1
|
Muhamad SN, Md Akim A, Lim FL, Karuppiah K, Mohd Shabri NSA, How V. Heat stress-induced heat shock protein 70 (HSP70) expressions among vulnerable populations in urban and rural areas Klang Valley, Malaysia. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025:10.1038/s41370-025-00764-4. [PMID: 40038444 DOI: 10.1038/s41370-025-00764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND As climate change raises global temperatures, there remains a notable gap in understanding the body's mechanisms of heat stress defense exhibited by Heat Shock Protein (HSP) within the populations. OBJECTIVE This study aims to investigate the expression level of HSP70 in response to indoor heat exposure among vulnerable populations in both urban and rural settings. METHODS A comparative cross-sectional was conducted among 108 participants from urban and rural areas in Klang Valley, Malaysia. The study included face-to-face interviews, indoor heat exposure monitoring, and thermal stress classification using the Universal Thermal Climate Index (UTCI). HSP70 gene and protein expressions were analyzed using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and HSP70 High Sensitivity Enzyme-linked Immunosorbent Assay (ELISA), respectively. RESULTS Urban areas experienced signficantly higher UTCI heat exposure levels than rural areas (p < 0.001). In response to heat stress, vulnerable populations in urban areas exhibited higher HSP70 gene relative expression and HSP70 protein expression. A significant mean difference in the plasma HSP70 protein expression was observed between the two groups (p < 0.001). The linear mixed model (LMM) revealed a significant association between UTCI heat exposure levels and HSP70 gene and protein expression in both groups (p < 0.001). IMPACT While previous studies have examined cellular responses to heat stress in healthy individuals within controlled experimental settings, our study uniquely focuses on vulnerable individuals in actual environmental conditions. This is crucial for establishing baseline information on the ability of these populations to adapt to climate change and surrounding temperatures. Such information is essential for building resilient communities and preventing fatal incidents such as heat stroke during extreme heat events. By highlighting the differences between urban and rural populations, this study provides critical information for policymakers and health practitioners to design location-specific and population-specific heat stress mitigation strategies.
Collapse
Affiliation(s)
- Siti Nurfahirah Muhamad
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Fang Lee Lim
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| | - Karmegam Karuppiah
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nur Shabrina Azreen Mohd Shabri
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Vivien How
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Barnes J, Sheffield P, Graber N, Jessel S, Lanza K, Limaye VS, Morrow F, Sauthoff A, Schmeltz M, Smith S, Stevens A. New York State Climate Impacts Assessment Chapter 07: Human Health and Safety. Ann N Y Acad Sci 2024; 1542:385-445. [PMID: 39652410 DOI: 10.1111/nyas.15244] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
New Yorkers face a multitude of health and safety risks that are exacerbated by a changing climate. These risks include direct impacts from extreme weather events and other climate hazards, as well as indirect impacts occurring through a chain of interactions. Physical safety, physical health, and mental health are all part of the equation-as are the many nonclimate factors that interact with climate change to influence health outcomes. This chapter provides an updated assessment of all these topics at the intersection of climate change, public health and safety, and equity in the state of New York. Key findings are presented below.
Collapse
Affiliation(s)
- Janice Barnes
- Climate Adaptation Partners, New York, New York, USA
| | - Perry Sheffield
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nathan Graber
- Pediatrics, Albany Medical Center, Albany, New York, USA
| | - Sonal Jessel
- WE ACT for Environmental Justice, New York, New York, USA
| | - Kevin Lanza
- Environmental and Occupational Health Sciences, The University of Texas Health Science Center at Houston School of Public Health, Austin, Texas, USA
| | - Vijay S Limaye
- Natural Resources Defense Council, New York, New York, USA
| | | | - Anjali Sauthoff
- Westchester County Climate Crisis Task Force and Independent Environmental Health Consultant, Pleasantville, New York, USA
| | - Michael Schmeltz
- Department of Public Health, California State University at East Bay, Hayward, California, USA
| | - Shavonne Smith
- Environmental Department, Shinnecock Indian Nation, Southampton, New York, USA
| | - Amanda Stevens
- New York State Energy Research and Development Authority, Albany, New York, USA
| |
Collapse
|
3
|
Matte T, Lane K, Tipaldo JF, Barnes J, Knowlton K, Torem E, Anand G, Yoon L, Marcotullio P, Balk D, Constible J, Elszasz H, Ito K, Jessel S, Limaye V, Parks R, Rutigliano M, Sorenson C, Yuan A. NPCC4: Climate change and New York City's health risk. Ann N Y Acad Sci 2024; 1539:185-240. [PMID: 38922909 DOI: 10.1111/nyas.15115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 06/28/2024]
Abstract
This chapter of the New York City Panel on Climate Change 4 (NPCC4) report considers climate health risks, vulnerabilities, and resilience strategies in New York City's unique urban context. It updates evidence since the last health assessment in 2015 as part of NPCC2 and addresses climate health risks and vulnerabilities that have emerged as especially salient to NYC since 2015. Climate health risks from heat and flooding are emphasized. In addition, other climate-sensitive exposures harmful to human health are considered, including outdoor and indoor air pollution, including aeroallergens; insect vectors of human illness; waterborne infectious and chemical contaminants; and compounding of climate health risks with other public health emergencies, such as the COVID-19 pandemic. Evidence-informed strategies for reducing future climate risks to health are considered.
Collapse
Affiliation(s)
- Thomas Matte
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Kathryn Lane
- New York City Department of Health and Mental Hygiene, New York, New York, USA
| | - Jenna F Tipaldo
- CUNY Graduate School of Public Health and Health Policy and CUNY Institute for Demographic Research, New York, New York, USA
| | - Janice Barnes
- Climate Adaptation Partners, New York, New York, USA
| | - Kim Knowlton
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Emily Torem
- New York City Department of Health and Mental Hygiene, New York, New York, USA
| | - Gowri Anand
- City of New York, Department of Transportation, New York, New York, USA
| | - Liv Yoon
- School of Kinesiology, The University of British Columbia, Vancouver, Canada
| | - Peter Marcotullio
- Department of Geography and Environmental Science, Hunter College, CUNY, New York, New York, USA
| | - Deborah Balk
- Marxe School of Public and International Affairs, Baruch College and also CUNY Institute for Demographic Research, New York, New York, USA
| | | | - Hayley Elszasz
- City of New York, Mayors Office of Climate and Environmental Justice, New York, New York, USA
| | - Kazuhiko Ito
- New York City Department of Health and Mental Hygiene, New York, New York, USA
| | - Sonal Jessel
- WE ACT for Environmental Justice, New York, New York, USA
| | - Vijay Limaye
- Natural Resources Defense Council, New York, New York, USA
| | - Robbie Parks
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Mallory Rutigliano
- New York City Mayor's Office of Management and Budget, New York, New York, USA
| | - Cecilia Sorenson
- Mailman School of Public Health, Columbia University, New York, New York, USA
- Global Consortium on Climate and Health Education, Columbia University, New York, New York, USA
- Department of Emergency Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Ariel Yuan
- New York City Department of Health and Mental Hygiene, New York, New York, USA
| |
Collapse
|
4
|
Bu Y, Sun Z, Tao Y, Zhao X, Zhao Y, Liang Y, Hang X, Han L. The synergistic effect of high temperature and relative humidity on non-accidental deaths at different urbanization levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173612. [PMID: 38823719 DOI: 10.1016/j.scitotenv.2024.173612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Numerous studies have examined the impact of temperature on mortality, yet research on the combined effect of temperature and humidity on non-accidental deaths remains limited. This study investigates the synergistic impact of high temperature and humidity on non-accidental deaths in China, assessing the influence of urban development and urbanization level. Utilizing the distributed lag nonlinear model (DLNM) of quasi-Poisson regression, we analyzed the relationship between Wet Bulb Globe Temperature (WBGT) and non-accidental deaths in 30 Chinese cities from 2010 to 2016, including Guangzhou during 2012-2016. We stratified temperature and humidity across these cities to evaluate the influence of varying humidity levels on deaths under high temperatures. Then, we graded the duration of heat and humidity in these cities to assess the impact of deaths with different durations. Additionally, the cities were categorized based on gross domestic product (GDP), and a vulnerability index was calculated to examine the impact of urban development and urbanization level on non-accidental deaths. Our findings reveal a pronounced synergistic effect of high temperature and humidity on non-accidental deaths, particularly at elevated humidity levels. The synergies of high temperature and humidity are extremely complex. Moreover, the longer the duration of high temperature and humidity, the higher the risk of non-accidental death. Furthermore, areas with higher urbanization exhibited lower relative risks (RR) associated with the synergistic effects of heat and humidity. Consequently, it is imperative to focus on damp-heat related mortality among vulnerable populations in less developed regions.
Collapse
Affiliation(s)
- Yaqin Bu
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), China Meteorological Administration, Beijing 100081, China
| | - Zhaobin Sun
- State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), China Meteorological Administration, Beijing 100081, China.
| | - Yan Tao
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiuge Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuxin Zhao
- State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), China Meteorological Administration, Beijing 100081, China
| | - Yinglin Liang
- State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), China Meteorological Administration, Beijing 100081, China
| | - Xiaoyi Hang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ling Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
5
|
Wang JJ, Katz JM, Sanmartin MX, Sinvani LD, Naidich JJ, Rula EY, Sanelli PC. Association between Heat Vulnerability Index and Stroke Severity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1099. [PMID: 39200708 PMCID: PMC11354810 DOI: 10.3390/ijerph21081099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024]
Abstract
BACKGROUND Socioeconomically disadvantaged neighborhoods are particularly vulnerable to heat-related illnesses. We aim to investigate the association between the heat vulnerability index (HVI), an established neighborhood-level metric of heat-related mortality risk, and acute ischemic stroke (AIS) severity. METHODS We conducted a retrospective analysis of consecutive AIS admissions to a comprehensive stroke center between 2012 and 2021. Stroke severity was defined upon admission based on the National Institutes of Health Stroke Scale (NIHSS). Demographic, socioeconomic, and clinical characteristics were extracted from electronic health records. HVI status was assigned using residential ZIP codes. Multivariable logistic regression analyses were performed. RESULTS Of 3429 AIS admissions, 1123 (32.8%) were from high-HVI (scores 4-5) neighborhoods and 868 (25.3%) had severe stroke (NIHSS score ≥ 10). In the multivariable regression model with stepwise selection, a high HVI was independently associated with severe stroke (adjusted odds ratio: 1.40 [95% confidence interval 1.16-1.69]). CONCLUSIONS The association between a high HVI and severe stroke underscores the importance of targeting policy interventions to mitigate heat-related illness in socioeconomically disadvantaged neighborhoods.
Collapse
Affiliation(s)
- Jason J. Wang
- Northwell Health, New Hyde Park, NY 11040, USA; (J.M.K.); (M.X.S.); (L.D.S.); (P.C.S.)
- Institute of Health System Science, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Departments of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Jeffrey M. Katz
- Northwell Health, New Hyde Park, NY 11040, USA; (J.M.K.); (M.X.S.); (L.D.S.); (P.C.S.)
- Departments of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Departments of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Maria X. Sanmartin
- Northwell Health, New Hyde Park, NY 11040, USA; (J.M.K.); (M.X.S.); (L.D.S.); (P.C.S.)
- Institute of Health System Science, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Departments of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Liron D. Sinvani
- Northwell Health, New Hyde Park, NY 11040, USA; (J.M.K.); (M.X.S.); (L.D.S.); (P.C.S.)
- Institute of Health System Science, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Departments of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Jason J. Naidich
- Northwell Health, New Hyde Park, NY 11040, USA; (J.M.K.); (M.X.S.); (L.D.S.); (P.C.S.)
- Departments of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | | | - Pina C. Sanelli
- Northwell Health, New Hyde Park, NY 11040, USA; (J.M.K.); (M.X.S.); (L.D.S.); (P.C.S.)
- Institute of Health System Science, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Departments of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
6
|
Cole R, Ferguson L, Heaviside C, Murage P, Macintyre HL, Taylor J, Simpson CH, Brousse O, Symonds P, Davies M, Hajat S. Systemic inequalities in heat risk for greater London. ENVIRONMENT INTERNATIONAL 2024; 190:108925. [PMID: 39137688 DOI: 10.1016/j.envint.2024.108925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/02/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
The temperature rise and increases in extreme heat events related to global climate change is a growing public health threat. Populations in temperate climates, including the UK, must urgently adapt to increased hot weather as current infrastructure primarily focusses on resilience to cold. As we adapt, care should be taken to ensure existing health inequalities are reduced. Lessons can be learned from regions that experience warmer climates and applied to adaptation in the UK. We identified known indicators of heat-health risk and explored their distribution across area level income for London. Understanding these indicators and their distributions across populations can support the development of interventions that have the dual aim of improving health and reducing inequalities. An exploratory analysis was conducted for each indicator at neighbourhood level to assess existence of disparities in their distributions across London. A systems-thinking approach was employed to deduce if these amount to systemic inequalities in heat risk, whereby those most exposed to heat are more susceptible and less able to adapt. Using this information, we proposed interventions and made recommendations for their implementation. We find inequalities across indicators relating to exposure, vulnerability, and adaptive capacity. Including inequalities in urban greening and access to greenspace, physical and mental health and access to communication and support. Through a system diagram we demonstrate how these indicators interact and suggest that systemic inequalities in risk exist and will become more evident as exposure increases with rising temperatures, depending on how we adapt. We use this information to identify barriers to the effective implementation of adaptation strategies and make recommendations on the implementation of interventions. This includes effective and wide-reaching communication considering the various channels and accessibility requirements of the population and consideration of all dwelling tenures when implementing policies relating to home improvements in the context of heat.
