1
|
da Silva GG, Zaldívar MF, Oliveira LAR, Mariano RMDS, Lair DF, de Souza RA, Galdino AS, Chávez-Fumagalli MA, da Silveira-Lemos D, Dutra WO, Nascimento Araújo R, Ferreira LL, Giunchetti RC. Advances in Non-Chemical Tools to Control Poultry Hematophagous Mites. Vet Sci 2023; 10:589. [PMID: 37888541 PMCID: PMC10611074 DOI: 10.3390/vetsci10100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023] Open
Abstract
The blood-sucking mites Dermanyssus gallinae ("red mite"), Ornithonyssus sylviarum ("northern fowl mite"), and Ornithonyssus bursa ("tropical fowl mite") stand out for causing infestations in commercial poultry farms worldwide, resulting in significant economic damage for producers. In addition to changes in production systems that include new concerns for animal welfare, global climate change in recent years has become a major challenge in the spread of ectoparasites around the world. This review includes information regarding the main form of controlling poultry mites through the use of commercially available chemicals. In addition, non-chemical measures against blood-sucking mites were discussed such as extracts and oils from plants and seeds, entomopathogenic fungi, semiochemicals, powder such as diatomaceous earth and silica-based products, and vaccine candidates. The control of poultry mites using chemical methods that are currently used to control or eliminate them are proving to be less effective as mites develop resistance. In contrast, the products based on plant oils and extracts, powders of plant origin, fungi, and new antigens aimed at developing transmission-blocking vaccines against poultry mites provide some encouraging options for the rational control of these ectoparasites.
Collapse
Affiliation(s)
- Geralda Gabriele da Silva
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Maykelin Fuentes Zaldívar
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Lucilene Aparecida Resende Oliveira
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Reysla Maria da Silveira Mariano
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Daniel Ferreira Lair
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Renata Antunes de Souza
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Alexsandro Sobreira Galdino
- Microorganism Biotechnology Laboratory, Federal University of São João Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis 35501-296, MG, Brazil;
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Arequipa 04000, Peru;
| | - Denise da Silveira-Lemos
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Walderez Ornelas Dutra
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Ricardo Nascimento Araújo
- Laboratory of Hematophagous Arthropods, Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Lorena Lopes Ferreira
- Laboratory of Ectoparasites, Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| |
Collapse
|
2
|
Recent patents in dengue disease management. Pharm Pat Anal 2020; 9:173-185. [PMID: 33350353 DOI: 10.4155/ppa-2020-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dengue, an illness caused by four serotypes of the dengue virus is most prevalent in Asia and Latin America. Its manifestation varies from asymptomatic cases to severe forms and even deaths and is a growing health concern. Despite attempts to curtail it, the infection continues to intensify in endemic areas and spread to new areas of the world. Development of a safe and effective vaccine and a potent antiviral drug is ongoing but so far there has been no breakthrough. Nonetheless, researchers are carrying out studies with newer vaccine candidates and antiviral moieties, and some of these hold promise for the future. The current article describes the recent patents targeted at dengue control.
Collapse
|
3
|
Lule-Chávez AN, Avila EE, González-de-la-Vara LE, Salas-Marina MA, Ibarra JE. Detrimental Effects of Induced Antibodies on Aedes aegypti Reproduction. NEOTROPICAL ENTOMOLOGY 2019; 48:706-716. [PMID: 30941675 DOI: 10.1007/s13744-019-00678-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Aedes aegypti (Linnaeus) (Diptera: Culicidae) is the main vector of viruses causing dengue, chikungunya, Zika, and yellow fever, worldwide. This report focuses on immuno-blocking four critical proteins in the female mosquito when fed on blood containing antibodies against ferritin, transferrin, one amino acid transporter (NAAT1), and acetylcholinesterase (AchE). Peptides from these proteins were selected, synthetized, conjugated to carrier proteins, and used as antigens to immunize New Zealand rabbits. After rabbits were immunized, a minimum of 20 female mosquitos were fed on each rabbit, per replicate. No effect in their viability was observed after blood-feeding; however, the number of infertile females was 20% higher than the control when fed on AchE-immunized rabbits. The oviposition period was significantly longer in females fed on immunized rabbits than those fed on control (non-immunized) rabbits. Fecundity (eggs/female) of treated mosquitoes was significantly reduced (about 50%) in all four treatments, as compared with the control. Fertility (hatched larvae) was also significantly reduced in all four treatments, as compared with the control, being the effect on AchE and transferrin the highest, by reducing hatching between 70 and 80%. Survival to the adult stage of the hatched larvae showed no significant effect, as more than 95% survival was observed in all treatments, including the control. In conclusion, immuno-blocking of these four proteins caused detrimental effects on the mosquito reproduction, being the effect on AchE the most significant.
