1
|
Names GR, Schultz EM, Krause JS, Hahn TP, Wingfield JC, Heal M, Cornelius JM, Klasing KC, Hunt KE. Stress in paradise: effects of elevated corticosterone on immunity and avian malaria resilience in a Hawaiian passerine. J Exp Biol 2021; 224:272529. [PMID: 34553762 PMCID: PMC8546672 DOI: 10.1242/jeb.242951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/20/2021] [Indexed: 11/20/2022]
Abstract
Vertebrates confronted with challenging environments often experience an increase in circulating glucocorticoids, which result in morphological, physiological and behavioral changes that promote survival. However, chronically elevated glucocorticoids can suppress immunity, which may increase susceptibility to disease. Since the introduction of avian malaria to Hawaii a century ago, low-elevation populations of Hawaii Amakihi (Chlorodrepanis virens) have undergone strong selection by avian malaria and evolved increased resilience (the ability to recover from infection), while populations at high elevation with few vectors have not undergone selection and remain susceptible. We investigated how experimentally elevated corticosterone affects the ability of high- and low-elevation male Amakihi to cope with avian malaria by measuring innate immunity, hematocrit and malaria parasitemia. Corticosterone implants resulted in a decrease in hematocrit in high- and low-elevation birds but no changes to circulating natural antibodies or leukocytes. Overall, leukocyte count was higher in low- than in high-elevation birds. Malaria infections were detected in a subset of low-elevation birds. Infected individuals with corticosterone implants experienced a significant increase in circulating malaria parasites while untreated infected birds did not. Our results suggest that Amakihi innate immunity measured by natural antibodies and leukocytes is not sensitive to changes in corticosterone, and that high circulating corticosterone may reduce the ability of Amakihi to cope with infection via its effects on hematocrit and malaria parasite load. Understanding how glucocorticoids influence a host's ability to cope with introduced diseases provides new insight into the conservation of animals threatened by novel pathogens. Summary: Amakihi innate immunity, as measured by natural antibodies and leukocytes, is not sensitive to changes in corticosterone, but high circulating corticosterone may reduce the ability of Amakihi to cope with avian malaria infection via its effects on hematocrit and malaria parasite load.
Collapse
Affiliation(s)
- Gabrielle R Names
- Animal Behavior Graduate Group, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.,Department of Neurobiology, Physiology and Behavior, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Elizabeth M Schultz
- Department of Biology, Wittenberg University, 200 W Ward Street, Springfield, OH 45504, USA
| | - Jesse S Krause
- Department of Biology, University of Nevada Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Thomas P Hahn
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Molly Heal
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jamie M Cornelius
- Department of Integrative Biology, Oregon State University, 2701 SW Campus Way, Corvallis, OR 97331, USA
| | - Kirk C Klasing
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kathleen E Hunt
- Smithsonian-Mason School of Conservation & Department of Biology, George Mason University, 1500 Remount Rd, Front Royal, VA 22630, USA
| |
Collapse
|
2
|
Isaïa J, Rivero A, Glaizot O, Christe P, Pigeault R. Last-come, best served? Mosquito biting order and Plasmodium transmission. Proc Biol Sci 2020; 287:20202615. [PMID: 33234076 PMCID: PMC7739503 DOI: 10.1098/rspb.2020.2615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A pervasive characteristic of parasite infections is their tendency to be overdispersed. Understanding the mechanisms underlying this overdispersed distribution is of key importance as it may impact the transmission dynamics of the pathogen. Although multiple factors ranging from environmental stochasticity to inter-individual heterogeneity may explain parasite overdispersion, parasite infection is also overdispersed in an inbred host population maintained under laboratory conditions, suggesting that other mechanisms are at play. Here, we show that the aggregated distribution of malaria parasites within mosquito vectors is partially explained by a temporal heterogeneity in parasite infectivity triggered by the bites of mosquitoes. Parasite transmission tripled between the mosquito's first and last blood feed in a period of only 3 h. Surprisingly, the increase in transmission is not associated with an increase in parasite investment in production of the transmissible stage. Overall, we highlight that Plasmodium is capable of responding to the bites of mosquitoes to increase its own transmission at a much faster pace than initially thought and that this is partly responsible for overdispersed distribution of infection. We discuss the underlying mechanisms as well as the broader implications of this plastic response for the epidemiology of malaria.