Collapse
Affiliation(s)
- Rebecca Cole
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | - Clare Heaviside
- UCL Institute for Environmental Design and Engineering, The Bartlett Faculty of Environment, University College London, London, United Kingdom
| | - Peninah Murage
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Helen L Macintyre
- Centre for Climate and Health Security, UK Health Security Agency, Chilton, United Kingdom; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Jonathon Taylor
- Department of Civil Engineering, Tampere University, Tampere, Finland
| | - Charles H Simpson
- UCL Institute for Environmental Design and Engineering, The Bartlett Faculty of Environment, University College London, London, United Kingdom
| | - Oscar Brousse
- UCL Institute for Environmental Design and Engineering, The Bartlett Faculty of Environment, University College London, London, United Kingdom
| | - Phil Symonds
- UCL Institute for Environmental Design and Engineering, The Bartlett Faculty of Environment, University College London, London, United Kingdom
| | - Michael Davies
- UCL Institute for Environmental Design and Engineering, The Bartlett Faculty of Environment, University College London, London, United Kingdom
| | - Shakoor Hajat
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
7
|
Wang J, Li Y, Liu W, Gou A. Spatial and temporal evolution characteristics and factors of heat vulnerability in the Pearl River Delta urban agglomeration from 2001 to 2022. Heliyon 2024; 10:e34116. [PMID: 39091952 PMCID: PMC11292507 DOI: 10.1016/j.heliyon.2024.e34116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
To explore the spatiotemporal evolution characteristics of heat vulnerability in the Pearl River Delta urban agglomeration during heatwave disasters, this research employs the Entropy Weight Method (EWM) to calculate the heat vulnerability assessment results for nine cities in the region spanning from 2001 to 2022. Through the application of kernel density estimation, Moran's I, and the Geographically and Temporally Weighted Regression (GTWR) model, which is proven to be superior to traditional model such as OLS, this study analyzes the dynamic distribution patterns of heat vulnerability in the study area and dissect the trends of influencing factors. The results reveal that from 2001 to 2022, the overall heat vulnerability index in the study area demonstrates a fluctuating downward trend. Key contributors to heat vulnerability include high-frequency and long-duration heatwaves, population sensitivity, and changes in residents' consumption levels. Throughout this period of development, the disparity in heat vulnerability among cities has gradually widened, indicating an overall pattern of uneven development in the region. Future attention should be focused on formulating heat adaptation strategies in areas with high vulnerability to enhance the overall sustainability of the study area.
Collapse
Affiliation(s)
- Jiangbo Wang
- College of Architecture, Nanjing Tech University, Nanjing, 211816, China
| | - Yishu Li
- College of Architecture, Nanjing Tech University, Nanjing, 211816, China
| | - Wei Liu
- Jiangsu Provincial Planning and Design Group, Nanjing, 210019, China
| | - Aiping Gou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| |
Collapse
|
8
|
Muhamad SN, How V, Lim FL, Md Akim A, Karuppiah K, Mohd Shabri NSA. Assessment of heat stress contributing factors in the indoor environment among vulnerable populations in Klang Valley using principal component analysis (PCA). Sci Rep 2024; 14:16265. [PMID: 39009671 PMCID: PMC11251149 DOI: 10.1038/s41598-024-67110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Rising global temperatures can lead to heat waves, which in turn can pose health risks to the community. However, a notable gap remains in highlighting the primary contributing factors that amplify heat-health risk among vulnerable populations. This study aims to evaluate the precedence of heat stress contributing factors in urban and rural vulnerable populations living in hot and humid tropical regions. A comparative cross-sectional study was conducted, involving 108 respondents from urban and rural areas in Klang Valley, Malaysia, using a face-to-face interview and a validated questionnaire. Data was analyzed using the principal component analysis, categorizing factors into exposure, sensitivity, and adaptive capacity indicators. In urban areas, five principal components (PCs) explained 64.3% of variability, with primary factors being sensitivity (health morbidity, medicine intake, increased age), adaptive capacity (outdoor occupation type, lack of ceiling, longer residency duration), and exposure (lower ceiling height, increased building age). In rural, five PCs explained 71.5% of variability, with primary factors being exposure (lack of ceiling, high thermal conductivity roof material, increased building age, shorter residency duration), sensitivity (health morbidity, medicine intake, increased age), and adaptive capacity (female, non-smoking, higher BMI). The order of heat-health vulnerability indicators was sensitivity > adaptive capacity > exposure for urban areas, and exposure > sensitivity > adaptive capacity for rural areas. This study demonstrated a different pattern of leading contributors to heat stress between urban and rural vulnerable populations.
Collapse
Affiliation(s)
- Siti Nurfahirah Muhamad
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Vivien How
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Fang Lee Lim
- Department of Environmental Engineering, Faculty of Engineering and Green Technology (FEGT), Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Karmegam Karuppiah
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nur Shabrina Azreen Mohd Shabri
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Li XC, Qian HR, Zhang YY, Zhang QY, Liu JS, Lai HY, Zheng WG, Sun J, Fu B, Zhou XN, Zhang XX. Optimal decision-making in relieving global high temperature-related disease burden by data-driven simulation. Infect Dis Model 2024; 9:618-633. [PMID: 38645696 PMCID: PMC11026972 DOI: 10.1016/j.idm.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/27/2024] [Accepted: 03/09/2024] [Indexed: 04/23/2024] Open
Abstract
The rapid acceleration of global warming has led to an increased burden of high temperature-related diseases (HTDs), highlighting the need for advanced evidence-based management strategies. We have developed a conceptual framework aimed at alleviating the global burden of HTDs, grounded in the One Health concept. This framework refines the impact pathway and establishes systematic data-driven models to inform the adoption of evidence-based decision-making, tailored to distinct contexts. We collected extensive national-level data from authoritative public databases for the years 2010-2019. The burdens of five categories of disease causes - cardiovascular diseases, infectious respiratory diseases, injuries, metabolic diseases, and non-infectious respiratory diseases - were designated as intermediate outcome variables. The cumulative burden of these five categories, referred to as the total HTD burden, was the final outcome variable. We evaluated the predictive performance of eight models and subsequently introduced twelve intervention measures, allowing us to explore optimal decision-making strategies and assess their corresponding contributions. Our model selection results demonstrated the superior performance of the Graph Neural Network (GNN) model across various metrics. Utilizing simulations driven by the GNN model, we identified a set of optimal intervention strategies for reducing disease burden, specifically tailored to the seven major regions: East Asia and Pacific, Europe and Central Asia, Latin America and the Caribbean, Middle East and North Africa, North America, South Asia, and Sub-Saharan Africa. Sectoral mitigation and adaptation measures, acting upon our categories of Infrastructure & Community, Ecosystem Resilience, and Health System Capacity, exhibited particularly strong performance for various regions and diseases. Seven out of twelve interventions were included in the optimal intervention package for each region, including raising low-carbon energy use, increasing energy intensity, improving livestock feed, expanding basic health care delivery coverage, enhancing health financing, addressing air pollution, and improving road infrastructure. The outcome of this study is a global decision-making tool, offering a systematic methodology for policymakers to develop targeted intervention strategies to address the increasingly severe challenge of HTDs in the context of global warming.
Collapse
Affiliation(s)
- Xin-Chen Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of One Health, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hao-Ran Qian
- School of Data Science, Fudan University, Shanghai, People's Republic of China
| | - Yan-Yan Zhang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of One Health, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qi-Yu Zhang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of One Health, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jing-Shu Liu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of One Health, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hong-Yu Lai
- School of Data Science, Fudan University, Shanghai, People's Republic of China
| | - Wei-Guo Zheng
- School of Data Science, Fudan University, Shanghai, People's Republic of China
| | - Jian Sun
- School of Data Science, Fudan University, Shanghai, People's Republic of China
| | - Bo Fu
- School of Data Science, Fudan University, Shanghai, People's Republic of China
| | - Xiao-Nong Zhou
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of One Health, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiao-Xi Zhang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of One Health, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Aznarez C, Kumar S, Marquez-Torres A, Pascual U, Baró F. Ecosystem service mismatches evidence inequalities in urban heat vulnerability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171215. [PMID: 38428611 DOI: 10.1016/j.scitotenv.2024.171215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Exposure to heat poses a pressing challenge in cities, with uneven health and environmental impacts across the urban fabric. To assess disparities in heat vulnerability and its environmental justice implications, we model supply-demand mismatches for the ecosystem service (ES) urban temperature regulation. We integrated remote sensing, health, and socio-demographic data with Artificial Intelligence for Environment and Sustainability (ARIES) and geographical information system tools. We computed composite indicators at the census tract level for urban cooling supply, and vulnerability to heat as a measure of demand. We do so in the context of the mid-size city of Vitoria-Gasteiz, Basque Country (Europe). We mapped relative mismatches after identifying and analysed their relationship with socio-demographic and health factors. Our findings show disparities in heat vulnerability, with increased exposure observed among socio-economically disadvantaged communities, the elderly, and people with health issues. Areas associated with higher income levels show lower ES mismatches, indicating higher temperature regulation supply and reduced heat vulnerability. The results point at the need for nature-based heat mitigation interventions that especially focus on the more socio-economically disadvantaged communities.
Collapse
Affiliation(s)
- Celina Aznarez
- Institute of Environmental Science and Technology (ICTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Basque Centre for Climate Change (BC3), Leioa, Spain.
| | | | | | - Unai Pascual
- Basque Centre for Climate Change (BC3), Leioa, Spain; Basque Foundation for Science, Ikerbasque, Bilbao, Spain
| | - Francesc Baró
- Department of Geography, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Sociology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
11
|
Noaeen M, Doiron D, Syer J, Brook J. Advancing Population Health Through Open Environmental Data Platforms. Curr Top Behav Neurosci 2024; 68:297-323. [PMID: 39112811 DOI: 10.1007/7854_2024_512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Data stand as the foundation for studying, evaluating, and addressing the multifaceted challenges within environmental health research. This chapter highlights the contributions of the Canadian Urban Environmental Health Research Consortium (CANUE) in generating and democratizing access to environmental exposure data across Canada. Through a consortium-driven approach, CANUE standardizes a variety of datasets - including air quality, greenness, neighborhood characteristics, and weather and climatic factors - into a centralized, analysis-ready, postal code-indexed database. CANUE's mandate extends beyond data integration, encompassing the design and development of environmental health-related web applications, facilitating the linkage of data to a wide range of health databases and sociodemographic data, and providing educational training and events such as webinars, summits, and workshops. The operational and technical aspects of CANUE are explored in this chapter, detailing its human resources, data sources, computational infrastructure, and data management practices. These efforts collectively enhance research capabilities and public awareness, fostering strategic collaboration and generating actionable insights that promote physical and mental health and well-being.
Collapse
Affiliation(s)
- Mohammad Noaeen
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Dany Doiron
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montréal, QC, Canada
| | - Joey Syer
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Jeffrey Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Yoo C, Im J, Weng Q, Cho D, Kang E, Shin Y. Diurnal urban heat risk assessment using extreme air temperatures and real-time population data in Seoul. iScience 2023; 26:108123. [PMID: 37876825 PMCID: PMC10590841 DOI: 10.1016/j.isci.2023.108123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
Previous heat risk assessments have limitations in obtaining accurate heat hazard sources and capturing population distributions, which change over time. This study proposes a diurnal heat risk assessment framework incorporating spatiotemporal air temperature and real-time population data. Daytime and nighttime heat risk maps were generated using hazard, exposure, and vulnerability components in Seoul during the summer of 2018. The hazard was derived from the daily extreme air temperatures obtained using the stacking machine learning model. Exposure was calculated using de facto population density, and vulnerability was assessed using demographic and socioeconomic indicators. The resulting maps revealed distinct diurnal spatial patterns, with high-risk areas in the urban core during the day and dispersed at night. Daytime heat risk was strongly correlated with heat-related illness ratios (R = 0.8) and accurately captured temporal fluctuations in heat-related illness incidence. The proposed framework can guide site-specific adaptation and response plans for dynamic urban heat events.
Collapse
Affiliation(s)
- Cheolhee Yoo
- JC STEM Lab of Earth Observations, Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Research Centre for Artificial Intelligence in Geomatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Jungho Im
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Qihao Weng
- JC STEM Lab of Earth Observations, Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Research Centre for Artificial Intelligence in Geomatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Dongjin Cho
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Eunjin Kang
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Yeji Shin
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
- Market Intelligence Team, Purchasing Strategy Unit, CJ CheilJedang Corporation, Market Intelligence Team, Seoul, South Korea
| |
Collapse
|
13
|
Hess JJ, Sheehan TJ, Miller A, Cunningham R, Errett NA, Isaksen TB, Vogel J, Ebi KL. A novel climate and health decision support platform: Approach, outputs, and policy considerations. ENVIRONMENTAL RESEARCH 2023; 234:116530. [PMID: 37394172 DOI: 10.1016/j.envres.2023.116530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The adverse health impacts of climate change are increasingly apparent and the need for adaptation activities is pressing. Risks, drivers, and decision contexts vary significantly by location, and high-resolution, place-based information is needed to support decision analysis and risk reduction efforts at scale. METHODS Using the Intergovernmental Panel on Climate Change (IPCC) risk framework, we developed a causal pathway linking heat with a composite outcome of heat-related morbidity and mortality. We used an existing systematic literature review to identify variables for inclusion and the authors' expert judgment to determine variable combinations in a hierarchical model. We parameterized the model for Washington state using observational (1991-2020 and June 2021 extreme heat event) and scenario-driven temperature projections (2036-2065), compared outputs against relevant existing indices, and analyzed sensitivity to model structure and variable parameterization. We used descriptive statistics, maps, visualizations and correlation analyses to present results. RESULTS The Climate and Health Risk Tool (CHaRT) heat risk model contains 25 primary hazard, exposure, and vulnerability variables and multiple levels of variable combinations. The model estimates population-weighted and unweighted heat health risk for selected periods and displays estimates on an online visualization platform. Population-weighted risk is historically moderate and primarily limited by hazard, increasing significantly during extreme heat events. Unweighted risk is helpful in identifying lower population areas that have high vulnerability and hazard. Model vulnerability correlate well with existing vulnerability and environmental justice indices. DISCUSSION The tool provides location-specific insights into risk drivers and prioritization of risk reduction interventions including population-specific behavioral interventions and built environment modifications. Insights from causal pathways linking climate-sensitive hazards and adverse health impacts can be used to generate hazard-specific models to support adaptation planning.
