1
|
de Pablos Torró LM, Retana Moreira L, Osuna A. Extracellular Vesicles in Chagas Disease: A New Passenger for an Old Disease. Front Microbiol 2018; 9:1190. [PMID: 29910793 PMCID: PMC5992290 DOI: 10.3389/fmicb.2018.01190] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are small lipid vesicles released by prokaryotic and eukaryotic cells containing nucleic acids, proteins, and small metabolites essential for cellular communication. Depending on the targeted cell, EVs can act either locally or in distant tissues in a paracrine or endocrine cell signaling manner. Released EVs from virus-infected cells, bacteria, fungi, or parasites have been demonstrated to perform a pivotal role in a myriad of biochemical changes occurring in the host and pathogen, including the modulation the immune system. In the past few years, the biology of Trypanosoma cruzi EVs, as well as their role in innate immunity evasion, has been started to be unveiled. This review article will present findings on and provide a coherent understanding of the currently known mechanisms of action of T. cruzi-EVs and hypothesize the implication of these parasite components during the acute and chronic phases of Chagas disease.
Collapse
Affiliation(s)
- Luis M de Pablos Torró
- Grupo de Bioquímica y Parasitología Molecular, Departamento de Parasitología, Campus de Fuentenueva, Universidad de Granada, Granada, Spain
| | - Lissette Retana Moreira
- Grupo de Bioquímica y Parasitología Molecular, Departamento de Parasitología, Campus de Fuentenueva, Universidad de Granada, Granada, Spain
| | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular, Departamento de Parasitología, Campus de Fuentenueva, Universidad de Granada, Granada, Spain
| |
Collapse
|
2
|
Berná L, Rodriguez M, Chiribao ML, Parodi-Talice A, Pita S, Rijo G, Alvarez-Valin F, Robello C. Expanding an expanded genome: long-read sequencing of Trypanosoma cruzi. Microb Genom 2018; 4. [PMID: 29708484 PMCID: PMC5994713 DOI: 10.1099/mgen.0.000177] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although the genome of Trypanosoma cruzi, the causative agent of Chagas disease, was first made available in 2005, with additional strains reported later, the intrinsic genome complexity of this parasite (the abundance of repetitive sequences and genes organized in tandem) has traditionally hindered high-quality genome assembly and annotation. This also limits diverse types of analyses that require high degrees of precision. Long reads generated by third-generation sequencing technologies are particularly suitable to address the challenges associated with T. cruzi’s genome since they permit direct determination of the full sequence of large clusters of repetitive sequences without collapsing them. This, in turn, not only allows accurate estimation of gene copy numbers but also circumvents assembly fragmentation. Here, we present the analysis of the genome sequences of two T. cruzi clones: the hybrid TCC (TcVI) and the non-hybrid Dm28c (TcI), determined by PacBio Single Molecular Real-Time (SMRT) technology. The improved assemblies herein obtained permitted us to accurately estimate gene copy numbers, abundance and distribution of repetitive sequences (including satellites and retroelements). We found that the genome of T. cruzi is composed of a ‘core compartment’ and a ‘disruptive compartment’ which exhibit opposite GC content and gene composition. Novel tandem and dispersed repetitive sequences were identified, including some located inside coding sequences. Additionally, homologous chromosomes were separately assembled, allowing us to retrieve haplotypes as separate contigs instead of a unique mosaic sequence. Finally, manual annotation of surface multigene families, mucins and trans-sialidases allows now a better overview of these complex groups of genes.