Collapse
Affiliation(s)
- J Isaïa
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - A Rivero
- MIVEGEC (UMR CNRS 5290), Montpellier, France.,CREES (Centre de Recherche en Ecologie et Evolution de la Santé), Montpellier, France
| | - O Glaizot
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland.,Musée Cantonal de Zoologie, Lausanne, Switzerland
| | - P Christe
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - R Pigeault
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Reinoso‐Pérez MT, Dhondt KV, Sydenstricker AV, Heylen D, Dhondt AA. Complex interactions between bacteria and haemosporidia in coinfected hosts: An experiment. Ecol Evol 2020; 10:5801-5814. [PMID: 32607191 PMCID: PMC7319152 DOI: 10.1002/ece3.6318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 01/08/2023] Open
Abstract
Hosts are typically coinfected by multiple parasite species whose interactions might be synergetic or antagonistic, producing unpredictable physiological and pathological impacts on the host. This study shows the interaction between Plasmodium spp. and Leucocytozoon spp. in birds experimentally infected or not infected with Mycoplasma gallisepticum.In 1994, the bacterium Mycoplasma gallisepticum jumped from poultry to wild birds in which it caused a major epidemic in North America. Birds infected with M. gallisepticum show conjunctivitis as well as increased levels of corticosterone.Malaria and other haemosporidia are widespread in birds, and chronic infections become apparent with the detectable presence of the parasite in peripheral blood in response to elevated levels of natural or experimental corticosterone levels.Knowing the immunosuppressive effect of corticosterone on the avian immune system, we tested the hypothesis that chronic infections of Plasmodium spp. and Leucocytozoon spp. in house finches would respond to experimental inoculation with M. gallisepticum as corticosterone levels are known to increase following inoculation. Plasmodium spp. infection intensity increased within days of M. gallisepticum inoculation as shown both by the appearance of infected erythrocytes and by the increase in the number and the intensity of positive PCR tests. Leucocytozoon spp. infection intensity increased when Plasmodium spp. infection intensity increased, but not in response to M. gallisepticum inoculation. Leucocytozoon spp. and Plasmodium spp. seemed to compete in the host as shown by a negative correlation between the changes in their PCR score when both pathogens were present in the same individual.Host responses to coinfection with multiple pathogens measured by the hematocrit and white blood cell count depended on the haemosporidian community composition. Host investment in the leukocyte response was higher in the single-haemosporidia-infected groups when birds were infected with M. gallisepticum.A trade-off was observed between the immune control of the chronic infection (Plasmodium spp./Leucocytozoon spp.) and the immune response to the novel bacterial infection (M. gallisepticum).