Collapse
Affiliation(s)
- Jeremy J Hess
- Center for Health and the Global Environment, University of Washington, Seattle, WA, USA; Department of Emergency Medicine, School of Medicine, University of Washington, Seattle, WA, USA; Department of Environmental and Occupational Health Science, School of Public Health, University of Washington, Seattle, WA, USA; Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA.
| | - Timothy J Sheehan
- Center for Health and the Global Environment, University of Washington, Seattle, WA, USA; Department of Environmental and Occupational Health Science, School of Public Health, University of Washington, Seattle, WA, USA
| | - Alyssa Miller
- Center for Health and the Global Environment, University of Washington, Seattle, WA, USA; Department of Environmental and Occupational Health Science, School of Public Health, University of Washington, Seattle, WA, USA
| | | | - Nicole A Errett
- Center for Health and the Global Environment, University of Washington, Seattle, WA, USA; Department of Environmental and Occupational Health Science, School of Public Health, University of Washington, Seattle, WA, USA
| | - Tania Busch Isaksen
- Center for Health and the Global Environment, University of Washington, Seattle, WA, USA; Department of Environmental and Occupational Health Science, School of Public Health, University of Washington, Seattle, WA, USA
| | - Jason Vogel
- Climate Impacts Group, College of the Environment, University of Washington, Seattle, WA, USA
| | - Kristie L Ebi
- Center for Health and the Global Environment, University of Washington, Seattle, WA, USA; Department of Environmental and Occupational Health Science, School of Public Health, University of Washington, Seattle, WA, USA; Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Dumont CR, Mathis WS. Mapping Heat Vulnerability of a Community Mental Health Center Population. Community Ment Health J 2023; 59:1330-1340. [PMID: 37014585 DOI: 10.1007/s10597-023-01119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/11/2023] [Indexed: 04/05/2023]
Abstract
Individuals with serious mental illness are vulnerable to extreme heat due to biological, social, and place-based factors. We examine the spatial correlation of prevalence of individuals treated at a community mental health center to heat vulnerability. We applied a heat vulnerability index (HVI) to the catchment of the Connecticut Mental Health Center in New Haven, Connecticut. Geocoded addresses were mapped to correlate patient prevalence with heat vulnerability of census tracts. Census tracts closer to the city center had elevated vulnerability scores. Patient prevalence was positively correlated with HVI score (Pearson's r(44) = 0.67, p < 0.01). Statistical significance persists after correction for spatial autocorrelation (modified t-test p < 0.01). The study indicates that individuals treated at this community mental health center are more likely to live in census tracts with high heat vulnerability. Heat mapping strategies can help communicate risk and target resources at the local scale.
Collapse
Affiliation(s)
- Caroline R Dumont
- Department of Psychiatry, School of Medicine, Yale University, Connecticut Mental Health Center, 34 Park Street, 06519, New Haven, CT, USA.
| | - Walter S Mathis
- Department of Psychiatry, School of Medicine, Yale University, Connecticut Mental Health Center, 34 Park Street, 06519, New Haven, CT, USA
| |
Collapse
|
15
|
Weinberger KR, Girma B, Clougherty JE, Sheffield PE. Inclusion of child-relevant data in the development and validation of heat vulnerability indices: a commentary. ENVIRONMENTAL RESEARCH, HEALTH : ERH 2023; 1:033001. [PMID: 37351378 PMCID: PMC10282982 DOI: 10.1088/2752-5309/acdd8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Affiliation(s)
- Kate R Weinberger
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6K0G8, Canada
| | - Blean Girma
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, United States of America
| | - Jane E Clougherty
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, 3215 Market Street, Philadelphia, PA 19104, United States of America
| | - Perry E Sheffield
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, United States of America
| |
Collapse
|
16
|
Wellmann T, Andersson E, Knapp S, Lausch A, Palliwoda J, Priess J, Scheuer S, Haase D. Reinforcing nature-based solutions through tools providing social-ecological-technological integration. AMBIO 2023; 52:489-507. [PMID: 36287383 PMCID: PMC9849649 DOI: 10.1007/s13280-022-01801-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/09/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
While held to be a means for climate change adaptation and mitigation, nature-based solutions (NbS) themselves are vulnerable to climate change. To find ways of compensating for this vulnerability we combine a focused literature review on how information technology has been used to strengthen positive social-ecological-technological feedback, with the development of a prototype decision-support tool. Guided by the literature review, the tool integrates recent advances in using globally available remote sensing data to elicit information on functional diversity and ecosystem service provisioning with information on human service demand and population vulnerability. When combined, these variables can inform climate change adaptation strategies grounded in local social-ecological realities. This type of integrated monitoring and packaging information to be actionable have potential to support NbS management and local knowledge building for context-tailored solutions to societal challenges in urban environments.
Collapse
Affiliation(s)
- Thilo Wellmann
- Landscape Ecology Lab, Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
- Department of Computational Landscape Ecology, UFZ – Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
- Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Erik Andersson
- Ecosystems and Environment Research Programme, University of Helsinki, PB 65 (Viikinkaari 1), 00014 Helsinki, Finland
- Stockholm Resilienc Centre, Stockholm University, Albanovägen 28, 106 91 Stockholm, Sweden
- Unit for Environmental Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520 South Africa
| | - Sonja Knapp
- Department of Community Ecology, UFZ – Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Department of Ecology, Ecosystem Science/Plant Ecology, Technische Universität Berlin, 12165 Berlin, Germany
| | - Angela Lausch
- Landscape Ecology Lab, Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
- Department of Computational Landscape Ecology, UFZ – Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Julia Palliwoda
- Department of Computational Landscape Ecology, UFZ – Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Jörg Priess
- Department of Computational Landscape Ecology, UFZ – Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Sebastian Scheuer
- Landscape Ecology Lab, Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Dagmar Haase
- Landscape Ecology Lab, Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
- Department of Computational Landscape Ecology, UFZ – Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
17
|
Xin J, Yang J, Jiang Y, Shi Z, Jin C, Xiao X, Xia J(C, Yang R. Variations of Urban Thermal Risk with Local Climate Zones. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3283. [PMID: 36833977 PMCID: PMC9966086 DOI: 10.3390/ijerph20043283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Due to the differences in land cover and natural surroundings within cities, residents in various regions face different thermal risks. Therefore, this study combined multi-source data to analyze the relationship between urban heat risk and local climate zones (LCZ). We found that in downtown Shenyang, the building-type LCZ was mainly found in urban centers, while the natural- type LCZ was mainly found in suburbs. Heat risk was highest in urban centers, gradually decreasing along the suburban direction. The thermal risk indices of the building-type LCZs were significantly higher than those of the natural types. Among the building types of LCZs, LCZ 8 (open middle high-rise) had the highest average thermal risk index (0.48), followed by LCZ 3 (0.46). Among the natural types of LCZs, LCZ E (bare rock and paved) and LCZ F (bare soil and sand) had the highest thermal risk indices, reaching 0.31 and 0.29, respectively. This study evaluated the thermal risk of the Shenyang central urban area from the perspective of LCZs and combined it with high-resolution remote sensing data to provide a reference for thermal risk mitigation in future urban planning.
Collapse
Affiliation(s)
- Jiaxing Xin
- Human Settlements Research Center, Liaoning Normal University, Dalian 116029, China
| | - Jun Yang
- Human Settlements Research Center, Liaoning Normal University, Dalian 116029, China
- Jangho Architecture College, Northeastern University, Shenyang 110016, China
| | - Yipeng Jiang
- School of Marine Law and Humanities, Dalian Ocean University, Dalian 116023, China
| | - Zhipeng Shi
- Human Settlements Research Center, Liaoning Normal University, Dalian 116029, China
| | - Cui Jin
- Human Settlements Research Center, Liaoning Normal University, Dalian 116029, China
| | - Xiangming Xiao
- Department of Microbiology and Plant Biology, Center for Earth Observation and Modeling, University of Oklahoma, Norman, OK 73019, USA
| | - Jianhong (Cecilia) Xia
- School of Earth and Planetary Sciences (EPS), Curtin University, Perth, WA 6845, Australia
| | - Ruxin Yang
- Jangho Architecture College, Northeastern University, Shenyang 110016, China
| |
Collapse
|
18
|
Soomar SM, Soomar SM. Identifying factors to develop and validate a heat vulnerability tool for Pakistan – A review. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2023. [DOI: 10.1016/j.cegh.2023.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
19
|
Chaseling GK, Morris NB, Ravanelli N. Extreme Heat and Adverse Cardiovascular Outcomes in Australia and New Zealand: What Do We Know? Heart Lung Circ 2023; 32:43-51. [PMID: 36424263 DOI: 10.1016/j.hlc.2022.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022]
Abstract
Extreme heat events are a leading natural hazard risk to human health. Under all future climate change models, extreme heat events will continue to increase in frequency, duration, and intensity. Evidence from previous extreme heat events across the globe demonstrates that adverse cardiovascular events are the leading cause of morbidity and mortality, particularly amongst the elderly and those with pre-existing cardiovascular disease. However, less is understood about the adverse effects of extreme heat amongst specific cardiovascular diseases (i.e., heart failure, dysrhythmias) and demographics (sex, ethnicity, age) within Australia and New Zealand. Furthermore, although Australia has implemented regional and state heat warning systems, most personal heat-health protective advice available in public health policy documents is either insufficient, not grounded in scientific evidence, and/or does not consider clinical factors such as age or co-morbidities. Dissemination of evidence-based recommendations and enhancing community resilience to extreme heat disasters within Australia and New Zealand should be an area of critical focus to reduce the burden and negative health effects associated with extreme heat. This narrative review will focus on five key areas in relation to extreme heat events within Australia and New Zealand: 1) the potential physiological mechanisms that cause adverse cardiovascular outcomes during extreme heat events; 2) how big is the problem within Australia and New Zealand?; 3) what the heat-health response plans are; 4) research knowledge and translation; and, 5) knowledge gaps and areas for future research.
Collapse
Affiliation(s)
- Georgia K Chaseling
- Engagement and Co-design Research Hub, School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; SOLVE-CHD NHMRC Synergy Grant, School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Nathan B Morris
- Department of Human Physiology & Nutrition, University of Colorado, Colorado Springs, CO, USA
| | | |
Collapse
|
20
|
Milando CW, Black-Ingersoll F, Heidari L, López-Hernández I, de Lange J, Negassa A, McIntyre AM, Martinez MPB, Bongiovanni R, Levy JI, Kinney PL, Scammell MK, Fabian MP. Mixed methods assessment of personal heat exposure, sleep, physical activity, and heat adaptation strategies among urban residents in the Boston area, MA. BMC Public Health 2022; 22:2314. [PMID: 36496371 PMCID: PMC9739346 DOI: 10.1186/s12889-022-14692-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
The growing frequency, intensity, and duration of extreme heat events necessitates interventions to reduce heat exposures. Local opportunities for heat adaptation may be optimally identified through collection of both quantitative exposure metrics and qualitative data on perceptions of heat. In this study, we used mixed methods to characterize heat exposure among urban residents in the area of Boston, Massachusetts, US, in summer 2020. Repeated interviews of N = 24 study participants ascertained heat vulnerability and adaptation strategies. Participants also used low-cost sensors to collect temperature, location, sleep, and physical activity data. We saw significant differences across temperature metrics: median personal temperature exposures were 3.9 °C higher than median ambient weather station temperatures. Existing air conditioning (AC) units did not adequately control indoor temperatures to desired thermostat levels: even with AC use, indoor maximum temperatures increased by 0.24 °C per °C of maximum outdoor temperature. Sleep duration was not associated with indoor or outdoor temperature. On warmer days, we observed a range of changes in time-at-home, expected given our small study size. Interview results further indicated opportunities for heat adaptation interventions including AC upgrades, hydration education campaigns, and amelioration of energy costs during high heat periods. Our mixed methods design informs heat adaptation interventions tailored to the challenges faced by residents in the study area. The strength of our community-academic partnership was a large part of the success of the mixed methods approach.
Collapse
Affiliation(s)
- Chad W Milando
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA.
| | - Flannery Black-Ingersoll
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA
| | - Leila Heidari
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA
| | | | - Julie de Lange
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA
| | - Abgel Negassa
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA
| | - Alina M McIntyre
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA
| | - M Pilar Botana Martinez
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA
| | | | - Jonathan I Levy
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA
| | - Patrick L Kinney
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA
| | - Madeleine K Scammell
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA
| | - M Patricia Fabian
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St, Boston, MA, 02118, USA
- Institute for Global Sustainability, Boston University, Boston, 02118, USA
| |
Collapse
|
21
|
Aydin-Ghormoz H, Adeyeye T, Muscatiello N, Nayak S, Savadatti S, Insaf TZ. Identifying Risk Factors for Hospitalization with Behavioral Health Disorders and Concurrent Temperature-Related Illness in New York State. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16411. [PMID: 36554292 PMCID: PMC9779268 DOI: 10.3390/ijerph192416411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Extreme temperature events are linked to increased emergency department visits, hospitalizations, and mortality for individuals with behavioral health disorders (BHD). This study aims to characterize risk factors for concurrent temperature-related illness among BHD hospitalizations in New York State. Using data from the NYS Statewide and Planning Research and Cooperative System between 2005-2019, multivariate log binomial regression models were used in a population of BHD hospitalizations to estimate risk ratios (RR) for a concurrent heat-related (HRI) or cold-related illness (CRI). Dementia (RR 1.65; 95% CI:1.49, 1.83) and schizophrenia (RR 1.38; 95% CI:1.19, 1.60) were associated with an increased risk for HRI among BHD hospitalizations, while alcohol dependence (RR 2.10; 95% CI:1.99, 2.22), dementia (RR 1.52; 95% CI:1.44, 1.60), schizophrenia (RR 1.41; 95% CI:1.31, 1.52), and non-dependent drug/alcohol use (RR 1.20; 95% CI:1.15, 1.26) were associated with an increased risk of CRI among BHD hospitalizations. Risk factors for concurrent HRI among BHD hospitalizations include increasing age, male gender, non-Hispanic Black race, and medium hospital size. Risk factors for concurrent CRI among BHD hospitalizations include increasing age, male gender, non-Hispanic Black race, insurance payor, the presence of respiratory disease, and rural hospital location. This study adds to the literature by identifying dementia, schizophrenia, substance-use disorders, including alcohol dependence and non-dependent substance-use, and other sociodemographic factors as risk factors for a concurrent CRI in BHD hospitalizations.