Collapse
Affiliation(s)
- A N Lule-Chávez
- Depto de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto., Mexico
| | - E E Avila
- Depto de Biología, Univ de Guanajuato, Guanajuato, Gto., Mexico
| | - L E González-de-la-Vara
- Depto de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto., Mexico
| | - M A Salas-Marina
- Depto de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto., Mexico
| | - J E Ibarra
- Depto de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto., Mexico.
| |
Collapse
|
4
|
Taank V, Zhou W, Zhuang X, Anderson JF, Pal U, Sultana H, Neelakanta G. Characterization of tick organic anion transporting polypeptides (OATPs) upon bacterial and viral infections. Parasit Vectors 2018; 11:593. [PMID: 30428915 PMCID: PMC6236954 DOI: 10.1186/s13071-018-3160-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022] Open
Abstract
Background Ixodes scapularis organic anion transporting polypeptides (OATPs) play important roles in tick-rickettsial pathogen interactions. In this report, we characterized the role of these conserved molecules in ticks infected with either Lyme disease agent Borrelia burgdorferi or tick-borne Langat virus (LGTV), a pathogen closely related to tick-borne encephalitis virus (TBEV). Results Quantitative real-time polymerase chain reaction analysis revealed no significant changes in oatps gene expression upon infection with B. burgdorferi in unfed ticks. Synchronous infection of unfed nymphal ticks with LGTV in vitro revealed no significant changes in oatps gene expression. However, expression of specific oatps was significantly downregulated upon LGTV infection of tick cells in vitro. Treatment of tick cells with OATP inhibitor significantly reduced LGTV loads, kynurenine amino transferase (kat), a gene involved in the production of tryptophan metabolite xanthurenic acid (XA), levels and expression of several oatps in tick cells. Furthermore, bioinformatics characterization of OATPs from some of the medically important vectors including ticks, mosquitoes and lice revealed the presence of several glycosylation, phosphorylation and myristoylation sites. Conclusions This study provides additional evidence on the role of arthropod OATPs in vector-intracellular pathogen interactions. Electronic supplementary material The online version of this article (10.1186/s13071-018-3160-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vikas Taank
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Wenshuo Zhou
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Xuran Zhuang
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - John F Anderson
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Utpal Pal
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, VA, USA
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA. .,Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
5
|
Ali SI, Gopalakrishnan B, Venkatesalu V. Larvicidal potential of Juglans regia male flower against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Nat Prod Res 2017; 33:1463-1466. [DOI: 10.1080/14786419.2017.1416374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sofi Imtiyaz Ali
- Department of Botany, Annamalai University, Annamalainagar, India
| | | | - V. Venkatesalu
- Department of Botany, Annamalai University, Annamalainagar, India
| |
Collapse
|
6
|
Meyers JI, Gray M, Foy BD. Mosquitocidal properties of IgG targeting the glutamate-gated chloride channel in three mosquito disease vectors (Diptera: Culicidae). ACTA ACUST UNITED AC 2016; 218:1487-95. [PMID: 25994632 DOI: 10.1242/jeb.118596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The glutamate-gated chloride channel (GluCl) is a highly sensitive insecticide target of the avermectin class of insecticides. As an alternative to using chemical insecticides to kill mosquitoes, we tested the effects of purified immunoglobulin G (IgG) targeting the extracellular domain of GluCl from Anopheles gambiae (AgGluCl) on the survivorship of three key mosquito disease vectors: Anopheles gambiae s.s., Aedes aegypti and Culex tarsalis. When administered through a single blood meal, anti-AgGluCl IgG reduced the survivorship of A. gambiae in a dose-dependent manner (LC50: 2.82 mg