Collapse
Affiliation(s)
- Luisa Berná
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Matias Rodriguez
- 2Sección Biomatemática - Unidad de Genómica Evolutiva, Facultad de Ciencias-UDELAR, Montevideo, Uruguay
| | - María Laura Chiribao
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay.,3Departamento de Bioquímica, Facultad de Medicina-UDELAR, Montevideo, Uruguay
| | - Adriana Parodi-Talice
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay.,4Sección Genética, Facultad de Ciencias-UDELAR, Montevideo, Uruguay
| | - Sebastián Pita
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay.,4Sección Genética, Facultad de Ciencias-UDELAR, Montevideo, Uruguay
| | - Gastón Rijo
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Fernando Alvarez-Valin
- 2Sección Biomatemática - Unidad de Genómica Evolutiva, Facultad de Ciencias-UDELAR, Montevideo, Uruguay
| | - Carlos Robello
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay.,3Departamento de Bioquímica, Facultad de Medicina-UDELAR, Montevideo, Uruguay
| |
Collapse
|
3
|
Matthews H, Duffy CW, Merrick CJ. Checks and balances? DNA replication and the cell cycle in Plasmodium. Parasit Vectors 2018; 11:216. [PMID: 29587837 PMCID: PMC5872521 DOI: 10.1186/s13071-018-2800-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/19/2018] [Indexed: 01/10/2023] Open
Abstract
It is over 100 years since the life-cycle of the malaria parasite Plasmodium was discovered, yet its intricacies remain incompletely understood - a knowledge gap that may prove crucial for our efforts to control the disease. Phenotypic screens have partially filled the void in the antimalarial drug market, but as compound libraries eventually become exhausted, new medicines will only come from directed drug development based on a better understanding of fundamental parasite biology. This review focusses on the unusual cell cycles of Plasmodium, which may present a rich source of novel drug targets as well as a topic of fundamental biological interest. Plasmodium does not grow by conventional binary fission, but rather by several syncytial modes of replication including schizogony and sporogony. Here, we collate what is known about the various cell cycle events and their regulators throughout the Plasmodium life-cycle, highlighting the differences between Plasmodium, model organisms and other apicomplexan parasites and identifying areas where further study is required. The possibility of DNA replication and the cell cycle as a drug target is also explored. Finally the use of existing tools, emerging technologies, their limitations and future directions to elucidate the peculiarities of the Plasmodium cell cycle are discussed.
Collapse
Affiliation(s)
- Holly Matthews
- Centre for Applied Entomology and Parasitology, Faculty of Natural Sciences, Keele University, Staffordshire, ST55BG, Keele, UK
| | - Craig W Duffy
- Centre for Applied Entomology and Parasitology, Faculty of Natural Sciences, Keele University, Staffordshire, ST55BG, Keele, UK
| | - Catherine J Merrick
- Centre for Applied Entomology and Parasitology, Faculty of Natural Sciences, Keele University, Staffordshire, ST55BG, Keele, UK.
| |
Collapse
|
4
|
Chatelain E, Ioset JR. Phenotypic screening approaches for Chagas disease drug discovery. Expert Opin Drug Discov 2017; 13:141-153. [PMID: 29235363 DOI: 10.1080/17460441.2018.1417380] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Chagas disease, caused by the parasite Trypanosoma cruzi, is a global public health issue. Current treatments targeting the parasite are limited to two old nitroheterocyclic drugs with serious side effects. The need for new and safer drugs has prompted numerous drug discovery efforts to identify compounds suitable for parasitological cure in the last decade. Areas covered: Target-based drug discovery has been limited by the small number of well-validated targets - the latest example being the failure of azoles, T. cruzi CYP51 inhibitors, in proof-of-concept clinical trials; instead phenotypic-based drug discovery has become the main pillar of Chagas R&D. Rather than focusing on the technical features of these screening assays, the authors describe the different assays developed and available in the field, and provide a critical view on their values and limitations in the screening cascade for Chagas drug development. Expert opinion: The application of technological advances to the field of Chagas disease has led to a variety of phenotypic assays that have not only changed the disease discovery landscape but have also helped us to gain a better understanding of parasite/host interactions. Recent examples of target resolution from phenotypic hits will uncover new opportunities for drug discovery for Chagas disease.
Collapse
Affiliation(s)
- Eric Chatelain
- a Drugs for Neglected Diseases initiative (DNDi), R&D Department , Geneva , Switzerland
| | - Jean-Robert Ioset
- a Drugs for Neglected Diseases initiative (DNDi), R&D Department , Geneva , Switzerland
| |
Collapse
|
5
|
Alves e Silva TL, Savage AF, Aksoy S. Transcript Abundance of Putative Lipid Phosphate Phosphatases During Development of Trypanosoma brucei in the Tsetse Fly. Am J Trop Med Hyg 2016; 94:890-3. [PMID: 26856918 DOI: 10.4269/ajtmh.15-0566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/22/2015] [Indexed: 01/28/2023] Open
Abstract
African trypanosomes (Trypanosoma brucei spp.) cause devastating diseases in sub-Saharan Africa. Trypanosomes differentiate repeatedly during development in tsetse flies before gaining mammalian infectivity in fly salivary glands. Lipid phosphate phosphatases (LPPs) are involved in diverse biological processes, such as cell differentiation and cell migration. Gene sequences encoding two putative T. brucei LPP proteins were used to search the T. brucei genome, revealing two additional putative family members. Putative structural features and transcript abundance during parasite development in tsetse fly were characterized. Three of the four LPP proteins are predicted to have six transmembrane domains, while the fourth shows only one. Semiquantitative gene expression revealed differential regulation of LPPs during parasite development. Transcript abundance for three of the four putative LPP genes was elevated in parasites infecting salivary glands, but not mammalian-infective metacyclic cells in fly saliva, indicating a potential role of this family in parasite establishment in tsetse salivary glands.