Collapse
Affiliation(s)
- Heather Aydin-Ghormoz
- Center for Environmental Health, New York State Department of Health, Albany, NY 12208, USA
- School of Public Health, University at Albany, Rensselaer, NY 12144, USA
| | - Temilayo Adeyeye
- Center for Environmental Health, New York State Department of Health, Albany, NY 12208, USA
- School of Public Health, University at Albany, Rensselaer, NY 12144, USA
| | - Neil Muscatiello
- Center for Environmental Health, New York State Department of Health, Albany, NY 12208, USA
| | - Seema Nayak
- Center for Environmental Health, New York State Department of Health, Albany, NY 12208, USA
| | - Sanghamitra Savadatti
- Center for Environmental Health, New York State Department of Health, Albany, NY 12208, USA
- School of Public Health, University at Albany, Rensselaer, NY 12144, USA
| | - Tabassum Z. Insaf
- Center for Environmental Health, New York State Department of Health, Albany, NY 12208, USA
- School of Public Health, University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|
22
|
Manware M, Dubrow R, Carrión D, Ma Y, Chen K. Residential and Race/Ethnicity Disparities in Heat Vulnerability in the United States. GEOHEALTH 2022; 6:e2022GH000695. [PMID: 36518814 PMCID: PMC9744626 DOI: 10.1029/2022gh000695] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/03/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Adverse health outcomes caused by extreme heat represent the most direct human health threat associated with the warming of the Earth's climate. Socioeconomic, demographic, health, land cover, and temperature determinants contribute to heat vulnerability; however, nationwide patterns of residential and race/ethnicity disparities in heat vulnerability in the United States are poorly understood. This study aimed to develop a Heat Vulnerability Index (HVI) for the United States; to assess differences in heat vulnerability across geographies that have experienced historical and/or contemporary forms of marginalization; and to quantify HVI by race/ethnicity. Principal component analysis was used to calculate census tract level HVI scores based on the 2019 population characteristics of the United States. Differences in HVI scores were analyzed across the Home Owners' Loan Corporation (HOLC) "redlining" grades, the Climate and Economic Justice Screening Tool (CEJST) disadvantaged versus non-disadvantaged communities, and race/ethnicity groups. HVI scores were calculated for 55,267 U.S. census tracts. Mean HVI scores were 17.56, 18.61, 19.45, and 19.93 for HOLC grades "A"-"D," respectively. CEJST-defined disadvantaged census tracts had a significantly higher mean HVI score (19.13) than non-disadvantaged tracts (16.68). The non-Hispanic African American or Black race/ethnicity group had the highest HVI score (18.51), followed by Hispanic or Latino (18.19). Historically redlined and contemporary CEJST disadvantaged census tracts and communities of color were found to be associated with increased vulnerability to heat. These findings can help promote equitable climate change adaptation policies by informing policymakers about the national distribution of place- and race/ethnicity-based disparities in heat vulnerability.
Collapse
Affiliation(s)
- Mitchell Manware
- Department of Social and Behavioral SciencesYale School of Public HealthNew HavenCTUSA
- Yale Center on Climate Change and HealthYale School of Public HealthNew HavenCTUSA
| | - Robert Dubrow
- Yale Center on Climate Change and HealthYale School of Public HealthNew HavenCTUSA
- Department of Environmental Health SciencesYale School of Public HealthNew HavenCTUSA
| | - Daniel Carrión
- Yale Center on Climate Change and HealthYale School of Public HealthNew HavenCTUSA
- Department of Environmental Health SciencesYale School of Public HealthNew HavenCTUSA
| | - Yiqun Ma
- Yale Center on Climate Change and HealthYale School of Public HealthNew HavenCTUSA
- Department of Environmental Health SciencesYale School of Public HealthNew HavenCTUSA
| | - Kai Chen
- Yale Center on Climate Change and HealthYale School of Public HealthNew HavenCTUSA
- Department of Environmental Health SciencesYale School of Public HealthNew HavenCTUSA
| |
Collapse
|
23
|
How neighborhood environment modified the effects of power outages on multiple health outcomes in New York state? HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2022; 4. [PMID: 36777309 PMCID: PMC9914544 DOI: 10.1016/j.heha.2022.100039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background Although power outage (PO) is one of the most important consequences of increasing weather extremes and the health impact of POs has been reported previously, studies on the neighborhood environment underlying the population vulnerability in such situations are limited. This study aimed to identify dominant neighborhood environmental predictors which modified the impact of POs on multiple health outcomes in New York State. Methods We applied a two-stage approach. In the first stage, we used time series analysis to determine the impact of POs (versus non-PO periods) on multiple health outcomes in each power operating division in New York State, 2001-2013. In the second stage, we classified divisions as risk-elevated and non-elevated, then developed predictive models for the elevation status based on 36 neighborhood environmental factors using random forest and gradient boosted trees. Results Consistent across different outcomes, we found predictors representing greater urbanization, particularly, the proportion of residents having access to public transportation (importance ranging from 4.9-15.6%), population density (3.3-16.1%), per capita income (2.3-10.7%), and the density of public infrastructure (0.8-8.5%), were associated with a higher possibility of risk elevation following power outages. Additionally, the percent of minority (-6.3-27.9%) and those with limited English (2.2-8.1%), the percent of sandy soil (6.5-11.8%), and average soil temperature (3.0-15.7%) were also dominant predictors for multiple outcomes. Spatial hotspots of vulnerability generally were located surrounding New York City and in the northwest, the pattern of which was consistent with socioeconomic status. Conclusion Population vulnerability during power outages was dominated by neighborhood environmental factors representing greater urbanization.
Collapse
|
24
|
Nanda L, Chakraborty S, Mishra SK, Dutta A, Rathi SK. Characteristics of Households' Vulnerability to Extreme Heat: An Analytical Cross-Sectional Study from India. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15334. [PMID: 36430053 PMCID: PMC9690422 DOI: 10.3390/ijerph192215334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
High ambient temperature is a key public health problem, as it is linked to high heat-related morbidity and mortality. We intended to recognize the characteristics connected to heat vulnerability and the coping practices among Indian urbanites of Angul and Kolkata. In 2020, a cross-sectional design was applied to 500 households (HHs) each in Angul and Kolkata. Information was gathered on various characteristics including sociodemographics, household, exposure, sensitivity, and coping practices regarding heat and summer heat illness history, and these characteristics led to the computation of a heat vulnerability index (HVI). Bivariate and multivariable logistic regression analyses were used with HVI as the outcome variable to identify the determinants of high vulnerability to heat. The results show that some common and some different factors are responsible for determining the heat vulnerability of a household across different cities. For Angul, the factors that influence vulnerability are a greater number of rooms in houses, the use of cooling methods such as air conditioning, having comorbid conditions, the gender of the household head, and distance from nearby a primary health centre (PHC). For Kolkata, the factors are unemployment, income, the number of rooms, sleeping patterns, avoidance of nonvegetarian food, sources of water, comorbidities, and distance from a PHC. The study shows that every city has a different set of variables that influences vulnerability, and each factor should be considered in design plans to mitigate vulnerability to extreme heat.
Collapse
Affiliation(s)
- Lipika Nanda
- Public Health Foundation of India, Gurugram 122002, India
| | | | - Saswat Kishore Mishra
- Centre for Management Studies, Administrative Staff College of India, Hyderabad 500034, India
| | - Ambarish Dutta
- Indian Institute of Public Health, Bhubaneswar 751013, India
| | - Suresh Kumar Rathi
- Department of Central Research and Innovation Center, Sumandeep Vidyapeeth Deemed to be University, Vadodara 391760, India
| |
Collapse
|
25
|
Romitti Y, Sue Wing I, Spangler KR, Wellenius GA. Inequality in the availability of residential air conditioning across 115 US metropolitan areas. PNAS NEXUS 2022; 1:pgac210. [PMID: 36714868 PMCID: PMC9802221 DOI: 10.1093/pnasnexus/pgac210] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/22/2022] [Indexed: 02/01/2023]
Abstract
Continued climate change is increasing the frequency, severity, and duration of populations' high temperature exposures. Indoor cooling is a key adaptation, especially in urban areas, where heat extremes are intensified-the urban heat island effect (UHI)-making residential air conditioning (AC) availability critical to protecting human health. In the United States, the differences in residential AC prevalence from one metropolitan area to another is well understood, but its intra-urban variation is poorly characterized, obscuring neighborhood-scale variability in populations' heat vulnerability and adaptive capacity. We address this gap by constructing empirically derived probabilities of residential AC for 45,995 census tracts across 115 metropolitan areas. Within cities, AC is unequally distributed, with census tracts in the urban "core" exhibiting systematically lower prevalence than their suburban counterparts. Moreover, this disparity correlates strongly with multiple indicators of social vulnerability and summer daytime surface UHI intensity, highlighting the challenges that vulnerable urban populations face in adapting to climate-change driven heat stress amplification.
Collapse
Affiliation(s)
- Yasmin Romitti
- Department of Earth and Environment, Boston University, Boston, MA 02215, USA
| | - Ian Sue Wing
- Department of Earth and Environment, Boston University, Boston, MA 02215, USA
| | - Keith R Spangler
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Gregory A Wellenius
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA 02118, USA
| |
Collapse
|
26
|
Han Q, Liu Z, Jia J, Anderson BT, Xu W, Shi P. Web-Based Data to Quantify Meteorological and Geographical Effects on Heat Stroke: Case Study in China. GEOHEALTH 2022; 6:e2022GH000587. [PMID: 35949256 PMCID: PMC9356531 DOI: 10.1029/2022gh000587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Heat stroke is a serious heat-related health outcome that can eventually lead to death. Due to the poor accessibility of heat stroke data, the large-scale relationship between heat stroke and meteorological factors is still unclear. This work aims to clarify the potential relationship between meteorological variables and heat stroke, and quantify the meteorological threshold that affected the severity of heat stroke. We collected daily heat stroke search index (HSSI) and meteorological data for the period 2013-2020 in 333 Chinese cities to analyze the relationship between meteorological variables and HSSI using correlation analysis and Random forest (RF) model. Temperature and relative humidity (RH) accounted for 62% and 9% of the changes of HSSI, respectively. In China, cases of heat stroke may start to occur when temperature exceeds 36°C and RH exceeds 58%. This threshold was 34.5°C and 79% in the north of China, and 36°C and 48% in the south of China. Compared to RH, the threshold of temperature showed a more evident difference affected by altitude and distance from the ocean, which was 35.5°C in inland cities and 36.5°C in coastal cities; 35.5°C in high-altitude cities and 36°C in low-altitude cities. Our findings provide a possible way to analyze the interaction effect of meteorological variables on heat-related illnesses, and emphasizes the effects of geographical environment. The meteorological threshold quantified in this research can also support policymaker to establish a better meteorological warning system for public health.
Collapse
Affiliation(s)
- Qinmei Han
- State Key Laboratory of Earth Surface Processes and Resource EcologyBeijing Normal UniversityBeijingChina
- Academy of Disaster Reduction and Emergency ManagementMinistry of Emergency Management and Ministry of EducationBeijing Normal UniversityBeijingChina
- Faculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| | - Zhao Liu
- School of Linkong Economics and ManagementBeijing Institute of Economics and ManagementBeijingChina
| | - Junwen Jia
- School of System ScienceBeijing Normal UniversityBeijingChina
| | | | - Wei Xu
- State Key Laboratory of Earth Surface Processes and Resource EcologyBeijing Normal UniversityBeijingChina
- Academy of Disaster Reduction and Emergency ManagementMinistry of Emergency Management and Ministry of EducationBeijing Normal UniversityBeijingChina
- Faculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| | - Peijun Shi
- State Key Laboratory of Earth Surface Processes and Resource EcologyBeijing Normal UniversityBeijingChina
- Academy of Disaster Reduction and Emergency ManagementMinistry of Emergency Management and Ministry of EducationBeijing Normal UniversityBeijingChina
- Faculty of Geographical ScienceBeijing Normal UniversityBeijingChina
- Academy of Plateau Science and SustainabilityPeople's Government of Qinghai Province and Beijing Normal UniversityXiningChina
| |
Collapse
|
27
|
Navas-Martín M, López-Bueno JA, Díaz J, Follos F, Vellón J, Mirón I, Luna M, Sánchez-Martínez G, Culqui D, Linares C. Effects of local factors on adaptation to heat in Spain (1983-2018). ENVIRONMENTAL RESEARCH 2022; 209:112784. [PMID: 35090871 DOI: 10.1016/j.envres.2022.112784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 05/16/2023]
Abstract
The European Union is currently immersed in policy development to address the effects of climate change around the world. Key plans and processes for facilitating adaptation to high temperatures and for reducing the adverse effects on health are among the most urgent measures. Therefore, it is necessary to understand those factors that influence adaptation. The aim of this study was to provide knowledge related to the social, climate and economic factors that are related to the evolution of minimum mortality temperatures (MMT) in Spain in the rural and urban contexts, during the 1983-2018 time period. For this purpose, local factors were studied regarding their relationship to levels of adaptation to heat. MMT is an indicator that allows for establishing a relationship to between mortality and temperature, and is a valid indicator to assess the capacity of adaptation to heat of a certain population. MMT is obtained through the maximum daily temperature and daily mortality of the study period. The evolution of MMT values for Spain was established in a previous paper. An ecological, longitudinal and retrospective study was carried out. Generalized linear models (GLM) were performed to identify the variables that appeared to be related to adaptation. The adaptation was calculated as the difference in variation in MMT based on the average increase in maximum daily temperatures. In terms of adaptation to heat, urban populations have adapted more than non-urban populations. Seventy-nine percent (n = 11) of urban provinces have adapted to heat, compared to twenty-one percent (n = 3) of rural provinces that have not adapted. In terms of urban zones, income level and habituation to heat (values over the 95th percentile) were variables shown to be related to adaptation. In contrast, among non-urban provinces, a greater number of housing rehabilitation licenses and a greater number of health professionals were variables associated with higher increases in MMT, and therefore, with adaptation. These results highlight the need to carry out studies that allow for identifying the local factors that are most relevant and influential in population adaptation. More studies carried out at a small scale are needed.