ml(-1), range 2.68-2.96 mg ml(-1)) but not A. aegypti or C. tarsalis. We previously demonstrated that AgGluCl is only located in tissues of the head and thorax of A. gambiae. To verify that AgGluCl IgG is affecting target antigens found outside the midgut, we injected it directly into the hemocoel via intrathoracic injection. A single, physiologically relevant concentration of anti-AgGluCl IgG injected into the hemocoel equally reduced mosquito survivorship of all three species. To test whether anti-AgGluCl IgG was entering the hemocoel of each of these mosquitoes, we fed mosquitoes a blood meal containing anti-AgGluCl IgG and subsequently extracted their hemolymph. We only detected IgG in the hemolymph of A. gambiae, suggesting that resistance of A. aegypti and C. tarsalis to anti-AgGluCl IgG found in blood meals is due to deficient IgG translocation across the midgut. We predicted that anti-AgGluCl IgG's mode of action is by antagonizing GluCl activity. To test this hypothesis, we fed A. gambiae blood meals containing anti-AgGluCl IgG and the GluCl agonist ivermectin (IVM). Anti-AgGluCl IgG attenuated the mosquitocidal effects of IVM, suggesting that anti-AgGluCl IgG antagonizes IVM-induced activation of GluCl. Lastly, we stained adult, female A. aegypti and C. tarsalis for GluCl expression. Neuronal GluCl expression in these mosquitoes was similar to previously reported A. gambiae GluCl expression; however, we also discovered GluCl staining on the basolateral surface of their midgut epithelial cells, suggesting important physiological differences in Culicine and Anopheline mosquitoes.
Collapse
Affiliation(s)
- Jacob I Meyers
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523-1617, USA
| | - Meg Gray
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, 1692 Campus Delivery, Fort Collins, CO 80523-1692, USA
| | - Brian D Foy
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, 1692 Campus Delivery, Fort Collins, CO 80523-1692, USA
| |
Collapse
|
7
|
Basseri HR, Javazm MS, Farivar L, Abai MR. Lectin-carbohydrate recognition mechanism of Plasmodium berghei in the midgut of malaria vector Anopheles stephensi using quantum dot as a new approach. Acta Trop 2016; 156:37-42. [PMID: 26772447 DOI: 10.1016/j.actatropica.2016.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/31/2015] [Accepted: 01/03/2016] [Indexed: 10/22/2022]
Abstract
Potential targets of Plasmodium ookinetes at the mosquito midgut walls were investigated in relation to interfering malarial transmission. In this study, the essential application of Quantum Dots (QDs) was used to examine the interaction between Plasmodium berghei ookinetes and the Anopheles stephensi midgut, based on lectin-carbohydrate recognition. Two significant lectins were utilized to determine this interaction. Two QDs, cadmium telluride (CdTe)/CdS and cadmium selenide (CdSe)/CdS, were employed in staining Plasmodium ookinete to study its interaction in the midgut of the mosquito vector in vivo. Concurrently, two lectins, wheat germ agglutinin (WGA) and concanavalin A (Con A), were inadvertently exploited to mask lectin binding sites between ookinetes and mosquito midgut cells. The numbers of ookinetes in both lumen and epithelial cells were eventually counted, following adequate preparation of wax sections extracted from whole midgut, and subsequent examination using a differential interference contrast a fluorescence microscopic technique. Interestingly, we detected that neither of the QDs mutated ookinete invasion into the midgut cells of the investigated mosquitoes. QD staining of ookinetes remained permanent despite the effective embedding procedure. The massive binding potency of ookinetes to midgut cells of the cross-examined mosquitoes undoubtedly revealed that Con A did not interrupt ookinete penetration into the midgut wall. In contrast, WGA inhibited ookinete invasion into the midgut cells. The results proved that QD nanoparticles are biocompatible, non-toxic to P. berghei and stable to photobleaching. The QDs staining, which was successfully implemented for ookinete labelling, is a simple and effective tool which plays a crucial role in bioimaging including the study of parasite-vector interactions.