Collapse
Affiliation(s)
- Thiago Luiz Alves e Silva
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Department of Epidemiology of Microbial Diseases, Yale University School of Public Heath, New Haven, Connecticut; National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil; Department of Biology, Bard College, Annandale-on-Hudson, New York
| | - Amy F Savage
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Department of Epidemiology of Microbial Diseases, Yale University School of Public Heath, New Haven, Connecticut; National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil; Department of Biology, Bard College, Annandale-on-Hudson, New York
| | - Serap Aksoy
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Department of Epidemiology of Microbial Diseases, Yale University School of Public Heath, New Haven, Connecticut; National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil; Department of Biology, Bard College, Annandale-on-Hudson, New York
| |
Collapse
|
6
|
Berenstein AJ, Magariños MP, Chernomoretz A, Agüero F. A Multilayer Network Approach for Guiding Drug Repositioning in Neglected Diseases. PLoS Negl Trop Dis 2016; 10:e0004300. [PMID: 26735851 PMCID: PMC4703370 DOI: 10.1371/journal.pntd.0004300] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/21/2015] [Indexed: 12/16/2022] Open
Abstract
Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature. Neglected tropical diseases are human infectious diseases that are often associated with poverty. Historically, lack of interest from the pharmaceutical industry resulted in the lack of good drugs to combat the majority of the pathogens that cause these diseases. Recently, the availability of open chemical information has increased with the advent of public domain chemical resources and the release of data from high throughput screening assays. Our aim in this work was to make use of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to prioritize and identify candidate drug targets in neglected pathogen proteomes, and drug-like bioactive molecules to foster drug development against neglected diseases. Our approach to the problem relied on applying bioinformatics and computational biology strategies to model large datasets spanning complete proteomes and extensive chemical information from publicly available sources. As a result, we were able to prioritize drug targets and identify potential targets for orphan bioactive drugs.
Collapse
Affiliation(s)
- Ariel José Berenstein
- Laboratorio de Bioinformática, Fundación Instituto Leloir, Buenos Aires, Argentina
- Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Paula Magariños
- Laboratorio de Genómica y Bioinformática, Instituto de Investigaciones Biotecnológicas–Instituto Tecnológico de Chascomús, Universidad de San Martín–CONICET, Sede San Martín, San Martín, Buenos Aires, Argentina
| | - Ariel Chernomoretz
- Laboratorio de Bioinformática, Fundación Instituto Leloir, Buenos Aires, Argentina
- Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernán Agüero
- Laboratorio de Genómica y Bioinformática, Instituto de Investigaciones Biotecnológicas–Instituto Tecnológico de Chascomús, Universidad de San Martín–CONICET, Sede San Martín, San Martín, Buenos Aires, Argentina
- * E-mail: ,
| |
Collapse
|
7
|
Njoroge M, Njuguna NM, Mutai P, Ongarora DSB, Smith PW, Chibale K. Recent approaches to chemical discovery and development against malaria and the neglected tropical diseases human African trypanosomiasis and schistosomiasis. Chem Rev 2014; 114:11138-63. [PMID: 25014712 DOI: 10.1021/cr500098f] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | - Paul W Smith
- Novartis Institute for Tropical Diseases , Singapore 138670, Singapore
| | | |
Collapse
|
8
|
Abstract
The Trypanosoma cruzi genome contains the most widely expanded content (∼12,000 genes) of the trypanosomatids sequenced to date. This expansion is reflected in the high number of repetitive sequences and particularly in the large quantity of genes that make up its multigene families. Recently it was discovered that the contents of these families vary between phylogenetically unrelated strains. We review the basic characteristics of trans-sialidases and mucins as part of the mechanisms of immune evasion of T. cruzi and as ligands and factors involved in the cross talk between the host cell and the parasite. We also show recently published data describing two new multigene families, DGF-1 and MASP, that form an important part of the scenario representing the complex biology of T. cruzi.
