and a passive pupil light reflex task (PLRT). We recorded pupil size and brain activity dynamics using a combined Magnetoencephalography (MEG) and pupillometry design. Our results show that phasic taVNS significantly increased pupil dilation and performance during the EST. During the PLRT, active taVNS reduced and delayed pupil constriction. In the MEG, taVNS increased frontal-midline theta and alpha power during the EST, whereas occipital alpha power was reduced during both the EST and PLRT. Our findings provide evidence that phasic taVNS systematically modulates behavioral, pupillary, and electrophysiological parameters of LC-NA activity during cognitive processing. Moreover, we demonstrate for the first time that the pupillary light reflex can be used as a simple and effective proxy of taVNS efficacy. These findings have important implications for the development of noninvasive neuromodulation interventions for various cognitive and clinical applications.SIGNIFICANCE STATEMENT taVNS has gained increasing attention as a noninvasive neuromodulation technique and is widely used in clinical and nonclinical research. Nevertheless, the exact mechanism of action of taVNS is not yet fully understood. By assessing physiology and behavior in a response conflict task in healthy humans, we demonstrate the first successful application of a phasic, noninvasive vagus nerve stimulation to improve cognitive control and to systematically modulate pupillary and electrophysiological markers of the noradrenergic system. Understanding the mechanisms of action of taVNS could optimize future clinical applications and lead to better treatments for mental disorders associated with noradrenergic dysfunction. In addition, we present a new taVNS-sensitive pupillary measure representing an easy-to-use biomarker for future taVNS studies.
Collapse
Affiliation(s)
| | - Marcus Grueschow
- Zurich Center for Neuroeconomics, Departement of Economics, University of Zurich, 8006 Zurich, Switzerland
| | - Aiden Haghikia
- Otto-von-Guericke University, 39120 Magdeburg, Germany
- Deusches Zentrum für Neurodegenrative Erkrankungen, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, 39120, Germany
| | - Tino Zaehle
- Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, 39120, Germany
| |
Collapse
|
6
|
Naparstek S, Yeh AK, Mills-Finnerty C. Transcutaneous Vagus Nerve Stimulation (tVNS) applications in cognitive aging: a review and commentary. Front Aging Neurosci 2023; 15:1145207. [PMID: 37496757 PMCID: PMC10366452 DOI: 10.3389/fnagi.2023.1145207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023] Open
Abstract
Differentiating healthy from pathological aging trajectories is extremely timely, as the global population faces an inversion where older adults will soon outnumber younger 5:1. Many cognitive functions (e.g., memory, executive functions, and processing speed) decline with age, a process that can begin as early as midlife, and which predicts subsequent diagnosis with dementia. Although dementia is a devastating and costly diagnosis, there remains limited evidence for medications, therapies, and devices that improve cognition or attenuate the transition into dementia. There is an urgent need to intervene early in neurodegenerative processes leading to dementia (e.g., depression and mild cognitive impairment). In this targeted review and commentary, we highlight transcutaneous Vagus Nerve Stimulation (tVNS) as a neurostimulation method with unique opportunities for applications in diseases of aging, reviewing recent literature, feasibility of use with remote data collection methods/telehealth, as well as limitations and conflicts in the literature. In particular, small sample sizes, uneven age distributions of participants, lack of standardized protocols, and oversampling of non-representative groups (e.g., older adults with no comorbid diagnoses) limit our understanding of the potential of this method. We offer recommendations for how to improve representativeness, statistical power, and generalizability of tVNS research by integrating remote data collection techniques.