Collapse
Affiliation(s)
- Má Navas-Martín
- Doctorate Program in Biomedical Sciences and Public Health, National University of Distance Education, Madrid, Spain; National School of Public Health, Carlos III Institute of Health, Madrid, Spain.
| | - J A López-Bueno
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - J Díaz
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - F Follos
- Tdot Soluciones Sostenibles, SL. Ferrol. A Coruña, Spain
| | - Jm Vellón
- Tdot Soluciones Sostenibles, SL. Ferrol. A Coruña, Spain
| | - Ij Mirón
- Regional Health Authority of Castile La Mancha, Toledo, Spain
| | - My Luna
- State Meteorological Agency, Madrid, Spain
| | | | - D Culqui
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - C Linares
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
28
|
López-Bueno JA, Navas-Martín MA, Díaz J, Mirón IJ, Luna MY, Sánchez-Martínez G, Culqui D, Linares C. Analysis of vulnerability to heat in rural and urban areas in Spain: What factors explain Heat's geographic behavior? ENVIRONMENTAL RESEARCH 2022; 207:112213. [PMID: 34666017 DOI: 10.1016/j.envres.2021.112213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION There is currently little knowledge and few published works on the subject of vulnerability to heat in rural environments at the country level. Therefore, the objective of this study was to determine whether rural areas are more vulnerable to extreme heat than urban areas in Spain. This study aimed to analyze whether a pattern of vulnerability depends on contextual, environmental, demographic, economic and housing variables. METHODS An ecological, longitudinal and retrospective study was carried out based on time series data between January 01, 2000 and December 31, 2013 in 42 geographic areas in 10 provinces in Spain. We first analyzed the functional relationship between the mortality rate per million inhabitants and maximum daily temperature (Tmax). We then determined the summer temperature threshold (Pthreshold) (June-September) at which increases in mortality are produced that are attributable to heat. In a second phase, based on Pthreshold, a vulnerability variable was calculated, and its distribution was analyzed using mixed linear models from the Poisson family (link = log). In these models, the dependent variable was vulnerability, and the independent variables were exposure to high temperatures, aridity of the climate, deprivation index, percentage of people over age 65, rurality index, percentage of housing built prior to 1980 and condition of dwellings. RESULTS Rurality was a protective factor, and vulnerability in urban areas was six times greater. In contrast, risk factors included aridity (RR = 5.89 (2.26 15.36)), living in cool summer zones (2.69 (1.23, 5.91)), poverty (4.05 (1.91 8.59)) and the percentage of dysfunctional housing (1.13 (1.04 1.24)). CONCLUSIONS Rural areas are less vulnerable to extreme heat than the urban areas analyzed. Also, population groups with worse working conditions and higher percentages of dwellings in poor conditions are more vulnerable.
Collapse
Affiliation(s)
- J A López-Bueno
- Escuela Nacional de Sanidad, Instituto de Salud Carlos III, Madrid, Spain.
| | - M A Navas-Martín
- Escuela Nacional de Sanidad, Instituto de Salud Carlos III, Madrid, Spain
| | - J Díaz
- Escuela Nacional de Sanidad, Instituto de Salud Carlos III, Madrid, Spain
| | - I J Mirón
- Consejería de Sanidad, Junta de Comunidades de Castilla la Mancha, Toledo, Spain
| | - M Y Luna
- Agencia Estatal de Meteorología, Madrid, Spain
| | | | - D Culqui
- Escuela Nacional de Sanidad, Instituto de Salud Carlos III, Madrid, Spain
| | - C Linares
- Escuela Nacional de Sanidad, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
29
|
Mapping Heat-Health Vulnerability Based on Remote Sensing: A Case Study in Karachi. REMOTE SENSING 2022. [DOI: 10.3390/rs14071590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
As a result of global climate change, the frequency and intensity of heat waves have increased significantly. According to the World Meteorological Organization (WMO), extreme temperatures in southwestern Pakistan have exceeded 54 °C in successive years. The identification and assessment of heat-health vulnerability (HHV) are important for controlling heat-related diseases and mortality. At present, heat waves have many definitions. To better describe the heat wave mortality risk, we redefine the heat wave by regarding the most frequent temperature (MFT) as the minimum temperature threshold for HHV for the first time. In addition, different indicators that serve as relevant evaluation factors of exposure, sensitivity and adaptability are selected to conduct a kilometre-level HHV assessment. The hesitant analytic hierarchy process (H-AHP) method is used to evaluate each index weight. Finally, we incorporate the weights into the data layers to establish the final HHV assessment model. The vulnerability in the study area is divided into five levels, high, middle-high, medium, middle-low and low, with proportions of 3.06%, 46.55%, 41.85%, 8.53% and 0%, respectively. Health facilities and urbanization were found to provide advantages for vulnerability reduction. Our study improved the resolution to describe the spatial heterogeneity of HHV, which provided a reference for more detailed model construction. It can help local government formulate more targeted control measures to reduce morbidity and mortality during heat waves.
Collapse
|
30
|
Karanja J, Wanyama D, Kiage L. Weighting mechanics and the spatial pattern of composite metrics of heat vulnerability in Atlanta, Georgia, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:151432. [PMID: 34748844 DOI: 10.1016/j.scitotenv.2021.151432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/20/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
This study constructs two biophysical metrics; one based on Land Surface Temperatures (LST) and an integrated spectral index. The latter is an aggregate of Normalized Difference Vegetation Index (NDVI), Normalized Difference Bareness Index (NDBaI), Normalized Difference Water Index (NDWI), and Normalized Difference Built-up Index (NDBI). The goal is to determine how disparate weighting techniques, data transformation approaches, and spatial visualization pathways influence the computation of composite heat metrics. Using composite images made of aggregated images from late May to Early September within Google Earth Engine, we generated four composites by combining biophysical metrics with SoVI using equal and Eigen-based weightings informed by Principal Component Analysis (PCA). We compared equal interval classification, global and local Moran's as pathways for spatial visualization of hotspots. We utilized several data transformation techniques in a Geographic Information System (GIS), including rescaling, reclassification, zonal statistics, and spatial weighting. Mann Kendall and Sen's Slope detected and quantified monotonic trends in each spectral index. The results show that the LST biophysical metric and its composites indicate increased heat susceptibility over time, with disproportionately exposed core metro counties. The integrated spectral index and its proxies showed reduced vulnerability hence not a good proxy for LST. At the same time, the Mann Kendall and Sen's Slope found persistent increases in NDVI and NDWI and decreases in NDBI and NDBaI. However, opposite trends were evident in core city counties. The LST-based composites and spectral indices-based composites varied in the spatial-temporal distribution of hotspots. Disparate weighting mechanics, data transformation techniques, and visualization alternatives influence the magnitude and spatial-temporal distribution of heat hotspots.
Collapse
Affiliation(s)
- Joseph Karanja
- Department of Geosciences, Georgia State University, 34 Peachtree Center Avenue, Atlanta, GA 30302, USA
| | - Dan Wanyama
- Department of Geography, Environment and, Spatial Sciences, Michigan State University, East Lansing, MI, USA; Remote Sensing and GIS Research and Outreach Services, Michigan State University, East Lansing, MI, USA
| | - Lawrence Kiage
- Department of Geosciences, Georgia State University, 34 Peachtree Center Avenue, Atlanta, GA 30302, USA.
| |
Collapse
|
31
|
Li D, Newman GD, Wilson B, Zhang Y, Brown RD. Modeling the Relationships Between Historical Redlining, Urban Heat, and Heat-Related Emergency Department Visits: An Examination of 11 Texas Cities. ENVIRONMENT AND PLANNING. B, URBAN ANALYTICS AND CITY SCIENCE 2022; 49:933-952. [PMID: 35474708 PMCID: PMC9037692 DOI: 10.1177/23998083211039854] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Place-based structural inequalities can have critical implications for the health of vulnerable populations. Historical urban policies, such as redlining, have contributed to current inequalities in exposure to intra-urban heat. However, it is unknown whether these spatial inequalities are associated with disparities in heat-related health outcomes. The aim of this study is to determine the relationships between historical redlining, intra-urban heat conditions, and heat-related emergency department visits using data from eleven Texas cities. At the zip code level, the proportion of historical redlining was determined, and heat exposure was measured using daytime and nighttime land surface temperature (LST). Heat-related inpatient and outpatient rates were calculated based on emergency department visit data that included ten categories of heat-related diseases between 2016 and 2019. Regression or spatial error/lag models revealed significant associations between higher proportions of redlined areas in the neighborhood and higher LST (Coef. = 0.0122, 95% CI = 0.0039 - 0.0205). After adjusting for indicators of social vulnerability, neighborhoods with higher proportions of redlining showed significantly elevated heat-related outpatient visit rate (Coef. = 0.0036, 95% CI = 0.0007-0.0066) and inpatient admission rate (Coef. = 0.0018, 95% CI = 0.0001-0.0035). These results highlight the role of historical discriminatory policies on the disparities of heat-related illness and suggest a need for equity-based urban heat planning and management strategies.
Collapse
Affiliation(s)
- Dongying Li
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX 77843, USA
| | - Galen D. Newman
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX 77843, USA
| | - Bev Wilson
- Urban and Environmental Planning, School of Architecture, University of Virginia, USA
| | - Yue Zhang
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX 77843, USA
| | - Robert D. Brown
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
32
|
Razzak JA, Agrawal P, Chand Z, Quraishy S, Ghaffar A, Hyder AA. Impact of community education on heat-related health outcomes and heat literacy among low-income communities in Karachi, Pakistan: a randomised controlled trial. BMJ Glob Health 2022; 7:bmjgh-2021-006845. [PMID: 35101860 PMCID: PMC8804631 DOI: 10.1136/bmjgh-2021-006845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/03/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Extreme heat exposure is a growing public health concern. In this trial, we tested the impact of a community health worker (CHW) led heat education programme on all-cause mortality, unplanned hospital visits and changes in knowledge and practices in Karachi, Pakistan. METHODS The Heat Emergency Awareness and Treatment trial was a community-based, open-label, two-group, unblinded cluster-randomised controlled trial that implemented a CHW-led educational intervention between March and May 2018 in Karachi, Pakistan. We randomly assigned (1:1) 16 clusters, each with ~185 households or 1000 population, to the intervention or usual care (control group). We collected data on all-cause mortality, unplanned hospital visits, evidence of heat illness through surveillance and a knowledge and practice survey during the summer months of 2017 (preintervention) and 2018 (postintervention). FINDINGS We recruited 18 554 participants from 2991 households (9877 individuals (1593 households) in the control group and 8668 individuals (1398 households) in the intervention group). After controlling for temporal trends, there was a 38% (adjusted OR 0.62, 95% CI 0.49 to 0.77) reduction in hospital visits for any cause in the intervention group compared with the control group. In addition, there was an improvement in many areas of knowledge and practices, but there was no significant difference in all-cause mortality. INTERPRETATION A CHW-led community intervention was associated with decreased unscheduled hospital visits, improved heat literacy and practices but did not impact all-cause mortality. CHWs could play an essential role in preparing communities for extreme heat events. TRIAL REGISTRATION NUMBER NCT03513315.
Collapse
Affiliation(s)
- Junaid Abdul Razzak
- Department of Emergency Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Priyanka Agrawal
- International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Zaheer Chand
- MLE Department, Aman Foundation, Karachi, Pakistan
| | - Saadia Quraishy
- MLE Department, Aman Foundation/West London Heath Trust, London, UK
| | - Abdul Ghaffar
- Alliance for Health Policy and Systems Research, World Health Organization, Geneve, Switzerland
| | - Adnan A Hyder
- MLE Department, George Washington University Milken Institute of Public Health, Washington, District of Columbia, USA
| |
Collapse
|
33
|
Effects of Urban Landscape and Sociodemographic Characteristics on Heat-Related Health Using Emergency Medical Service Incidents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031287. [PMID: 35162309 PMCID: PMC8835151 DOI: 10.3390/ijerph19031287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
It is well known that extremely hot weather causes heat-related health issues. Health problems, especially in urban areas, are becoming increasingly important due to urban heat island effect. Understanding the impact of neighborhood characteristics is important for research into the relationship between thermal environment and human health. The objectives of this study were to explore the urban landscape and sociodemographic characteristics affecting heat-related health and identify spatial inequalities for vulnerable groups. A total of 27,807 heat-related EMS incidents were used at the census block group level (N = 285). We used land cover database and Landsat satellite images for urban landscape variables and used 2019 U.S. Census data for sociodemographic variables. Negative binomial regression was used to identify the neighborhood variables associated with the heat-related EMS incidents in each block group. Heat-related health has been alleviated in block groups with high green areas. However, the negative effects of thermal environments on human health were higher in areas with a high percentage of impervious surface, over 65 years, non-white people, no high school diploma, or unemployment. The results indicate that heat-related health problems can be addressed through prevention strategies for block group variables. Local intervention efforts to solve health issues should be targeted at more vulnerable areas and groups.
Collapse
|
34
|
Lee EK, Donley G, Ciesielski TH, Gill I, Yamoah O, Roche A, Martinez R, Freedman DA. Health outcomes in redlined versus non-redlined neighborhoods: A systematic review and meta-analysis. Soc Sci Med 2021; 294:114696. [PMID: 34995988 DOI: 10.1016/j.socscimed.2021.114696] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Redlining was a racialized zoning practice in the U.S. that blocked fair access to home loans during the 1930s, and recent research is illuminating health problems in the current residents of these historically redlined areas. However, this work has not yet been holistically summarized. Here, we present the first systematic review and meta-analysis comparing health outcomes in redlined versus non-redlined neighborhoods in U.S. cities. METHODS We extracted relevant articles in PubMed, Web of Science, Cochrane and Science Direct databases published from January 2010 to September 2021. RESULTS The search revealed 12 studies on preterm births (n = 3), gunshot-related injuries (n = 2), cancer (n = 1), asthma (n = 1), self-rated health (n = 1), multiple health outcomes (n = 2), heat-related outcomes (n = 1) and COVID-19 incidence and mortality (n = 1). A meta-analysis of three studies found the odds of having preterm birth was significantly higher (OR = 1.41, 95% CI: 1.05, 1.88; p = 0.02) among women living in redlined areas compared to those in non-redlined areas. Review of other outcomes revealed that gunshot-related injuries, asthma, heat-related outcomes, and multiple chronic conditions were worse in redlined areas, while associations with cancer varied by cancer type. In terms of cause-specific mortality, one study revealed no link between residential redlining and infant mortality rate, while one study on COVID-19 outcomes was inconclusive. CONCLUSIONS Overall, this review presents evidence that living in historically redlined areas is associated with increased risk of multiple serious adverse health outcomes. Further research on mechanisms, remediation, and neighborhood-level interventions is needed to strengthen the understanding of the impacts of redlining on health.