Collapse
|
8
|
Transmission-Blocking Vaccines: Focus on Anti-Vector Vaccines against Tick-Borne Diseases. Arch Immunol Ther Exp (Warsz) 2014; 63:169-79. [PMID: 25503555 PMCID: PMC4429137 DOI: 10.1007/s00005-014-0324-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/15/2014] [Indexed: 01/07/2023]
Abstract
Tick-borne diseases are a potential threat that account for significant morbidity and mortality in human population worldwide. Vaccines are not available to treat several of the tick-borne diseases. With the emergence and resurgence of several tick-borne diseases, emphasis on the development of transmission-blocking vaccines remains increasing. In this review, we provide a snap shot on some of the potential candidates for the development of anti-vector vaccines (a form of transmission-blocking vaccines) against wide range of hard and soft ticks that include Ixodes, Haemaphysalis, Dermacentor, Amblyomma, Rhipicephalus and Ornithodoros species.
Collapse
|
9
|
Clinical implications and treatment of dengue. ASIAN PAC J TROP MED 2014; 7:169-78. [PMID: 24507635 DOI: 10.1016/s1995-7645(14)60016-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/15/2013] [Accepted: 03/15/2014] [Indexed: 11/21/2022] Open
Abstract
Dengue is a common pathogenic disease often proving fatal, more commonly affecting the tropics. Aedes mosquito is the vector for this disease, and outbreaks of dengue often cause mass damage to life. The current review is an effort to present an insight into the causes, etiology, symptoms, transmission, diagnosis, major organs affected, mitigation and line of treatment of this disease with special emphasis on drugs of natural origin. The disease has a potential to spread as an endemic, often claiming several lives and thus requires concerted efforts to work out better treatment options. Traditional medicine offers an alternative solution and could be explored as a safer treatment option. Development of a successful vaccine and immunization technique largely remains a challenge and a better antiviral approach needs to be worked out to complement the supportive therapy. No single synthetic molecule has found to be wholly effective enough to offer curative control and the line of treatment mostly utilizes a combination of fluid replacement and antipyretics-analgesics like molecules to provide symptomatic relief.
Collapse
|
10
|
Li MWM, Wang J, Zhao YO, Fikrig E. Innexin AGAP001476 is critical for mediating anti-Plasmodium responses in Anopheles mosquitoes. J Biol Chem 2014; 289:24885-97. [PMID: 25035430 DOI: 10.1074/jbc.m114.554519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Toll and IMD pathways are known to be induced upon Plasmodium berghei and Plasmodium falciparum infection, respectively. It is unclear how Plasmodium or other pathogens in the blood meal and their invasion of the midgut epithelium would trigger the innate immune responses in immune cells, in particular hemocytes. Gap junctions, which can mediate both cell-to-cell and cell-to-extracellular communication, may participate in this signal transduction. This study examined whether innexins, gap junction proteins in insects, are involved in anti-Plasmodium responses in Anopheles gambiae. Inhibitor studies using carbenoxolone indicated that blocking innexons resulted in an increase in Plasmodium oocyst number and infection prevalence. This was accompanied by a decline in TEP1 levels in carbenoxolone-treated mosquitoes. Innexin AGAP001476 mRNA levels in midguts were induced during Plasmodium infection and a knockdown of AGAP001476, but not AGAP006241, caused an induction in oocyst number. Silencing AGAP001476 caused a concurrent increase in vitellogenin levels, a TEP1 inhibitor, in addition to a reduced level of TEP1-LRIM1-APL1C complex in hemolymph. Both vitellogenin and TEP1 are regulated by Cactus under the Toll pathway. Simultaneous knockdown of cactus and AGAP001476 failed to reverse the near refractoriness induced by the knockdown of cactus, suggesting that the AGAP001476-mediated anti-Plasmodium response is Cactus-dependent. These data demonstrate a critical role for innexin AGAP001476 in mediating innate immune responses against Plasmodium through Toll pathway in mosquitoes.