Collapse
Affiliation(s)
- Sharon Naparstek
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
| | - Ashley K. Yeh
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Colleen Mills-Finnerty
- VA Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
7
|
Konjusha A, Yu S, Mückschel M, Colzato L, Ziemssen T, Beste C. Auricular Transcutaneous Vagus Nerve Stimulation Specifically Enhances Working Memory Gate Closing Mechanism: A System Neurophysiological Study. J Neurosci 2023; 43:4709-4724. [PMID: 37221097 PMCID: PMC10286950 DOI: 10.1523/jneurosci.2004-22.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/25/2023] Open
Abstract
Everyday tasks and goal-directed behavior involve the maintenance and continuous updating of information in working memory (WM). WM gating reflects switches between these two core states. Neurobiological considerations suggest that the catecholaminergic and the GABAergic are likely involved in these dynamics. Both of these neurotransmitter systems likely underlie the effects to auricular transcutaneous vagus nerve stimulation (atVNS). We examine the effects of atVNS on WM gating dynamics and their underlying neurophysiological and neurobiological processes in a randomized crossover study design in healthy humans of both sexes. We show that atVNS specifically modulates WM gate closing and thus specifically modulates neural mechanisms enabling the maintenance of information in WM. WM gate opening processes were not affected. atVNS modulates WM gate closing processes through the modulation of EEG alpha band activity. This was the case for clusters of activity in the EEG signal referring to stimulus information, motor response information, and fractions of information carrying stimulus-response mapping rules during WM gate closing. EEG-beamforming shows that modulations of activity in fronto-polar, orbital, and inferior parietal regions are associated with these effects. The data suggest that these effects are not because of modulations of the catecholaminergic (noradrenaline) system as indicated by lack of modulatory effects in pupil diameter dynamics, in the inter-relation of EEG and pupil diameter dynamics and saliva markers of noradrenaline activity. Considering other findings, it appears that a central effect of atVNS during cognitive processing refers to the stabilization of information in neural circuits, putatively mediated via the GABAergic system.SIGNIFICANCE STATEMENT Goal-directed behavior depends on how well information in short-term memory can be flexibly updated but also on how well it can be shielded from distraction. These two functions were guarded by a working memory gate. We show how an increasingly popular brain stimulation techniques specifically enhances the ability to close the working memory gate to shield information from distraction. We show what physiological and anatomic aspects underlie these effects.
Collapse
Affiliation(s)
- Anyla Konjusha
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Shijing Yu
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Lorenza Colzato
- Faculty of Psychology, Shandong Normal University, Jinan 250014, China
| | - Tjalf Ziemssen
- Department of Neurology, Faculty of Medicine, MS Centre, TU Dresden, Dresden 01307, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
- Faculty of Psychology, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
8
|
D'Agostini M, Burger AM, Franssen M, Perkovic A, Claes S, von Leupoldt A, Murphy PR, Van Diest I. Short bursts of transcutaneous auricular vagus nerve stimulation enhance evoked pupil dilation as a function of stimulation parameters. Cortex 2023; 159:233-253. [PMID: 36640622 DOI: 10.1016/j.cortex.2022.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a neurostimulatory technique hypothesised to enhance central noradrenaline. Currently, there is scarce evidence in support of a noradrenergic mechanism of taVNS and limited knowledge on its stimulation parameters (i.e., intensity and pulse width). Therefore, the present study aimed to test whether taVNS enhances pupil dilation, a noradrenergic biomarker, as a function of stimulation parameters. Forty-nine participants received sham (i.e., left ear earlobe) and taVNS (i.e., left ear cymba concha) stimulation in two separate sessions, in a counterbalanced order. We administered short bursts (5s) of seven stimulation settings varying as a function of pulse width and intensity and measured pupil size in parallel. Each stimulation setting was administered sixteen times in separate blocks. We expected short bursts of stimulation to elicit phasic noradrenergic activity as indexed by event-related pupil dilation and event-related temporal derivative. We hypothesised higher stimulation settings, quantified as the total charge per pulse (pulse width x intensity), to drive greater event-related pupil dilation and temporal derivative in the taVNS compared to sham condition. Specifically, we expected stimulation settings in the taVNS condition to be associated with a linear increase in event-related pupil dilation and temporal derivative. We found stimulation settings to linearly increase both pupil measures. In line with our hypothesis, the observed dose-dependent effect was stronger in the taVNS condition. We also found taVNS to elicit more intense and unpleasant sensations than sham stimulation. These results support the hypothesis of a noradrenergic mechanism of taVNS. However, future studies should disentangle whether stimulation elicited sensations mediate the effect of taVNS on evoked pupil dilation.