Collapse
Affiliation(s)
- Eun Kyung Lee
- Mary Ann Swetland Center for Environmental Health, Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 11000 Cedar Avenue, Cleveland, OH, 44106, USA.
| | - Gwendolyn Donley
- Mary Ann Swetland Center for Environmental Health, Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 11000 Cedar Avenue, Cleveland, OH, 44106, USA.
| | - Timothy H Ciesielski
- Mary Ann Swetland Center for Environmental Health, Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 11000 Cedar Avenue, Cleveland, OH, 44106, USA
| | - India Gill
- Mary Ann Swetland Center for Environmental Health, Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 11000 Cedar Avenue, Cleveland, OH, 44106, USA
| | - Owusua Yamoah
- Mary Ann Swetland Center for Environmental Health, Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 11000 Cedar Avenue, Cleveland, OH, 44106, USA
| | - Abigail Roche
- Mary Ann Swetland Center for Environmental Health, Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 11000 Cedar Avenue, Cleveland, OH, 44106, USA
| | - Roberto Martinez
- Mary Ann Swetland Center for Environmental Health, Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 11000 Cedar Avenue, Cleveland, OH, 44106, USA
| | - Darcy A Freedman
- Mary Ann Swetland Center for Environmental Health, Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 11000 Cedar Avenue, Cleveland, OH, 44106, USA
| |
Collapse
|
35
|
Rathi SK, Chakraborty S, Mishra SK, Dutta A, Nanda L. A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Urbanites of Four Cities of India. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:283. [PMID: 35010542 PMCID: PMC8750942 DOI: 10.3390/ijerph19010283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/23/2022]
Abstract
Extreme heat and heat waves have been established as disasters which can lead to a great loss of life. Several studies over the years, both within and outside of India, have shown how extreme heat events lead to an overall increase in mortality. However, the impact of extreme heat, similar to other disasters, depends upon the vulnerability of the population. This study aims to assess the extreme heat vulnerability of the population of four cities with different characteristics across India. This cross-sectional study included 500 households from each city across the urban localities (both slum and non-slum) of Ongole in Andhra Pradesh, Karimnagar in Telangana, Kolkata in West Bengal and Angul in Odisha. Twenty-one indicators were used to construct a household vulnerability index to understand the vulnerability of the cities. The results have shown that the majority of the households fell under moderate to high vulnerability level across all the cities. Angul and Kolkata were found to be more highly vulnerable as compared to Ongole and Karimnagar. Further analysis also revealed that household vulnerability is more significantly related to adaptive capacity than sensitivity and exposure. Heat Vulnerability Index can help in identifying the vulnerable population and scaling up adaptive practices.
Collapse
Affiliation(s)
- Suresh Kumar Rathi
- Department of Research, MAMTA Health Institute for Mother and Child, New Delhi 110048, India
| | - Soham Chakraborty
- Indian Institute of Public Health, Public Health Foundation of India, Bhubaneswar 751013, India; (S.C.); (A.D.)
| | - Saswat Kishore Mishra
- Centre for Health Care Management, Administrative Staff College of India, Hyderabad 500082, India;
| | - Ambarish Dutta
- Indian Institute of Public Health, Public Health Foundation of India, Bhubaneswar 751013, India; (S.C.); (A.D.)
| | - Lipika Nanda
- Department of Multisectoral Planning, Public Health Foundation of India, Gurugram 122002, India;
| |
Collapse
|
36
|
Cheng W, Li D, Liu Z, Brown RD. Approaches for identifying heat-vulnerable populations and locations: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149417. [PMID: 34426358 DOI: 10.1016/j.scitotenv.2021.149417] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Heat related morbidity and mortality, especially during extreme heat events, are increasing due to climate change. More Americans die from heat than from all other natural disasters combined. Identifying the populations and locations that are under high risk of heat vulnerability is important for urban planning and design policy making as well as health interventions. An increasing number of heat vulnerability/risk models and indices (HV/R) have been developed based on indicators related to population heat susceptibility such as sociodemographic and environmental factors. The objectives of this study are to summarize and analyze current HV/R's construction, calculation, and validation, evaluate the limitation of these methods, and provide directions for future HV/R and related studies. This systematic review used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework and used 5 datasets for the literature search. Journal articles that developed indices or models to assess population level heat-related vulnerability or risks in the past 50 years were included. A total of 52 papers were included for analysis on model construction, data sources, weighting schemes and model validation. By synthesizing the findings, we suggested: (1) include relevant and accurately measured indicators; (2) select rational weighting methods and; (3) conduct model validation. We also concluded that it is important for future heat vulnerability models and indices studies to: (1) be conducted in more tropical areas; (2) include a comprehensive understanding of energy exchanges between landscape elements and humans; and (3) be applied in urban planning and policy making practice.
Collapse
Affiliation(s)
- Wenwen Cheng
- Gibbs College of Architecture, The University of Oklahoma, OK, USA.
| | - Dongying Li
- Department of Landscape Architecture and Urban Planning, Texas A&M University, TX, USA.
| | - Zhixin Liu
- Institute of Future Cities, The Chinese University of Hong Kong, New Territories, Hong Kong, China.
| | - Robert D Brown
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
37
|
Wang Q, Zhang Y, Ban J, Zhu H, Xu H, Li T. The relationship between population heat vulnerability and urbanization levels: A county-level modeling study across China. ENVIRONMENT INTERNATIONAL 2021; 156:106742. [PMID: 34224997 DOI: 10.1016/j.envint.2021.106742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The purpose of this work was to assess population vulnerability to heat-related health risks and its relationship with urbanization levels to provide essential information for the future development and policy-making for climate change adaptation. We constructed a heat vulnerability index (HVI), quantified the population heat vulnerability in each county across China by a principal component analysis (PCA) of multiple factors, and assessed urbanization levels in each county using multisource data. Then, the HVI was validated using the heat-attributable fraction (heat-AF) of nonaccidental mortality based on death monitoring data and meteorological data from 95 counties across China. The results showed that our HVI was significantly positively associated with the heat AF of nonaccidental mortality. A negative correlation was observed between the urbanization level and the HVI. The HVI was generally higher in less urbanized western China and lower in the more urbanized eastern regions. The baseline mortality occupies the top position in the importance ranking of the heat-vulnerability indicators at all three urbanization levels, but the other indicators, including the aging rate, agricultural population rate, education, ethnic structure, economic status, air conditioner ownership rate, and number of hospitals, ranked differently among different urbanization levels. This finding indicates that to reduce population heat vulnerability, the most important approach is to improve the health status of the whole population and reduce baseline mortality; additionally, regional-specific measures and emphasis should be adjusted reasonably along with the process of urbanization according to the characteristics and key factors of local heat vulnerability.
Collapse
Affiliation(s)
- Qing Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yayi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Geomatics and Marine Information, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jie Ban
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Huanhuan Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Huaiyue Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
38
|
Jalalzadeh Fard B, Mahmood R, Hayes M, Rowe C, Abadi AM, Shulski M, Medcalf S, Lookadoo R, Bell JE. Mapping Heat Vulnerability Index Based on Different Urbanization Levels in Nebraska, USA. GEOHEALTH 2021; 5:e2021GH000478. [PMID: 34723046 PMCID: PMC8533801 DOI: 10.1029/2021gh000478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Heatwaves cause excess mortality and physiological impacts on humans throughout the world, and climate change will intensify and increase the frequency of heat events. Many adaptation and mitigation studies use spatial distribution of highly vulnerable local populations to inform heat reduction and response plans. However, most available heat vulnerability studies focus on urban areas with high heat intensification by Urban Heat Islands (UHIs). Rural areas encompass different environmental and socioeconomic issues that require alternate analyses of vulnerability. We categorized Nebraska census tracts into four urbanization levels, then conducted factor analyses on each group and captured different patterns of socioeconomic vulnerabilities among resultant Heat Vulnerability Indices (HVIs). While disability is the major component of HVI in two urbanized classes, lower education, and races other than white have higher contributions in HVI for the two rural classes. To account for environmental vulnerability of HVI, we considered different land type combinations for each urban class based on their percentage areas and their differences in heat intensifications. Our results demonstrate different combinations of initial variables in heat vulnerability among urban classes of Nebraska and clustering of high and low heat vulnerable areas within the highest urbanized sections. Less urbanized areas show no spatial clustering of HVI. More studies with separation on urbanization level of residence can give insights into different socioeconomic vulnerability patterns in rural and urban areas, while also identifying changes in environmental variables that better capture heat intensification in rural settings.
Collapse
Affiliation(s)
- Babak Jalalzadeh Fard
- Department of Environmental, Agricultural, and Occupational HealthCollege of Public HealthUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Rezaul Mahmood
- High Plains Regional Climate CenterSchool of Natural ResourcesUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Michael Hayes
- Institute of Agriculture and Natural ResourcesSchool of Natural ResourcesUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Clinton Rowe
- Department of Earth and Atmospheric SciencesCollege of Art and SciencesUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Azar M. Abadi
- Department of Environmental, Agricultural, and Occupational HealthCollege of Public HealthUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Martha Shulski
- High Plains Regional Climate CenterSchool of Natural ResourcesUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Sharon Medcalf
- Department of EpidemiologyCenter for Biosecurity, Bio‐preparedness, and Emerging Infectious DiseasesCollege of Public HealthUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Rachel Lookadoo
- Department of EpidemiologyCenter for Biosecurity, Bio‐preparedness, and Emerging Infectious DiseasesCollege of Public HealthUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Jesse E. Bell
- Department of Environmental, Agricultural, and Occupational HealthCollege of Public HealthUniversity of Nebraska Medical CenterOmahaNEUSA
- High Plains Regional Climate CenterSchool of Natural ResourcesUniversity of Nebraska‐LincolnLincolnNEUSA
| |
Collapse
|
39
|
Kennedy C, Liu Y, Meng X, Strosnider H, Waller LA, Zhou Y. Developing indices to identify hotspots of skin cancer vulnerability among the Non-Hispanic White population in the United States. Ann Epidemiol 2021; 59:64-71. [PMID: 33895246 PMCID: PMC8222157 DOI: 10.1016/j.annepidem.2021.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Skin cancer is the most common, yet oftentimes preventable, cancer type in the United States. Exposure to ultraviolet radiation from sunlight is the most prominent environmental risk factor for skin cancer. Besides environmental exposure, demographic characteristics such as race, age, and socioeconomic status may make some groups more vulnerable. An exploratory spatial clustering method is described for identifying clusters of vulnerability to skin cancer incidence and mortality based on composite indices, which combine data from environmental and demographic risk factors. METHODS Based on county-level ultraviolet data and demographic risk factors, two vulnerability indices for skin cancer were generated using an additive percentile rank approach. With these indices, univariate local Moran's I spatial autocorrelation identified significant clusters, or hotspots, of neighboring counties with high overall vulnerability indices. Clusters were identified separately for skin cancer incidence and mortality. RESULTS Counties with high vulnerabilities were spatially distributed across the United States in a pattern that generally increased to the South and West. Clusters of counties with high skin cancer incidence vulnerability were mostly observed in Utah and Colorado, even with highly conservative levels of significance. Meanwhile, clusters for skin cancer mortality vulnerability were observed in southern Alabama and west Florida as well as across north Alabama, north Georgia and up through the Tennessee-North Carolina area. CONCLUSIONS Future skin cancer research and screening initiatives may use these innovative composite vulnerability indices and identified clusters to better target resources based on anticipated risk from underlying demographic and environmental factors.
Collapse
Affiliation(s)
- Caitlin Kennedy
- Environmental Health Tracking Section, Division of Environmental Health Practice and Science, National Center for Environmental Health (NCEH), Centers for Disease Control and Prevention (CDC), Atlanta, GA
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Xia Meng
- School of Public Health, Fudan University, Shanghai, China
| | - Heather Strosnider
- Environmental Health Tracking Section, Division of Environmental Health Practice and Science, National Center for Environmental Health (NCEH), Centers for Disease Control and Prevention (CDC), Atlanta, GA
| | - Lance A Waller
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Ying Zhou
- Environmental Health Tracking Section, Division of Environmental Health Practice and Science, National Center for Environmental Health (NCEH), Centers for Disease Control and Prevention (CDC), Atlanta, GA.
| |
Collapse
|
40
|
Niu Y, Li Z, Gao Y, Liu X, Xu L, Vardoulakis S, Yue Y, Wang J, Liu Q. A Systematic Review of the Development and Validation of the Heat Vulnerability Index: Major Factors, Methods, and Spatial Units. CURRENT CLIMATE CHANGE REPORTS 2021; 7:87-97. [PMID: 34745843 PMCID: PMC8531084 DOI: 10.1007/s40641-021-00173-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE OF REVIEW This review aims to identify the key factors, methods, and spatial units used in the development and validation of the heat vulnerability index (HVI) and discuss the underlying limitations of the data and methods by evaluating the performance of the HVI. RECENT FINDINGS Thirteen studies characterizing the factors of the HVI development and relating the index with validation data were identified. Five types of factors (i.e., hazard exposure, demographic characteristics, socioeconomic conditions, built environment, and underlying health) of the HVI development were identified, and the top five were social cohesion, race, and/or ethnicity, landscape, age, and economic status. The principal component analysis/factor analysis (PCA/FA) was often used in index development, and four types of spatial units (i.e., census tracts, administrative area, postal code, grid) were used for establishing the relationship between factors and the HVI. Moreover, although most studies showed that a higher HVI was often associated with the increase in health risk, the strength of the relationship was weak. SUMMARY This review provides a retrospect of the major factors, methods, and spatial units used in development and validation of the HVI and helps to define the framework for future studies. In the future, more information on the hazard exposure, underlying health, governance, and protection awareness should be considered in the HVI development, and the duration and location of validation data should be strengthened to verify the reliability of HVI. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40641-021-00173-3.