Collapse
Affiliation(s)
- Michelle W M Li
- From the Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520 and the Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Jiuling Wang
- From the Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Yang O Zhao
- From the Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520 and the Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Erol Fikrig
- From the Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520 and the Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| |
Collapse
|
11
|
Assessing dengue infection risk in the southern region of Taiwan: implications for control. Epidemiol Infect 2014; 143:1059-72. [PMID: 25007831 DOI: 10.1017/s0950268814001745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Dengue, one of the most important mosquito-borne diseases, is a major international public health concern. This study aimed to assess potential dengue infection risk from Aedes aegypti in Kaohsiung and the implications for vector control. Here we investigated the impact of dengue transmission on human infection risk using a well-established dengue-mosquito-human transmission dynamics model. A basic reproduction number (R 0)-based probabilistic risk model was also developed to estimate dengue infection risk. Our findings confirm that the effect of biting rate plays a crucial role in shaping R 0 estimates. We demonstrated that there was 50% risk probability for increased dengue incidence rates exceeding 0.5-0.8 wk-1 for temperatures ranging from 26°C to 32°C. We further demonstrated that the weekly increased dengue incidence rate can be decreased to zero if vector control efficiencies reach 30-80% at temperatures of 19-32°C. We conclude that our analysis on dengue infection risk and control implications in Kaohsiung provide crucial information for policy-making on disease control.
Collapse
|
12
|
Rodriguez-Roche R, Gould EA. Understanding the dengue viruses and progress towards their control. BIOMED RESEARCH INTERNATIONAL 2013; 2013:690835. [PMID: 23936833 PMCID: PMC3722981 DOI: 10.1155/2013/690835] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/08/2013] [Indexed: 01/12/2023]
Abstract
Traditionally, the four dengue virus serotypes have been associated with fever, rash, and the more severe forms, haemorrhagic fever and shock syndrome. As our knowledge as well as understanding of these viruses increases, we now recognise not only that they are causing increasing numbers of human infections but also that they may cause neurological and other clinical complications, with sequelae or fatal consequences. In this review we attempt to highlight some of these features in the context of dengue virus pathogenesis. We also examine some of the efforts currently underway to control this "scourge" of the tropical and subtropical world.
Collapse
Affiliation(s)
- Rosmari Rodriguez-Roche
- Pedro Kouri Tropical Medicine Institute, WHO/PAHO Collaborating Centre for the Study of Dengue and Its Vector, Havana, Cuba.
| | | |
Collapse
|
13
|
Govindarajan M, Sivakumar R, Rajeswary M, Yogalakshmi K. Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Exp Parasitol 2013; 134:7-11. [DOI: 10.1016/j.exppara.2013.01.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/17/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
|
14
|
Krishnappa K, Dhanasekaran S, Elumalai K. Larvicidal, ovicidal and pupicidal activities of Gliricidia sepium (Jacq.) (Leguminosae) against the malarial vector, Anopheles stephensi Liston (Culicidae: Diptera). ASIAN PAC J TROP MED 2012; 5:598-604. [PMID: 22840446 DOI: 10.1016/s1995-7645(12)60124-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/27/2012] [Accepted: 05/15/2012] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE To investigate the potentiality of mosquitocidal activity of Gliricidia sepium (G. sepium) (Jacq.) (Leguminosae). METHODS Twenty five early third instar larvae of Anopheles stephensi (An. stephensi) were exposed to various concentrations (50-250 ppm) and the 24 h LC(50) values