1
|
Beer A, Burns E, Randhawa HS. Natural history collections: collaborative opportunities and important sources of information about helminth biodiversity in New Zealand. NEW ZEALAND JOURNAL OF ZOOLOGY 2022. [DOI: 10.1080/03014223.2022.2067190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - Haseeb S. Randhawa
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
- South Atlantic Environmental Research Institute, Stanley, Falkland Islands
- New Brunswick Museum, Saint John, Canada
| |
Collapse
|
2
|
Teixeira‐Costa L, Heberling JM, Wilson CA, Davis CC. Parasitic flowering plant collections embody the extended specimen. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Luiza Teixeira‐Costa
- Harvard University Herbaria Cambridge MA USA
- Hanse‐Wissenschaftskolleg – Institute for Advanced Study, Lehmkuhlenbusch 4, 27753 Delmenhorst Germany
| | | | - Carol A. Wilson
- University and Jepson Herbaria University of California, Berkeley, 1001 Valley Life Sciences Building Berkeley CA USA
| | | |
Collapse
|
3
|
Abstract
Natural history collections are invaluable repositories of biological information that provide an unrivaled record of Earth's biodiversity. Museum genomics-genomics research using traditional museum and cryogenic collections and the infrastructure supporting these investigations-has particularly enhanced research in ecology and evolutionary biology, the study of extinct organisms, and the impact of anthropogenic activity on biodiversity. However, leveraging genomics in biological collections has exposed challenges, such as digitizing, integrating, and sharing collections data; updating practices to ensure broadly optimal data extraction from existing and new collections; and modernizing collections practices, infrastructure, and policies to ensure fair, sustainable, and genomically manifold uses of museum collections by increasingly diverse stakeholders. Museum genomics collections are poised to address these challenges and, with increasingly sensitive genomics approaches, will catalyze a future era of reproducibility, innovation, and insight made possible through integrating museum and genome sciences.
Collapse
Affiliation(s)
- Daren C Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, California 95064, USA
| | - Gonzalo Giribet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Craig Moritz
- Centre for Biodiversity Analysis and Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
4
|
Cammarata CA, Dronen NO. Two New Species of Telorchis (Digenea: Telorchiidae) from a Green Turtle, Chelonia Mydas (Cheloniidae), from the Upper Texas Coast with a Key to North American Species of Telorchis. J Parasitol 2021; 106:755-771. [PMID: 33326587 DOI: 10.1645/20-27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Sea turtles are difficult to sample because of their protected status; however, museum collections and sea turtle stranding networks provide unique opportunities for parasitological research. Four gastrointestinal tracts from stranded, endangered green turtles, Chelonia mydas, were collected between 1993 and 1995 from the upper Texas coast and opportunistically sampled for parasite fauna. Two new species of Telorchis, a common freshwater amphibian and reptilian intestinal parasite genus, were found and described. Telorchis marinus n. sp. differs from Telorchis mydas n. sp. by its short body length, lack of pharyngeal glands, long esophagus relative to total body length, short and straight cirrus sac, short ventral sucker to ovary length relative to total body length, and an ovary located in the anterior one-third of body; it differs from its congeners in the number of ovary lengths between the ventral sucker and ovary, the number of ventral sucker lengths the cirrus sac extends beyond the posterior margin of the ventral sucker, and the vitelline field extent. Telorchis mydas differs from its congeners in the number of ovary lengths between the ventral sucker and ovary, the number of ventral sucker lengths the cirrus sac extends beyond the posterior margin of the ventral sucker, and the combination of having its ovary position near the midbody and a long, sinuous cirrus sac that is 35-44% of the total body length. Given the taxonomic complexities within Telorchis, a revised key to North American species is provided using morphological characteristics to assist future researchers in delineating true species and appropriate synonymies with molecular explorations. We reject the majority of synonymies in the genus until molecular data are available; we accept the synonymies of Telorchis necturi as Telorchis stunkardi and Telorchis gutturosi as Telorchis chelopi. Both Telorchis linstowi and Telorchis stossichi should be considered as species inquirenda. This is the first confirmed report of Telorchis from a marine host and the first report on parasites of cheloniid sea turtles in Texas, and this study adds to the ever-growing evidence that collections are essential to understanding biodiversity.