Collapse
Affiliation(s)
- Yanlin Niu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping, Beijing, 102206 China
- Beijing Center for Disease Prevention and Control, Institute for Nutrition and Food Hygiene, Beijing, China
- Research Center for Preventive Medicine of Beijing, Beijing, China
- University College London, London, UK
| | - Zhichao Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yuan Gao
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping, Beijing, 102206 China
| | - Xiaobo Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping, Beijing, 102206 China
| | - Lei Xu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping, Beijing, 102206 China
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
- Center for Healthy Cities, Institute for China Sustainable Urbanization, Tsinghua University, Beijing, China
| | - Sotiris Vardoulakis
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, Australia
| | - Yujuan Yue
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping, Beijing, 102206 China
| | - Jun Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping, Beijing, 102206 China
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping, Beijing, 102206 China
- University College London, London, UK
| |
Collapse
|
41
|
Vilcins D, Scarth P, Sly PD, Jagals P, Knibbs LD, Baker P. The association of fractional cover, foliage projective cover and biodiversity with birthweight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143051. [PMID: 33127150 DOI: 10.1016/j.scitotenv.2020.143051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Environmental exposures can contribute both benefits and risks to human health. Maternal exposure to green space has been associated with improvements in birthweight, among other birth outcomes. Newer measures of green space have been developed, which allows for an exploration of the effect of different ground covers (green, dry and bare earth), as well as measures of biodiversity. This study explores the association of these novel green space measures with birthweight in a large birth cohort in Queensland, Australia. METHODS Birthweight was acquired from the routine health records. Records were allocated green space values for fractional cover, biodiversity and foliage projective cover. Directed acyclic graphs were developed to guide variable selection. Mixed-effects linear regression and generalised linear mixed-effects models were developed, with random intercepts for maternal residential locality and year of birth. Results are presented as standardised beta coefficients or odds ratios, with 95% confidence intervals. RESULTS An IQR increase of green cover (29.6 g, 95% CI 13.8-45.5) and foliage projective cover (26.0 g, 95% CI 10.8-41.3) are associated with birthweight in urban areas. An IQR increase in dry cover -34.4 g, 95% CI -60.4 to -8.4) and bare earth (-17.7 g, 95% CI -32.8 to -2.6) are associated with lower birthweight. Mothers living in rural areas had similar results, with an IQR increase in green cover (17.8 g, 95% CI 2.9-32.7) associated with higher birthweight, and bare earth (-27.7 g, 95% CI -45.7 to -9.7) was associated with lower birthweight. The biodiversity measure used in this study was not associated with any birthweight outcomes. CONCLUSION This study finds that the types of ground cover within the maternal residential locality are associated with small, but significant, changes in estimated birthweight, and these effects are not limited to urban areas.
Collapse
Affiliation(s)
- Dwan Vilcins
- Children's Health and Environment Program, The University of Queensland, L7 Centre for Children's Health Research, 62 Graham St, South Brisbane 4101, QLD, Australia.
| | - Peter Scarth
- School of Earth and Environmental Sciences, L2, Room 210, Steele Building, The University of Queensland, St Lucia, QLD, Australia, 4072.
| | - Peter D Sly
- Children's Health and Environment Program, The University of Queensland, L7 Centre for Children's Health Research, 62 Graham St, South Brisbane 4101, QLD, Australia.
| | - Paul Jagals
- Children's Health and Environment Program, The University of Queensland, L7 Centre for Children's Health Research, 62 Graham St, South Brisbane 4101, QLD, Australia.
| | - Luke D Knibbs
- School of Public Health, Public Health Building, 288 Herston Rd, The University of Queensland, Brisbane 4006, Australia.
| | - Peter Baker
- School of Public Health, Public Health Building, 288 Herston Rd, The University of Queensland, Brisbane 4006, Australia.
| |
Collapse
|
42
|
Yu J, Castellani K, Forysinski K, Gustafson P, Lu J, Peterson E, Tran M, Yao A, Zhao J, Brauer M. Geospatial indicators of exposure, sensitivity, and adaptive capacity to assess neighbourhood variation in vulnerability to climate change-related health hazards. Environ Health 2021; 20:31. [PMID: 33752667 PMCID: PMC7986027 DOI: 10.1186/s12940-021-00708-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Although the frequency and magnitude of climate change-related health hazards (CCRHHs) are likely to increase, the population vulnerabilities and corresponding health impacts are dependent on a community's exposures, pre-existing sensitivities, and adaptive capacities in response to a hazard's impact. To evaluate spatial variability in relative vulnerability, we: 1) identified climate change-related risk factors at the dissemination area level; 2) created actionable health vulnerability index scores to map community risks to extreme heat, flooding, wildfire smoke, and ground-level ozone; and 3) spatially evaluated vulnerability patterns and priority areas of action to address inequity. METHODS A systematic literature review was conducted to identify the determinants of health hazards among populations impacted by CCRHHs. Identified determinants were then grouped into categories of exposure, sensitivity, and adaptive capacity and aligned with available data. Data were aggregated to 4188 Census dissemination areas within two health authorities in British Columbia, Canada. A two-step principal component analysis (PCA) was then used to select and weight variables for each relative vulnerability score. In addition to an overall vulnerability score, exposure, adaptive capacity, and sensitivity sub-scores were computed for each hazard. Scores were then categorised into quintiles and mapped. RESULTS Two hundred eighty-one epidemiological papers met the study criteria and were used to identify 36 determinant indicators that were operationalized across all hazards. For each hazard, 3 to 5 principal components explaining 72 to 94% of the total variance were retained. Sensitivity was weighted much higher for extreme heat, wildfire smoke and ground-level ozone, and adaptive capacity was highly weighted for flooding vulnerability. There was overall varied contribution of adaptive capacity (16-49%) across all hazards. Distinct spatial patterns were observed - for example, although patterns varied by hazard, vulnerability was generally higher in more deprived and more outlying neighbourhoods of the study region. CONCLUSIONS The creation of hazard and category-specific vulnerability indices (exposure, adaptive capacity and sensitivity sub-scores) supports evidence-based approaches to prioritize public health responses to climate-related hazards and to reduce inequity by assessing relative differences in vulnerability along with absolute impacts. Future studies can build upon this methodology to further understand the spatial variation in vulnerability and to identify and prioritise actionable areas for adaptation.
Collapse
Affiliation(s)
- Jessica Yu
- School of Population and Public Health, The University of British Columbia (UBC), 2206 East Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Kaitlin Castellani
- Faculty of Forestry, The University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC V6T 1Z4 Canada
| | - Krista Forysinski
- Institute for Resources, Environment and Sustainability, The University of British Columbia, 429-2202 Main Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Paul Gustafson
- Department of Statistics, The University of British Columbia, 3182 Earth Sciences Building, 2207 Main Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - James Lu
- Vancouver Coastal Health, 601 West Broadway, 11th floor, Vancouver, British Columbia V5Z 4C2 Canada
| | - Emily Peterson
- Vancouver Coastal Health, 601 West Broadway, 11th floor, Vancouver, British Columbia V5Z 4C2 Canada
| | - Martino Tran
- School of Community and Regional Planning, The University of British Columbia, 433 - 6333 Memorial Road, Vancouver, British Columbia V6T 1Z3 Canada
| | - Angela Yao
- School of Population and Public Health, The University of British Columbia (UBC), 2206 East Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Jingxuan Zhao
- Faculty of Medicine, The University of British Columbia, 317 - 2194 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Michael Brauer
- School of Population and Public Health, The University of British Columbia (UBC), 2206 East Mall, Vancouver, British Columbia V6T 1Z3 Canada
| |
Collapse
|
43
|
Infusino E, Caloiero T, Fusto F, Calderaro G, Brutto A, Tagarelli G. Characterization of the 2017 Summer Heat Waves and Their Effects on the Population of an Area of Southern Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18030970. [PMID: 33499298 PMCID: PMC7908494 DOI: 10.3390/ijerph18030970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
Knowledge of bioclimatic comfort is paramount for improving people’s quality of life. To this purpose, several studies related to climatic comfort/discomfort have been recently published. These studies mainly focus on the analysis of temperature and relative humidity, i.e., the main variables influencing the environmental stress in the human body. In this context, the present work aims to analyze the number of visits to the hospital emergency department made by the inhabitants of the Crati River valley (Calabria region, southern Italy) during the heat waves that accompanied the African anticyclone in the summer of 2017. The analysis of the bioclimatic comfort was performed using the humidity index. Results showed that greater the index, the higher the number of accesses to the emergency department, in particular by the most vulnerable population groups, such as children and the elderly.
Collapse
Affiliation(s)
- Ernesto Infusino
- Department of Environmental Engineering (DIAm), University of Calabria, Via P. Bucci 41C, 87036 Rende, Italy;
| | - Tommaso Caloiero
- National Research Council—Institute for Agricultural and Forest Systems in Mediterranean (CNR—ISAFOM), Via Cavour 4/6, 87036 Rende, Italy;
- Correspondence: ; Tel.: +39-0984-841-464
| | - Francesco Fusto
- Multi-Risk Functional Center, Regional Agency for Environmental Protection of Calabria, Viale degli Angioini 143, 88100 Catanzaro, Italy;
| | - Gianfranco Calderaro
- Health Protection Department of the Calabria Region, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy; (G.C.); (A.B.)
| | - Angelo Brutto
- Health Protection Department of the Calabria Region, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy; (G.C.); (A.B.)
| | - Giuseppe Tagarelli
- National Research Council—Institute for Agricultural and Forest Systems in Mediterranean (CNR—ISAFOM), Via Cavour 4/6, 87036 Rende, Italy;
| |
Collapse
|
44
|
Ellena M, Ballester J, Mercogliano P, Ferracin E, Barbato G, Costa G, Ingole V. Social inequalities in heat-attributable mortality in the city of Turin, northwest of Italy: a time series analysis from 1982 to 2018. Environ Health 2020; 19:116. [PMID: 33198753 PMCID: PMC7667731 DOI: 10.1186/s12940-020-00667-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Understanding context specific heat-health risks in urban areas is important, especially given anticipated severe increases in summer temperatures due to climate change effects. We investigate social inequalities in the association between daily temperatures and mortality in summer in the city of Turin for the period 1982-2018 among different social and demographic groups such as sex, age, educational level, marital status and household occupants. METHODS Mortality data are represented by individual all-cause mortality counts for the summer months between 1982 and 2018. Socioeconomic level and daily mean temperature were assigned to each deceased. A time series Poisson regression with distributed lag non-linear models was fitted to capture the complex nonlinear dependency between daily mortality and temperature in summer. The mortality risk due to heat is represented by the Relative Risk (RR) at the 99th percentile of daily summer temperatures for each population subgroup. RESULTS All-cause mortality risk is higher among women (1.88; 95% CI = 1.77, 2.00) and the elderly (2.13; 95% CI = 1.94, 2.33). With regard to education, the highest significant effects for men is observed among higher education levels (1.66; 95% CI = 1.38, 1.99), while risks for women is higher for the lower educational level (1.93; 95% CI = 1.79, 2.08). Results on marital status highlighted a stronger association for widower in men (1.66; 95% CI = 1.38, 2.00) and for separated and divorced in women (2.11; 95% CI = 1.51, 2.94). The risk ratio of household occupants reveals a stronger association for men who lived alone (1.61; 95% CI = 1.39, 1.86), while for women results are almost equivalent between alone and not alone groups. CONCLUSIONS The associations between heat and mortality is unequal across different aspects of social vulnerability, and, inter alia, factors influencing the population vulnerability to temperatures can be related to demographic, social, and economic aspects. A number of issues are identified and recommendations for the prioritisation of further research are provided. A better knowledge of these effect modifiers is needed to identify the axes of social inequality across the most vulnerable population sub-groups.
Collapse
Affiliation(s)
- Marta Ellena
- Department Environmnetal Sciences, Informatics, and Statistics, Università Ca’Foscari Venezia, 30172 Mestre, Italy
- Regional Models and geo-Hydrological Impacts Division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Caserta, 81100 Italy
| | - Joan Ballester
- Barcelona Institute for Global Health (ISGlobal), Universitat Pompeu Fabra, CIBER Epidemiología y Salud Pública, 08003 Barcelona, Spain
| | - Paola Mercogliano
- Regional Models and geo-Hydrological Impacts Division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Caserta, 81100 Italy
| | - Elisa Ferracin
- Regional Epidemiology Unit, ASL TO3 Piedmont Region, 10095 Grugliasco, Italy
| | - Giuliana Barbato
- Regional Models and geo-Hydrological Impacts Division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Caserta, 81100 Italy
| | - Giuseppe Costa
- Regional Epidemiology Unit, ASL TO3 Piedmont Region, 10095 Grugliasco, Italy
| | - Vijendra Ingole
- Barcelona Institute for Global Health (ISGlobal), Universitat Pompeu Fabra, CIBER Epidemiología y Salud Pública, 08003 Barcelona, Spain
| |
Collapse
|
45
|
Turek-Hankins LL, Hino M, Mach KJ. Risk screening methods for extreme heat: Implications for equity-oriented adaptation. PLoS One 2020; 15:e0240841. [PMID: 33147245 PMCID: PMC7641348 DOI: 10.1371/journal.pone.0240841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/04/2020] [Indexed: 11/23/2022] Open
Abstract
Morbidity and mortality impacts of extreme heat amplified by climate change will be unequally distributed among communities given pre-existing differences in socioeconomic, health, and environmental conditions. Many governments are interested in adaptation policies that target those especially vulnerable to the risks, but there are important questions about how to effectively identify and support communities most in need of heat adaptations. Here, we use an equity-oriented adaptation program from the state of California as a case study to evaluate the implications of the currently used environmental justice index (CalEnviroScreen 3.0) for the identification of socially vulnerable communities with climate change adaptation needs. As CalEnviroScreen is geared towards air and water pollution, we assess how community heat risks and adaptation needs would be evaluated differently under two more adaptation-relevant vulnerability indices: the Social Vulnerability Index and the Heat-Health Action Index. Our analysis considers communities at the census tract scale, as well as the patterns emerging at the regional scale. Using the current index, the state designates 25% of its census tracts as “disadvantaged” communities eligible for special adaptation funds. However, an additional 12.6% of the state’s communities could be considered vulnerable if the two other indices were considered instead. Only 13.4% of communities are vulnerable across all three vulnerability indices studied. Choice of vulnerability index shapes statewide trends in extreme heat risk and is linked to a community’s likelihood of receiving heat-related California Climate Investments (CCI) projects. Tracts that are vulnerable under the current pollution-focused index, but not under the heat-health specific index, received four times the number of heat-related interventions as tracts vulnerable under the reverse scenario. This study demonstrates important nuances relevant to implementing equity-oriented adaptation and explores the challenges, trade-offs, and opportunities in quantifying vulnerability.