of the G. sepium extract was determined by probit analysis. The ovicidal activity was determined against An. stephensi to various concentrations ranging from 25-100 ppm under laboratory conditions. The eggs hatchability was assessed 48 h post treatment. The pupicidal activity was determined against An. stephensi to various concentrations ranging from 25-100 ppm. Mortality of each pupa was recorded after 24 h of exposure to the extract. RESULTS Results pertaining to the experiment clearly revealed that ethanol extract showed significant larvicidal, ovicidal and pupicidal activity against the An. stephensi. Larvicidal activity of ethanol extracts of G. sepium showed maximum mortality in 250 ppm concentration (96.0±2.4)%. Furthermore, the LC(50) was found to be 121.79 and the LC(90) value was recorded to be 231.98 ppm. Ovicidal activity of ethanol extract was assessed by assessing the egg hatchability. Highest concentration of both solvent extracts exhibited 100% ovicidal activity. Similarly, pupae exposed to different concentrations of ethanol extract were found dead with 58.10% adult emergence when it was treated with 25 ppm concentration. Similarly, 18.36 (n=30; 61.20%); 21.28(70.93) and 27.33(91.10) pupal mortality was recorded from the experimental pupae treated with 50, 75 and 100 ppm concentration of extracts. Three fractions have been tested for their larvicidal activity of which the Fraction 3 showed the LC(50) and LC(90) values of 23.23 and 40.39 ppm. With regard to the ovicidal effect fraction 3 showed highest ovicidal activities than the other two fractions. Furthermore, there were no hatchability was recorded above 50 ppm (100% egg mortality) in the experimental group. Statistically significant pupicidal activity was recorded from 75 ppm concentration. CONCLUSIONS From the results it can be concluded the crude extract of G. sepium is an excellent potential for controlling An. stephensi mosquito. It is apparent that, fraction 3 possess a novel and active principle which could be responsible for those biological activities.
Collapse
Affiliation(s)
- Kaliyamoorthy Krishnappa
- Unit of Entomotoxicity, Department of Zoology, Govt. Thirumagal Mills College, Vellore-632607 Tamilnadu, India
| | | | | |
Collapse
|
15
|
Deus KM, Saavedra-Rodriguez K, Butters MP, Black WC, Foy BD. The effect of ivermectin in seven strains of Aedes aegypti (Diptera: Culicidae) including a genetically diverse laboratory strain and three permethrin resistant strains. JOURNAL OF MEDICAL ENTOMOLOGY 2012; 49:356-63. [PMID: 22493855 PMCID: PMC3942497 DOI: 10.1603/me11164] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Seven different strains of Aedes aegypti (L.), including a genetically diverse laboratory strain, three laboratory-selected permethrin-resistant strains, a standard reference strain, and two recently colonized strains were fed on human blood containing various concentrations of ivermectin. Ivermectin reduced adult survival, fecundity, and hatch rate of eggs laid by ivermectin-treated adults in all seven strains. The LC50 of ivermectin for adults and the concentration that prevented 50% of eggs from hatching was calculated for all strains. Considerable variation in adult survival after an ivermectin-bloodmeal occurred among strains, and all three permethrin-resistant strains were significantly less susceptible to ivermectin than the standard reference strain. The hatch rate after an ivermectin bloodmeal was less variable among strains, and only one of the permethrin-resistant strains differed significantly from the standard reference strain. Our studies suggest that ivermectin induces adult mortality and decreases the hatch rate of eggs through different mechanisms. A correlation analysis of log-transformed LC50 among strains suggests that permethrin and ivermectin cross-resistance may occur.
Collapse
Affiliation(s)
- K M Deus
- Colorado State University, Department of Microbiology, Immunology and Pathology, 1692 Campus Delivery, Fort Collins, CO 80523, USA.