Collapse
Affiliation(s)
| | | | | | - Ana Perkovic
- Research Group Health Psychology, KU Leuven, Leuven, Belgium
| | - Stephan Claes
- The Mind Body Research Group, Department of Neuroscience, KU Leuven, Leuven, Belgium.
| | | | - Peter R Murphy
- Department of Psychology, Maynooth University, Co. Kildare, Ireland; Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Ireland.
| | - Ilse Van Diest
- Research Group Health Psychology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Giraudier M, Ventura-Bort C, Burger AM, Claes N, D'Agostini M, Fischer R, Franssen M, Kaess M, Koenig J, Liepelt R, Nieuwenhuis S, Sommer A, Usichenko T, Van Diest I, von Leupoldt A, Warren CM, Weymar M. Evidence for a modulating effect of transcutaneous auricular vagus nerve stimulation (taVNS) on salivary alpha-amylase as indirect noradrenergic marker: A pooled mega-analysis. Brain Stimul 2022; 15:1378-1388. [PMID: 36183953 DOI: 10.1016/j.brs.2022.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has received tremendous attention as a potential neuromodulator of cognitive and affective functions, which likely exerts its effects via activation of the locus coeruleus-noradrenaline (LC-NA) system. Reliable effects of taVNS on markers of LC-NA system activity, however, have not been demonstrated yet. METHODS The aim of the present study was to overcome previous limitations by pooling raw data from a large sample of ten taVNS studies (371 healthy participants) that collected salivary alpha-amylase (sAA) as a potential marker of central NA release. RESULTS While a meta-analytic approach using summary statistics did not yield any significant effects, linear mixed model analyses showed that afferent stimulation of the vagus nerve via taVNS increased sAA levels compared to sham stimulation (b = 0.16, SE = 0.05, p = 0.001). When considering potential confounders of sAA, we further replicated previous findings on the diurnal trajectory of sAA activity. CONCLUSION(S) Vagal activation via taVNS increases sAA release compared to sham stimulation, which likely substantiates the assumption that taVNS triggers NA release. Moreover, our results highlight the benefits of data pooling and data sharing in order to allow stronger conclusions in research.
Collapse
Affiliation(s)
- Manon Giraudier
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany.
| | - Carlos Ventura-Bort
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | | | - Nathalie Claes
- Research Group Health Psychology, KU Leuven, Leuven, Belgium
| | | | - Rico Fischer
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | | | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Julian Koenig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
| | - Roman Liepelt
- Department of General Psychology: Judgment, Decision Making, Action, Faculty of Psychology, University of Hagen (FernUniversität in Hagen), Hagen, Germany
| | - Sander Nieuwenhuis
- Institute of Psychology, Leiden University, Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Netherlands
| | - Aldo Sommer
- Department of General Psychology: Judgment, Decision Making, Action, Faculty of Psychology, University of Hagen (FernUniversität in Hagen), Hagen, Germany; Department of Exercise Physiology, German Sport University Cologne, Cologne, Germany
| | - Taras Usichenko
- Department of Anesthesiology, University Medicine of Greifswald, Greifswald, Germany; Department of Anesthesia, McMaster University, Hamilton, Canada
| | - Ilse Van Diest
- Research Group Health Psychology, KU Leuven, Leuven, Belgium
| | | | - Christopher M Warren
- Emma Eccles Jones College of Education and Human Services, Utah State University, United States
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany; Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
10
|
Konjusha A, Colzato L, Ghin F, Stock A, Beste C. Auricular transcutaneous vagus nerve stimulation for alcohol use disorder: A chance to improve treatment? Addict Biol 2022; 27:e13202. [DOI: 10.1111/adb.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/21/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Anyla Konjusha
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
- University Neuropsychology Center, Faculty of Medicine TU Dresden Dresden Germany
| | - Lorenza Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
- University Neuropsychology Center, Faculty of Medicine TU Dresden Dresden Germany
| | - Filippo Ghin
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
- University Neuropsychology Center, Faculty of Medicine TU Dresden Dresden Germany
| | - Ann‐Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
- University Neuropsychology Center, Faculty of Medicine TU Dresden Dresden Germany
- Biopsychology, Faculty of Psychology TU Dresden Dresden Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
- University Neuropsychology Center, Faculty of Medicine TU Dresden Dresden Germany
| |
Collapse
|