Collapse
Affiliation(s)
- María Teresa Reinoso‐Pérez
- Department of Natural ResourcesCornell UniversityIthacaNew York
- Laboratory of OrnithologyCornell UniversityIthacaNew York
| | - Keila V. Dhondt
- Department of Microbiology and ImmunologyCollege of Veterinary MedicineCornell UniversityIthacaNew York
| | | | - Dieter Heylen
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew Jersey
- Interuniversity Institute for Biostatistics and statistical BioinformaticsHasselt UniversityDiepenbeekBelgium
| | - André A. Dhondt
- Laboratory of OrnithologyCornell UniversityIthacaNew York
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew York
| |
Collapse
|
4
|
Khan JS, Provencher JF, Forbes MR, Mallory ML, Lebarbenchon C, McCoy KD. Parasites of seabirds: A survey of effects and ecological implications. ADVANCES IN MARINE BIOLOGY 2019; 82:1-50. [PMID: 31229148 PMCID: PMC7172769 DOI: 10.1016/bs.amb.2019.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Parasites are ubiquitous in the environment, and can cause negative effects in their host species. Importantly, seabirds can be long-lived and cross multiple continents within a single annual cycle, thus their exposure to parasites may be greater than other taxa. With changing climatic conditions expected to influence parasite distribution and abundance, understanding current level of infection, transmission pathways and population-level impacts are integral aspects for predicting ecosystem changes, and how climate change will affect seabird species. In particular, a range of micro- and macro-parasites can affect seabird species, including ticks, mites, helminths, viruses and bacteria in gulls, terns, skimmers, skuas, auks and selected phalaropes (Charadriiformes), tropicbirds (Phaethontiformes), penguins (Sphenisciformes), tubenoses (Procellariiformes), cormorants, frigatebirds, boobies, gannets (Suliformes), and pelicans (Pelecaniformes) and marine seaducks and loons (Anseriformes and Gaviiformes). We found that the seabird orders of Charadriiformes and Procellariiformes were most represented in the parasite-seabird literature. While negative effects were reported in seabirds associated with all the parasite groups, most effects have been studied in adults with less information known about how parasites may affect chicks and fledglings. We found studies most often reported on negative effects in seabird hosts during the breeding season, although this is also the time when most seabird research occurs. Many studies report that external factors such as condition of the host, pollution, and environmental conditions can influence the effects of parasites, thus cumulative effects likely play a large role in how parasites influence seabirds at both the individual and population level. With an increased understanding of parasite-host dynamics it is clear that major environmental changes, often those associated with human activities, can directly or indirectly affect the distribution, abundance, or virulence of parasites and pathogens.
Collapse
Affiliation(s)
- Junaid S Khan
- Canadian Wildlife Service, Environment and Climate Change Canada, Gatineau, QC, Canada
| | - Jennifer F Provencher
- Canadian Wildlife Service, Environment and Climate Change Canada, Gatineau, QC, Canada.
| | - Mark R Forbes
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Mark L Mallory
- Department of Biology, Acadia University, Wolfville, NS, Canada
| | - Camille Lebarbenchon
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, Saint Denis, La Réunion, France
| | - Karen D McCoy
- MIVEGEC, UMR 5290 CNRS-IRD-University of Montpellier, Centre IRD, Montpellier, France
| |
Collapse
|
5
|
Dhondt AA, Dhondt KV, Nazeri S. Apparent effect of chronic Plasmodium infections on disease severity caused by experimental infections with Mycoplasma gallisepticum in house finches. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2017; 6:49-53. [PMID: 28348959 PMCID: PMC5358948 DOI: 10.1016/j.ijppaw.2017.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 11/24/2022]
Abstract
An epidemic caused by a successful host jump of the bacterial pathogen Mycoplasma gallisepticum from poultry to house finches in the 1990s has by now spread across most of North America. M. gallisepticum causes severe conjunctivitis in house finches. We experimentally show that M. gallisepticum transmission to birds with or without chronic Plasmodium infection does not differ. However, once infected with M. gallisepticum house finches chronically infected with Plasmodium develop more severe clinical disease than birds without such infection. We speculate as to possible effects of coinfection. Mycoplasma gallisepticum caused an epidemic swept in North American house finches. About half of house finches in Upstate New York are infected with Plasmodium spp. Coinfection with both pathogens causes more severe M. gallisepticum induced disease. Infection with M. gallisepticum may result in increased Plasmodium transmission.
Collapse
Affiliation(s)
- André A Dhondt
- Laboratory of Ornithology, Cornell University, Ithaca, NY, 14850, United States
| | - Keila V Dhondt
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14850, United States
| | - Sophie Nazeri
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14850, United States
| |
Collapse
|