Collapse
Affiliation(s)
- Lynée L. Turek-Hankins
- Stanford Woods Institute for the Environment, Mentoring Undergraduates in Interdisciplinary Research (MUIR) Program, Stanford University, Stanford, CA, United States of America
- Environmental Science and Policy Graduate Program, Leonard and Jayne Abess Center for Ecosystem Science and Policy, University of Miami, Coral Gables, FL, United States of America
- * E-mail:
| | - Miyuki Hino
- Department of City and Regional Planning, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Environment, Ecology, and Energy Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Katharine J. Mach
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
- Leonard and Jayne Abess Center for Ecosystem Science and Policy, University of Miami, Coral Gables, FL, United States of America
| |
Collapse
|
46
|
Werbin ZR, Heidari L, Buckley S, Brochu P, Butler LJ, Connolly C, Houttuijn Bloemendaal L, McCabe TD, Miller TK, Hutyra LR. A tree-planting decision support tool for urban heat mitigation. PLoS One 2020; 15:e0224959. [PMID: 33031384 PMCID: PMC7544061 DOI: 10.1371/journal.pone.0224959] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/06/2020] [Indexed: 11/22/2022] Open
Abstract
Heat poses an urgent threat to public health in cities, as the urban heat island (UHI) effect can amplify exposures, contributing to high heat-related mortality and morbidity. Urban trees have the potential to mitigate heat by providing substantial cooling, as well as co-benefits such as reductions in energy consumption. The City of Boston has attempted to expand its urban canopy, yet maintenance costs and high tree mortality have hindered successful canopy expansion. Here, we present an interactive web application called Right Place, Right Tree-Boston that aims to support informed decision-making for planting new trees. To highlight priority regions for canopy expansion, we developed a Boston-specific Heat Vulnerability Index (HVI) and present this alongside maps of summer daytime land surface temperatures. We also provide information about tree pests and diseases, suitability of species for various conditions, land ownership, maintenance tips, and alternatives to tree planting. This web application is designed to support decision-making at multiple spatial scales, to assist city officials as well as residents who are interested in expanding or maintaining Boston's urban forest.
Collapse
Affiliation(s)
- Zoey R. Werbin
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Leila Heidari
- Department of Environmental Health, Boston University, Boston, Massachusetts, United States of America
| | - Sarabeth Buckley
- Department of Earth and Environment, Boston University, Boston, Massachusetts, United States of America
| | - Paige Brochu
- Department of Environmental Health, Boston University, Boston, Massachusetts, United States of America
| | - Lindsey J. Butler
- Department of Environmental Health, Boston University, Boston, Massachusetts, United States of America
| | - Catherine Connolly
- Department of Environmental Health, Boston University, Boston, Massachusetts, United States of America
| | | | - Tempest D. McCabe
- Department of Earth and Environment, Boston University, Boston, Massachusetts, United States of America
| | - Tara K. Miller
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Lucy R. Hutyra
- Department of Earth and Environment, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
47
|
Zemtsov S, Shartova N, Varentsov M, Konstantinov P, Kidyaeva V, Shchur A, Timonin S, Grischchenko M. Intraurban social risk and mortality patterns during extreme heat events: A case study of Moscow, 2010-2017. Health Place 2020; 66:102429. [PMID: 32992266 DOI: 10.1016/j.healthplace.2020.102429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
There is currently an increase in the number of heat waves occurring worldwide. Moscow experienced the effects of an extreme heat wave in 2010, which resulted in more than 10,000 extra deaths and significant economic damage. This study conducted a comprehensive assessment of the social risks existing during the occurrence of heat waves and allowed us to identify the spatial heterogeneity of the city in terms of thermal risk and the consequences for public health. Using a detailed simulation of the meteorological regime based on the COSMO-CLM regional climate model and the physiologically equivalent temperature (PET), a spatial assessment of thermal stress in the summer of 2010 was carried out. Based on statistical data, the components of social risk (vulnerabilities and adaptive capacity of the population) were calculated and mapped. We also performed an analysis of their changes in 2010-2017. A significant differentiation of the territory of Moscow has been revealed in terms of the thermal stress and vulnerability of the population to heat waves. The spatial pattern of thermal stress agrees quite well with the excess deaths observed during the period from July to August 2010. The identified negative trend of increasing vulnerability of the population has grown in most districts of Moscow. The adaptive capacity has been reduced in most of Moscow. The growth of adaptive capacity mainly affects the most prosperous areas of the city.
Collapse
Affiliation(s)
- Stepan Zemtsov
- Russian Presidential Academy of National Economy and Public Administration, 119571, Prospect Vernadskogo, 84, Moscow, Russian Federation; Lomonosov Moscow State University, Faculty of Geography, 119991, Leninskiye gory, 1, Moscow, Russia.
| | - Natalia Shartova
- Lomonosov Moscow State University, Faculty of Geography, 119991, Leninskiye gory, 1, Moscow, Russia.
| | - Mikhail Varentsov
- Lomonosov Moscow State University, Faculty of Geography, 119991, Leninskiye gory, 1, Moscow, Russia; Lomonosov Moscow State University, Research Computing Center, 119234, Leninskiye gory, 1c4, Moscow, Russia; A.M. Obukhov Institute of Atmospheric Physics Russian Academy of Science, 119017, Pyzhyovskiy Pereulok, 3, Moscow, Russia; Moscow Center of Fundamental and Applied Mathematics, GSP-1, Leninskie gory, 1, bld.1, 199991, Moscow, Russia.
| | - Pavel Konstantinov
- Lomonosov Moscow State University, Faculty of Geography, 119991, Leninskiye gory, 1, Moscow, Russia.
| | - Vera Kidyaeva
- Russian Presidential Academy of National Economy and Public Administration, 119571, Prospect Vernadskogo, 84, Moscow, Russian Federation; Lomonosov Moscow State University, Faculty of Geography, 119991, Leninskiye gory, 1, Moscow, Russia.
| | - Aleksey Shchur
- National Research University Higher School of Economics, International Laboratory for Population and Health, 101000, Myasnitskaya st., 20, Moscow, Russia.
| | - Sergey Timonin
- National Research University Higher School of Economics, International Laboratory for Population and Health, 101000, Myasnitskaya st., 20, Moscow, Russia.
| | - Mikhail Grischchenko
- Lomonosov Moscow State University, Faculty of Geography, 119991, Leninskiye gory, 1, Moscow, Russia; National Research University Higher School of Economics, Faculty of Geography and Geoinformation Technology, 109028, Pokrovsky bvd, 11, Moscow, Russia.
| |
Collapse
|
48
|
Zheng M, Zhang J, Shi L, Zhang D, Pangali Sharma TP, Prodhan FA. Mapping Heat-Related Risks in Northern Jiangxi Province of China Based on Two Spatial Assessment Frameworks Approaches. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186584. [PMID: 32927631 PMCID: PMC7559026 DOI: 10.3390/ijerph17186584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 11/16/2022]
Abstract
Heat-health risk is a growing concern in many regions of China due to the more frequent occurrence of extremely hot weather. Spatial indexes based on various heat assessment frameworks can be used for the assessment of heat risks. In this study, we adopted two approaches—Crichton’s risk triangle and heat vulnerability index (HVI) to identify heat-health risks in the Northern Jiangxi Province of China, by using remote sensing and socio-economic data. The Geographical Information System (GIS) overlay and principal component analysis (PCA) were separately used in two frameworks to integrate parameters. The results show that the most densely populated community in the suburbs, instead of city centers, are exposed to the highest heat risk. A comparison of two heat assessment mapping indicates that the distribution of HVI highlights the vulnerability differences between census tracts. In contrast, the heat risk index of Crichton’s risk triangle has a prominent representation for regions with high risks. The stepwise multiple linear regression zero-order correlation coefficient between HVI and outdoor workers is 0.715, highlighting the vulnerability of this particular group. Spearman’s rho nonparametric correlation and the mean test reveals that heat risk index is strongly correlated with HVI in most of the main urban regions in the study area, with a significantly lower value than the latter. The analysis of variance shows that the distribution of HVI exhibits greater variety across urban regions than that of heat risk index. Our research provides new insight into heat risk assessment for further study of heat health risk in developing countries.
Collapse
Affiliation(s)
- Minxuan Zheng
- Key Laboratory of Digital Earth Sciences, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing 100094, China; (M.Z.); (L.S.); (D.Z.); (T.P.P.S.); (F.A.P.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahua Zhang
- Key Laboratory of Digital Earth Sciences, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing 100094, China; (M.Z.); (L.S.); (D.Z.); (T.P.P.S.); (F.A.P.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| | - Lamei Shi
- Key Laboratory of Digital Earth Sciences, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing 100094, China; (M.Z.); (L.S.); (D.Z.); (T.P.P.S.); (F.A.P.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Zhang
- Key Laboratory of Digital Earth Sciences, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing 100094, China; (M.Z.); (L.S.); (D.Z.); (T.P.P.S.); (F.A.P.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Til Prasad Pangali Sharma
- Key Laboratory of Digital Earth Sciences, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing 100094, China; (M.Z.); (L.S.); (D.Z.); (T.P.P.S.); (F.A.P.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Foyez Ahmed Prodhan
- Key Laboratory of Digital Earth Sciences, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing 100094, China; (M.Z.); (L.S.); (D.Z.); (T.P.P.S.); (F.A.P.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Agricultural Extension and Rural Development, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh
| |
Collapse
|
49
|
Conlon KC, Mallen E, Gronlund CJ, Berrocal VJ, Larsen L, O’Neill MS. Mapping Human Vulnerability to Extreme Heat: A Critical Assessment of Heat Vulnerability Indices Created Using Principal Components Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:97001. [PMID: 32875815 PMCID: PMC7466325 DOI: 10.1289/ehp4030] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Extreme heat poses current and future risks to human health. Heat vulnerability indices (HVIs), commonly developed using principal components analysis (PCA), are mapped to identify populations vulnerable to extreme heat. Few studies critically assess implications of analytic choices made when employing this methodology for fine-scale vulnerability mapping. OBJECTIVE We investigated sensitivity of HVIs created by applying PCA to input variables and whether training input variables on heat-health data produced HVIs with similar spatial vulnerability patterns for Detroit, Michigan, USA. METHODS We acquired 2010 Census tract and block group level data, land cover data, daily ambient apparent temperature, and all-cause mortality during May-September, 2000-2009. We used PCA to construct HVIs using: a) "unsupervised"-PCA applied to variables selected a priori as risk factors for heat-related health outcomes; b) "supervised"-PCA applied only to variables significantly correlated with proportion of all-cause mortality occurring on extreme heat days (i.e., days with 2-d mean apparent temperature above month-specific 95th percentiles). RESULTS Unsupervised and supervised HVIs yielded differing spatial vulnerability patterns, depending on selected land cover input variables. Supervised PCA explained 62% of variance in the input variables and was applied on half the variables used in the unsupervised method. Census tract-level supervised HVI values were positively associated with increased proportion of mortality occurring on extreme heat days; supervised PCA could not be applied to block group data. Unsupervised HVI values were not associated with extreme heat mortality for either tracts or block groups. DISCUSSION HVIs calculated using PCA are sensitive to input data and scale. Supervised HVIs may provide marginally more specific indicators of heat vulnerability than unsupervised HVIs. PCA-derived HVIs address correlation among vulnerability indicators, although the resulting output requires careful contextual interpretation beyond generating epidemiological research questions. Methods with reliably stable outputs should be leveraged for prioritizing heat interventions. https://doi.org/10.1289/EHP4030.
Collapse
Affiliation(s)
- Kathryn C. Conlon
- University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- School of Medicine, University of California Davis, Davis, California, USA
| | - Evan Mallen
- University of Michigan Taubman College of Architecture and Urban Planning, Ann Arbor, Michigan, USA
- Georgia Institute of Technology School of City and Regional Planning, Atlanta, Georgia, USA
| | - Carina J. Gronlund
- University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- University of Michigan Institute for Social Research, Ann Arbor, Michigan, USA
| | - Veronica J. Berrocal
- School of Information and Computer Science, University of California Irvine, Irvine, California, USA
| | - Larissa Larsen
- University of Michigan Taubman College of Architecture and Urban Planning, Ann Arbor, Michigan, USA
| | - Marie S. O’Neill
- University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
50
|
Gildner TE, Levy SB. Intersecting vulnerabilities in human biology: Synergistic interactions between climate change and increasing obesity rates. Am J Hum Biol 2020; 33:e23460. [PMID: 32618027 DOI: 10.1002/ajhb.23460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Increasing obesity rates and accelerating climate change represent two global health challenges shaped by lifestyle change and human environmental modifications. Yet, few studies have considered how these issues may interact to exacerbate disease risk. METHODS In this theory article, we explore evidence that obesity-related disease and climatic changes share socio-ecological drivers and may interact to increase human morbidity and mortality risks. Additionally, we consider how obesity-climate change interactions may disproportionately affect vulnerable populations and how anthropological research can be applied to address this concern. RESULTS Interactions between heat stress and cardiometabolic disease represent an important pathway through which climate change and obesity-related morbidities may jointly impair health. For example, individuals with higher body fatness and obesity-related metabolic conditions (eg, type 2 diabetes) exhibit a reduced ability to dissipate heat. The risk of poor health resulting from these interactions is expected to be heterogeneous, with low- and middle-income countries, individuals of lower socioeconomic status, and minority populations facing a greater disease burden due to relative lack of resource access (eg, air conditioning). Moreover, older adults are at higher risk due to aging-associated changes in body composition and loss of thermoregulation capabilities. CONCLUSIONS Few policy makers appear to be considering how interventions can be designed to simultaneously address the medical burden posed by increasing obesity rates and climate change. Anthropological research is well situated to address this need in a nuanced and culturally-sensitive way; producing research that can be used to support community resilience, promote holistic well-being, and improve health outcomes.
Collapse
Affiliation(s)
- Theresa E Gildner
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire, USA
| | - Stephanie B Levy
- Department of Anthropology, Hunter College, New York, New York, USA.,New York Consortium in Evolutionary Primatology, New York, New York, USA
| |
Collapse
|