Collapse
|
9
|
Liu Y, Chai Y, Kumar A, Tidwell RR, Boykin DW, Wilson WD. Designed compounds for recognition of 10 base pairs of DNA with two at binding sites. J Am Chem Soc 2012; 134:5290-9. [PMID: 22369366 DOI: 10.1021/ja211628j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Short AT base pair sequences that are separated by a small number of GCs are common in eukaryotic parasite genomes. Cell-permeable compounds that bind effectively and selectively to such sequences present an attractive therapeutic approach. Compounds with linked, one or two amidine-benzimidazole-phenyl (ABP) motifs were designed, synthesized, and evaluated for binding to adjacent AT sites by biosensor-surface plasmon resonance (SPR). A surprising feature of the linked ABP motifs is that a set of six similar compounds has three different minor groove binding modes with the target sequences. Compounds with one ABP bind independently to two separated AT sites. Unexpectedly, compounds with two ABP motifs can bind strongly either as monomers or as cooperative dimers to the full site. The results are supported by mass spectrometry and circular dichroism, and models to explain the different binding modes are presented.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | | | | | | | | | | |
Collapse
|
10
|
Flohé L. The trypanothione system and the opportunities it offers to create drugs for the neglected kinetoplast diseases. Biotechnol Adv 2011; 30:294-301. [PMID: 21620942 DOI: 10.1016/j.biotechadv.2011.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/06/2011] [Accepted: 05/09/2011] [Indexed: 12/20/2022]
Abstract
Parasitic trypanosomatids (Kinetoplastida) are the causative agents of devastating and hard-to-treat diseases such as African sleeping sickness, Chagas disease and various forms of Leishmaniasis. Altogether they affect > 30 Million patients, account for half a million fatalities p.a. and cause substantial economical problems in the Third World due to human morbidity and life stock losses. The design of efficacious and safe drugs is expected from inhibition of metabolic pathways that are unique and essential to the parasite and absent in the host. In this respect, the trypanothione system first detected in the insect-pathogenic trypanosomatid Crithidia fasciculata qualified as an attractive drug target area. The existence of the system in pathogenic relatives was established by homology cloning and PCR. The vital importance of the system was verified in Trypanosoma brucei by dsRNA technology or knock-out in other trypanosomatids, respectively, and is explained by its pivotal role in the parasite's antioxidant defense and DNA synthesis. The key system component is the bis-glutathionyl derivative of spermidine, trypanothione. It is the proximal reductant of tryparedoxin which substitutes for thioredoxin-, glutaredoxin- and glutathione-dependent reactions. Heterologous expression, functional characterization and crystallization of recombinant system components finally enable structure-based rational inhibitor design.
Collapse
Affiliation(s)
- Leopold Flohé
- Institute of Chemistry, Otto-von-Guericke-Universität, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| |
Collapse
|
11
|
Abstract
The diseases caused by protozoan parasite are responsible for considerable mortality and morbidity, affecting more than 500 million of people in the world. The epidemiological control of protozoan is unsatisfactory due to difficulties of vector and reservoir control; while the progress in the development of vaccine tends to be slow and arduous. Currently, the chemotherapy remains essential component of both clinical management and disease control programmer in endemic areas. The drugs in use as anti-protozoan agents were discovered over 50 years and a number of factors limit their utility such as: high cost, poor compliance, drug resistance, low efficacy and poor safety. In the recent years, the searches about the development of new drugs against protozoa parasite have been increased. This special issue of The Open Medicinal Chemistry Journal will present some of developments in this field with the aim to shown the significant advances in the discovery of new anti-protozoan drugs
Collapse
Affiliation(s)
- Lianet Monzote
- Parasitology Department, Institute of Medicine Tropical "Pedro Kourí", Havana City, Cuba
| | | |
Collapse
|
12
|
Dumonteil E. Vaccine development against Trypanosoma cruzi and Leishmania species in the post-genomic era. INFECTION GENETICS AND EVOLUTION 2010; 9:1075-82. [PMID: 19805015 DOI: 10.1016/j.meegid.2009.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/17/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
Trypanosoma cruzi and the genus Leishmania are protozoan parasites causing diseases of major public health importance, and the recent completion of the sequencing of their genomes has opened new opportunities to further our understanding of the mechanisms required for protection and the development of vaccines. For example, trans-sialidases, one of the largest protein families from T. cruzi, contain dominant CD8+ T cell epitopes, and their use as preventive or therapeutic vaccines in different animal models has provided encouraging results. A much wider range of antigens and vaccine formulations have been tested against Leishmania, and new correlates for protection are being defined, such as the induction of multifunctional Th1 effector cells capable of producing a complex set of cytokines. Also, while a large number of these vaccine candidates have been rather successful in mouse models, their usefulness in more relevant animal models is still poor, in spite of significant immunogenicity. Novel proteomics and genomics approaches are being used for antigen discovery and the identification of new vaccine candidates, some of which have shown promise for the control of infection. These studies cast little doubt that T. cruzi and Leishmania genomes represent major resources for understanding key aspects of the mechanisms of immune protection against these parasites, and the increasing use of these tools will greatly impact vaccine development.