Collapse
Affiliation(s)
- Charlayna A Cammarata
- Laboratory of Parasitology, Department of Wildlife & Fisheries Sciences, Texas A&M University, 2258 TAMU, College Station, Texas 77843-2258
| | - Norman O Dronen
- Laboratory of Parasitology, Department of Wildlife & Fisheries Sciences, Texas A&M University, 2258 TAMU, College Station, Texas 77843-2258
| |
Collapse
|
5
|
Szentiványi T, Markotter W, Dietrich M, Clément L, Ançay L, Brun L, Genzoni E, Kearney T, Seamark E, Estók P, Christe P, Glaizot O. Host conservation through their parasites: molecular surveillance of vector-borne microorganisms in bats using ectoparasitic bat flies. ACTA ACUST UNITED AC 2020; 27:72. [PMID: 33306024 PMCID: PMC7731914 DOI: 10.1051/parasite/2020069] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023]
Abstract
Most vertebrates host a wide variety of haematophagous parasites, which may play an important role in the transmission of vector-borne microorganisms to hosts. Surveillance is usually performed by collecting blood and/or tissue samples from vertebrate hosts. There are multiple methods to obtain samples, which can be stored for decades if properly kept. However, blood sampling is considered an invasive method and may possibly be harmful to the sampled individual. In this study, we investigated the use of ectoparasites as a tool to acquire molecular information about the presence and diversity of infectious microorganism in host populations. We tested the presence of three distinct vector-borne microorganisms in both bat blood and bat flies: Bartonella bacteria, malaria-like Polychromophilus sp. (Apicomplexa), and Trypanosoma sp. (Kinetoplastea). We detected the presence of these microorganisms both in bats and in their bat flies, with the exception of Trypanosoma sp. in South African bat flies. Additionally, we found Bartonella sp. in bat flies from one population in Spain, suggesting its presence in the host population even if not detected in bats. Bartonella and Polychromophilus infection showed the highest prevalence in both bat and bat fly populations. Single, co- and triple infections were also frequently present in both. We highlight the use of haematophagous ectoparasites to study the presence of infectious microorganism in host blood and its use as an alternative, less invasive sampling method.
Collapse
Affiliation(s)
- Tamara Szentiványi
- Museum of Zoology, 1014 Lausanne, Switzerland - Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Wanda Markotter
- Department of Medical Virology, University of Pretoria, 0001 Pretoria, South Africa - AfricanBats NPC, 0157 Pretoria, South Africa
| | - Muriel Dietrich
- UMR Processus Infectieux en Milieu Insulaire Tropical, 97490 Sainte-Clotilde, Reunion Island, France
| | - Laura Clément
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Laurie Ançay
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Loïc Brun
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Eléonore Genzoni
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Teresa Kearney
- AfricanBats NPC, 0157 Pretoria, South Africa - Ditsong National Museum of Natural History, 0001 Pretoria, South Africa - Department of Zoology and Entomology, University of Pretoria, 0083 Pretoria, South Africa
| | | | - Peter Estók
- Department of Zoology, Eszterházy Károly University, 3300 Eger, Hungary
| | - Philippe Christe
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Olivier Glaizot
- Museum of Zoology, 1014 Lausanne, Switzerland - Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Carlson CJ, Dallas TA, Alexander LW, Phelan AL, Phillips AJ. What would it take to describe the global diversity of parasites? Proc Biol Sci 2020; 287:20201841. [PMID: 33203333 PMCID: PMC7739500 DOI: 10.1098/rspb.2020.1841] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/22/2020] [Indexed: 11/12/2022] Open
Abstract
How many parasites are there on Earth? Here, we use helminth parasites to highlight how little is known about parasite diversity, and how insufficient our current approach will be to describe the full scope of life on Earth. Using the largest database of host-parasite associations and one of the world's largest parasite collections, we estimate a global total of roughly 100 000-350 000 species of helminth endoparasites of vertebrates, of which 85-95% are unknown to science. The parasites of amphibians and reptiles remain the most poorly described, but the majority of undescribed species are probably parasites of birds and bony fish. Missing species are disproportionately likely to be smaller parasites of smaller hosts in undersampled countries. At current rates, it would take centuries to comprehensively sample, collect and name vertebrate helminths. While some have suggested that macroecology can work around existing data limitations, we argue that patterns described from a small, biased sample of diversity aren't necessarily reliable, especially as host-parasite networks are increasingly altered by global change. In the spirit of moonshots like the Human Genome Project and the Global Virome Project, we consider the idea of a Global Parasite Project: a global effort to transform parasitology and inventory parasite diversity at an unprecedented pace.