| | | | | | | | | |
Collapse
|
16
|
Koodalingam A, Mullainadhan P, Arumugam M. Effects of extract of soapnut Sapindus emarginatus on esterases and phosphatases of the vector mosquito, Aedes aegypti (Diptera: Culicidae). Acta Trop 2011; 118:27-36. [PMID: 21251906 DOI: 10.1016/j.actatropica.2011.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/04/2011] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
Abstract
Our earlier investigations with kernels from the soapnut Sapindus emarginatus revealed it as a new source of botanical biocide with potent antimosquito activity, as evident from the proven unique ability of the aqueous kernel extract to kill all the developmental stages of three important vector mosquito species, Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. This extract was also found to be safe for two non-target aquatic insects. As a sequel to these findings, we have further examined quantitative and qualitative changes in total proteins, esterases, and phosphatases in whole body homogenates of fourth instar larvae and pupae of A. aegypti exposed to this extract at an appropriate threshold time for its lethal effect to gain insights into the impact of the botanical biocide on biochemical characteristics of the target vector mosquito at two distinct developmental stages. The profiles of proteins, esterases (acetylcholinesterse, α- and β-carboxylesterases), and phosphatases (acid and alkaline) exhibited distinct patterns of variation during normal development of fourth instar larvae and pupae, indicating intrinsic difference in biochemical features between these two developmental stages of A. aegypti. Upon exposure of the larvae to the extract, significant reduction in the activities of acetylcholinesterse, β-carboxylesterase, and acid phosphatases were recorded, whereas the total proteins, α-carboxylesterase and alkaline phosphatase activities were unaffected. By contrast, only alkaline phosphatase activity was significantly affected in pupae exposed to the extract. Analysis of these enzymes in native PAGE revealed that they exist in isoforms in both the larvae and pupae. The alterations in the levels of enzymatic activities observed from the quantitative assays of various enzymes were reflected by the respective zymograms with perceptible differences in the intensity and the number of bands detected especially with β-carboxylesterase, acid and alkaline phosphatase activity between the control and exposed test organisms. Despite the fact that the soapnut kernel extract causes mortality of both the larvae and pupae of A. aegypti, the findings of this study demonstrate that the impact of this extract is most pronounced in various enzyme profiles of the larvae rather than the pupae. Such discrepancy implicates the presence of unique biochemical mechanisms in the pupae of mosquito for detoxification of botanical biocides.
Collapse
|
17
|
Sylla M, Kobylinski KC, Gray M, Chapman PL, Sarr MD, Rasgon JL, Foy BD. Mass drug administration of ivermectin in south-eastern Senegal reduces the survivorship of wild-caught, blood fed malaria vectors. Malar J 2010; 9:365. [PMID: 21171970 PMCID: PMC3016374 DOI: 10.1186/1475-2875-9-365] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/20/2010] [Indexed: 11/25/2022] Open
Abstract
Background In south-eastern Senegal, malaria and onchocerciasis are co-endemic. Onchocerciasis in this region has been controlled by once or twice yearly mass drug administration (MDA) with ivermectin (IVM) for over fifteen years. Since laboratory-raised Anopheles gambiae s.s. are susceptible to ivermectin at concentrations found in human blood post-ingestion of IVM, it is plausible that a similar effect could be quantified in the field, and that IVM might have benefits as a malaria control tool. Methods In 2008 and 2009, wild-caught blood fed An. gambiae s.l. mosquitoes were collected from huts of three pairs of Senegalese villages before and after IVM MDAs. Mosquitoes were held in an insectary to assess their survival rate, subsequently identified to species, and their blood meals were identified. Differences in mosquito survival were statistically analysed using a Glimmix model. Lastly, changes in the daily probability of mosquito survivorship surrounding IVM MDAs were calculated, and these data were inserted into a previously developed, mosquito age-structured model of malaria transmission. Results Anopheles gambiae s.s. (P < 0.0001) and Anopheles arabiensis (P = 0.0191) from the treated villages had significantly reduced survival compared to those from control villages. Furthermore, An gambiae s.s. caught 1-6 days after MDA in treated villages had significantly reduced survival compared to control village collections (P = 0.0003), as well as those caught pre-MDA (P < 0.0001) and >7 days post-MDA (P < 0.0001). The daily probability of mosquito survival dropped >10% for the six days following MDA. The mosquito age-structured model of malaria transmission demonstrated that a single IVM MDA would reduce malaria transmission (Ro) below baseline for at least eleven days, and that repeated IVM MDAs would result in a sustained reduction in malaria Ro. Conclusions Ivermectin MDA significantly reduced the survivorship of An. gambiae s.s. for six days past the date of the MDA, which is sufficient to temporarily reduce malaria transmission. Repeated IVM MDAs could be a novel and integrative malaria control tool in areas with seasonal transmission, and which would have simultaneous impacts on neglected tropical diseases in the same villages.