Collapse
Affiliation(s)
- Eric Dumonteil
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Merida, Yucatan, Mexico
| |
Collapse
|
13
|
Cordero EM, Nakayasu ES, Gentil LG, Yoshida N, Almeida IC, da Silveira JF. Proteomic analysis of detergent-solubilized membrane proteins from insect-developmental forms of Trypanosoma cruzi. J Proteome Res 2009; 8:3642-52. [PMID: 19374451 DOI: 10.1021/pr800887u] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cell surface of Trypanosoma cruzi, the etiologic agent of Chagas disease, is covered by a dense layer of glycosylphosphatidylinositol (GPI)-anchored molecules. These molecules are involved in a variety of interactions between this parasite and its mammalian and insect hosts. Here, using the neutral detergent Triton X-114, we obtained fractions rich in GPI-anchored and other membrane proteins from insect developmental stages of T. cruzi. These fractions were analyzed by two-dimensional liquid chromatography coupled to tandem mass spectrometry (2D-LC-MS/MS), resulting in the identification of 98 proteins of metacyclic trypomastigotes and 280 of epimastigotes. Of those, approximately 65% (n=245) had predicted lipid post-translational modification sites (i.e., GPI-anchor, myristoylation, or prenylation), signal-anchor sequence, or transmembrane domains that could explain their solubility in detergent solution. The identification of some of these modified proteins was also validated by immunoblotting. We also present evidence that, in contrast to the noninfective proliferative epimastigote forms, the infective nonproliferative metacyclic trypomastigote forms express a large repertoire of surface glycoproteins, such as GP90 and GP82, which are involved in adhesion and invasion of host cells. Taken together, our results unequivocally show stage-specific protein profiles that appear to be related to the biology of each T. cruzi insect-derived developmental form.
Collapse
Affiliation(s)
- Esteban M Cordero
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, Rua Botucatu, 862, CEP 04023-062, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
Vaidyanathan R, Kodukula K. Using a systems biology approach to dissect parasite-host interactions. Drug Dev Res 2009. [DOI: 10.1002/ddr.20307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Dujardin JC. Structure, dynamics and function of Leishmania genome: Resolving the puzzle of infection, genetics and evolution? INFECTION GENETICS AND EVOLUTION 2009; 9:290-7. [DOI: 10.1016/j.meegid.2008.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/25/2008] [Accepted: 11/25/2008] [Indexed: 01/23/2023]
|
16
|
Host-parasite interactions in trypanosomiasis: on the way to an antidisease strategy. Infect Immun 2009; 77:1276-84. [PMID: 19168735 DOI: 10.1128/iai.01185-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
17
|
Ekanayake DK, Cipriano MJ, Sabatini R. Telomeric co-localization of the modified base J and contingency genes in the protozoan parasite Trypanosoma cruzi. Nucleic Acids Res 2007; 35:6367-77. [PMID: 17881368 PMCID: PMC2095807 DOI: 10.1093/nar/gkm693] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 08/14/2007] [Accepted: 08/22/2007] [Indexed: 12/20/2022] Open
Abstract
Base J or beta-d-glucosylhydroxymethyluracil is a modification of thymine residues within the genome of kinetoplastid parasites. In organisms known to contain the modified base, J is located mainly within the telomeric repeats. However, in Trypanosoma brucei, a small fraction of J is also located within the silent subtelomeric variant surface glycoprotein (VSG) gene expression sites, but not in the active expression site, suggesting a role for J in regulating telomeric genes involved in pathogenesis. With the identification of surface glycoprotein genes adjacent to telomeres in the South American Trypanosome, Trypanosoma cruzi, we became interested in the telomeric distribution of base J. Analysis of J and telomeric repeat sequences by J immunoblots and Southern blots following DNA digestion, reveals approximately 25% of J outside the telomeric repeat sequences. Moreover, the analysis of DNA sequences immunoprecipitated with J antiserum, localized J within subtelomeric regions rich in life-stage-specific surface glycoprotein genes involved in pathogenesis. Interestingly, the pattern of J within these regions is developmentally regulated. These studies provide a framework to characterize the role of base J in the regulation of telomeric gene expression/diversity in T. cruzi.