Collapse
Affiliation(s)
- Colin J. Carlson
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
- Center for Global Health Science and Security, Georgetown University, Washington, DC, USA
| | - Tad A. Dallas
- Centre for Ecological Change, University of Helsinki, 00840 Helsinki, Finland
| | - Laura W. Alexander
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Alexandra L. Phelan
- Center for Global Health Science and Security, Georgetown University, Washington, DC, USA
- O’Neill Institute for National and Global Health Law, Georgetown University Law Center, Washington, DC, USA
| | - Anna J. Phillips
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| |
Collapse
|
7
|
Chen SH, Shen HM, Lu Y, Ai L, Chen JX, Xu XN, Song P, Cai YC, Zhou XN. Establishment and application of the National Parasitic Resource Center (NPRC) in China. ADVANCES IN PARASITOLOGY 2020; 110:373-400. [PMID: 32563332 DOI: 10.1016/bs.apar.2020.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The National Parasitic Resource Center (NPRC) was created in 2004. It is a first-level platform under the Basic Condition Platform Center of the Ministry of Science and Technology of China. The resource centre involves 21 depository institutions in 15 regions of the country, including human parasite and vector depository, animal parasite depository, plant nematode characteristic specimen library, medical insect characteristic specimen library, trematode model specimen library, parasite-vector/snail model specimen library, etc. After nearly 15 years of operation, the resource centre has been built into a physical library with a database of 11 phyla, 23 classes, 1115 species and 117,814 pieces of parasitic germplasm resources, and three live collection bases of parasitic germplasm resources. A variety of new parasite-related immunological and molecular biological detection and identification technologies produced by the resource centre are widely used in the fields of public health responses, risk assessments on food safety, and animal or plant quarantine. The NPRC is the largest and top level resource centre on parasitology in China, and it is a leading technology platform for collecting and identifying parasitic resources.
Collapse
Affiliation(s)
- Shao-Hong Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
| | - Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
| | - Yan Lu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
| | - Lin Ai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
| | - Xue-Nian Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
| | - Peng Song
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
| | - Yu-Chun Cai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China.
| |
Collapse
|
8
|
Affiliation(s)
- Joseph A Cook
- Biology Department and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Jessica E Light
- Department of Wildlife and Fisheries Sciences and Biodiversity Research and Teaching Collections, Texas A&M University, College Station, TX, USA
| |
Collapse
|
9
|
Galbreath KE, Hoberg EP, Cook JA, Armién B, Bell KC, Campbell ML, Dunnum JL, Dursahinhan AT, Eckerlin RP, Gardner SL, Greiman SE, Henttonen H, Jiménez FA, Koehler AVA, Nyamsuren B, Tkach VV, Torres-Pérez F, Tsvetkova A, Hope AG. Building an integrated infrastructure for exploring biodiversity: field collections and archives of mammals and parasites. J Mammal 2019; 100:382-393. [PMID: 31043762 PMCID: PMC6479512 DOI: 10.1093/jmammal/gyz048] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Museum specimens play an increasingly important role in predicting the outcomes and revealing the consequences of anthropogenically driven disruption of the biosphere. As ecological communities respond to ongoing environmental change, host-parasite interactions are also altered. This shifting landscape of host-parasite associations creates opportunities for colonization of different hosts and emergence of new pathogens, with implications for wildlife conservation and management, public health, and other societal concerns. Integrated archives that document and preserve mammal specimens along with their communities of associated parasites and ancillary data provide a powerful resource for investigating, anticipating, and mitigating the epidemiological, ecological, and evolutionary impacts of environmental perturbation. Mammalogists who collect and archive mammal specimens have a unique opportunity to expand the scope and impact of their field work by collecting the parasites that are associated with their study