Collapse
Affiliation(s)
- Massamba Sylla
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, Colorado, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Coutinho-Abreu IV, Ramalho-Ortigao M. Transmission blocking vaccines to control insect-borne diseases: a review. Mem Inst Oswaldo Cruz 2010; 105:1-12. [PMID: 20209323 DOI: 10.1590/s0074-02762010000100001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 12/17/2009] [Indexed: 11/22/2022] Open
Abstract
Insect-borne diseases are responsible for severe mortality and morbidity worldwide. As control of insect vector populations relies primarily on the use of insecticides, the emergence of insecticide resistance as well to unintended consequences of insecticide use pose significant challenges to their continued application. Novel approaches to reduce pathogen transmission by disease vectors are been attempted, including transmission-blocking vaccines (TBVs) thought to be a feasible strategy to reduce pathogen burden in endemic areas. TBVs aim at preventing the transmission of pathogens from infected to uninfected vertebrate host by targeting molecule(s) expressed on the surface of pathogens during their developmental phase within the insect vector or by targeting molecules expressed by the vectors. For pathogen-based molecules, the majority of the TBV candidates selected as well as most of the data available regarding the effectiveness of this approach come from studies using malaria parasites. However, TBV candidates also have been identified from midgut tissues of mosquitoes and sand flies. In spite of the successes achieved in the potential application of TBVs against insect-borne diseases, many significant barriers remain. In this review, many of the TBV strategies against insect-borne pathogens and their respective ramification with regards to the immune response of the vertebrate host are discussed.
Collapse
Affiliation(s)
- Iliano V Coutinho-Abreu
- Biology of Disease Vectors Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
19
|
Billingsley PF. Only the good die young: a novel paradigm for mosquito control. Trends Parasitol 2009; 26:53-5. [PMID: 20006550 DOI: 10.1016/j.pt.2009.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 11/04/2009] [Accepted: 11/20/2009] [Indexed: 10/20/2022]
Abstract
Andrew Read and colleagues have proposed that insecticides acting late in the vector lifetime are less susceptible to evolutionary pressures, thereby avoiding insecticide resistance. Such late-life acting insecticides would kill the vector before the pathogen's extrinsic cycle is complete, but allow the vector to remain reproductively active. Some examples of late-life acting insecticides are discussed. By targeting older vectors, the dangerous cohorts--those capable of transmitting the fully developed pathogen--are removed.
Collapse
|
20
|
Antimosquito activity of aqueous kernel extract of soapnut Sapindus emarginatus: impact on various developmental stages of three vector mosquito species and nontarget aquatic insects. Parasitol Res 2009; 105:1425-34. [DOI: 10.1007/s00436-009-1574-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
|
21
|
|
22
|
Lyimo IN, Ferguson HM. Ecological and evolutionary determinants of host species choice in mosquito vectors. Trends Parasitol 2009; 25:189-96. [PMID: 19269900 DOI: 10.1016/j.pt.2009.01.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 12/22/2008] [Accepted: 01/16/2009] [Indexed: 10/21/2022]
Abstract
Insects exhibit diverse resource-exploitation strategies, including predation, herbivory and parasitism. The ecological and evolutionary factors that influence the resource selection of some insects (e.g. herbivores) have been extensively investigated because of their agricultural importance. By contrast, there has been little investigation of the selective forces that mediate host choice in haematophagous insects, despite their importance as vectors of disease. Here, we review potential determinants of host species choice in mosquitoes, the most important insect vectors of human disease, and discuss whether these could be manipulated to yield new disease-control strategies based on vector behavioural change.
Collapse
Affiliation(s)
- Issa N Lyimo
- Public Health Entomology Unit, Ifakara Health Institute, Off Mlabani Passage, PO Box 53, Ifakara, Tanzania.
| | | |
Collapse
|