Collapse
Affiliation(s)
| | | | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW This review focuses on recent developments on evaluation of 8-aminoquinoline analogs with broader efficacy and reduced toxicity, which would provide better drugs for treatment of protozoal infections. RECENT FINDINGS The earlier efforts towards development of 8-aminoquinoline analogs have been directed to extensive derivatization programs. This has led to discovery of tafenoquine for prophylaxis against malaria infections and sitamaquine with utility for treatment of visceral leishmaniasis. Bulaquine, a primaquine pro-drug, has shown reduced methemoglobin toxicity and better malaria-transmission-blocking activity than primaquine. Stereoselective pharmacologic and toxicologic characteristics of chiral 8-aminoquinolines provided the lead for enantiomeric separation of an 8-aminoquinoline analog NPC1161B, with greatly reduced toxicity and potent antimalarial action against blood as well as tissue stages of the parasite. NPC1161B has also shown promising use as an antileishmanial agent. Better understanding of the mechanisms of toxicity and efficacy may help in development of 8-aminoquinoline analogs with superior therapeutic actions, reduced toxicity and broader utility. SUMMARY Extensive derivatization approaches followed by better understanding of structure-activity relationships and biotransformation mechanisms of toxicity have provided 8-aminoquinoline analogs with better pharmacologic and reduced toxicologic profiles. The novel 8-aminoquinoline analogs may have broader utility in public health as future antiprotozoals.
Collapse
Affiliation(s)
- Babu L Tekwani
- National Center for Natural Products Research and Department of Pharmacology, University of Mississippi, University, Mississippi 38677, USA.
| | | |
Collapse
|
19
|
Studies on the CPA cysteine peptidase in the Leishmania infantum genome strain JPCM5. BMC Mol Biol 2006; 7:42. [PMID: 17101050 PMCID: PMC1657026 DOI: 10.1186/1471-2199-7-42] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 11/13/2006] [Indexed: 11/16/2022] Open
Abstract
Background Visceral leishmaniasis caused by members of the Leishmania donovani complex is often fatal in the absence of treatment. Research has been hampered by the lack of good laboratory models and tools for genetic manipulation. In this study, we have characterised a L. infantum line (JPCM5) that was isolated from a naturally infected dog and then cloned. We found that JPCM5 has attributes that make it an excellent laboratory model; different stages of the parasite life cycle can be studied in vitro, it is accessible to genetic manipulation and it has retained its virulence. Furthermore, the L. infantum JPCM5 genome has now been fully sequenced. Results We have further focused our studies on LiCPA, the L. infantum homologue to L. mexicana cysteine peptidase CPA. LiCPA was found to share a high percentage of amino acid identity with CPA proteins of other Leishmania species. Two independent LiCPA-deficient promastigote clones (ΔLicpa) were generated and their phenotype characterised. In contrast to L. mexicana CPA-deficient mutants, both clones of ΔLicpa were found to have significantly reduced virulence in vitro and in vivo. Re-expression of just one LiCPA allele (giving ΔLicpa::CPA) was sufficient to complement the reduced infectivity of both ΔLicpa mutants for human macrophages, which confirms the importance of LiCPA for L. infantum virulence. In contrast, in vivo experiments did not show any virulence recovery of the re-expressor clone ΔLicpaC1::CPA compared with the CPA-deficient mutant ΔLicpaC1. Conclusion The data suggest that CPA is not essential for replication of L. infantum promastigotes, but is important for the host-parasite interaction. Further studies will be necessary to elucidate the precise roles that LiCPA plays and why the re-expression of LiCPA in the ΔLicpa mutants complemented the gene deletion phenotype only in in vitro and not in in vivo infection of hamsters.
Collapse
|