organisms. We encourage mammalogists to embrace an integrated and holistic sampling paradigm and advocate for this to become standard practice for museum-based collecting. To this end, we provide a detailed, field-tested protocol to give mammalogists the tools to collect and preserve host and parasite materials that are of high quality and suitable for a range of potential downstream analyses (e.g., genetic, morphological). Finally, we also encourage increased global cooperation across taxonomic disciplines to build an integrated series of baselines and snapshots of the changing biosphere. Los especímenes de museo desempeñan un papel cada vez más importante tanto en la descripción de los resultados de la alteración antropogénica de la biosfera como en la predicción de sus consecuencias. Dado que las comunidades ecológicas responden al cambio ambiental, también se alteran las interacciones hospedador-parásito. Este panorama cambiante de asociaciones hospedador-parásito crea oportunidades para la colonización de diferentes hospedadores y para la aparición de nuevos patógenos, con implicancias en la conservación y manejo de la vida silvestre, la salud pública y otras preocupaciones de importancia para la sociedad. Archivos integrados que documentan y preservan especímenes de mamíferos junto con sus comunidades de parásitos y datos asociados, proporcionan un fuerte recurso para investigar, anticipar y mitigar los impactos epidemiológicos, ecológicos y evolutivos de las perturbaciones ambientales. Los mastozoólogos que recolectan y archivan muestras de mamíferos, tienen una oportunidad única de ampliar el alcance e impacto de su trabajo de campo mediante la recolección de los parásitos que están asociados con los organismos que estudian. Alentamos a los mastozoólogos a adoptar un paradigma de muestreo integrado y holístico y abogamos para que esto se convierta en una práctica estándarizada de la obtención de muestras para museos. Con este objetivo, proporcionamos un protocolo detallado y probado en el campo para brindar a los mastozoólogos las herramientas para recolectar y preservar materiales de parásitos y hospedadores de alta calidad y adecuados para una gran variedad de análisis subsecuentes (e.g., genéticos, morfológicos, etc.). Finalmente, también abogamos por una mayor cooperación global entre las diversas disciplinas taxonómicas para construir una serie integrada de líneas de base y registros actuales de nuestra cambiante biosfera.
Collapse
Affiliation(s)
- Kurt E Galbreath
- Department of Biology, Northern Michigan University, Marquette, MI, USA
| | - Eric P Hoberg
- Biology Department and Museum of Southwestern Biology, University of New Mexico, CERIA Building, Albuquerque, NM, USA
| | - Joseph A Cook
- Biology Department and Museum of Southwestern Biology, University of New Mexico, CERIA Building, Albuquerque, NM, USA
| | - Blas Armién
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
| | - Kayce C Bell
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Mariel L Campbell
- Biology Department and Museum of Southwestern Biology, University of New Mexico, CERIA Building, Albuquerque, NM, USA
| | - Jonathan L Dunnum
- Biology Department and Museum of Southwestern Biology, University of New Mexico, CERIA Building, Albuquerque, NM, USA
| | - Altangerel T Dursahinhan
- Harold W. Manter Laboratory of Parasitology, Division of Parasitology, University of Nebraska State Museum, W Nebraska Hall University of Nebraska–Lincoln, Lincoln, NE, USA
| | - Ralph P Eckerlin
- Mathematics, Science and Engineering Division, Northern Virginia Community College, Annandale, VA, USA
| | - Scott L Gardner
- Harold W. Manter Laboratory of Parasitology, Division of Parasitology, University of Nebraska State Museum, W Nebraska Hall University of Nebraska–Lincoln, Lincoln, NE, USA
| | - Stephen E Greiman
- Biology Department, Georgia Southern University, Statesboro, GA, USA
| | | | - F Agustín Jiménez
- Department of Zoology, Southern Illinois University, Carbondale, IL, USA
| | - Anson V A Koehler
- Department of Veterinary Biosciences, The University of Melbourne, Cnr Flemington Road and Park Drive, Parkville, Victoria, Australia
| | | | - Vasyl V Tkach
- Biology Department, University of North Dakota, Grand Forks, ND, USA
| | - Fernando Torres-Pérez
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Albina Tsvetkova
- Institute of Ecology and Evolution A.N. Severtsov RAS, Saratov Branch, Saratov, Russia
| | - Andrew G Hope
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|