1
|
Tian X, Wei J, Yang M, Niu Y, Liu M, Du Y, Jin Y. An integrated strategy to reveal the potential anti-asthma mechanism of peimine by metabolite profiling, network pharmacology, and molecular docking. J Sep Sci 2022; 45:2819-2832. [PMID: 35638750 DOI: 10.1002/jssc.202200128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/10/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022]
Abstract
Peimine, one of the major quality markers in Fritillaria Cirrhosae Bulbus, was expected to become a new anti-asthma drug. However, its metabolic profiles and anti-asthma mechanism have not been clarified previously. In this study, a method was developed for the detection of peimine metabolites in vitro by ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry. The potential anti-asthma mechanism was predicted by an integrated analysis of network pharmacology and molecular docking. A total of 19 metabolites were identified with the aid of software and molecular networking. The metabolic profiles of peimine elucidated that the metabolism was a multi-pathway process with characteristics of species difference. The network pharmacology results showed that peimine and its metabolites could regulate multiple asthma-related targets. The above targets were involved in various regulatory pathways linked to asthma. Moreover, the results of molecular docking showed that both peimine and its metabolites had a certain affinity with the β2 adrenergic receptor. The results provided not only important references to understand the metabolism and pharmacodynamic changes of peimine in vitro, but also supporting data for further pharmacological evaluation. It also provided a new perspective for clarifying the functional changes of traditional Chinese medicine in vitro.
Collapse
Affiliation(s)
- Xi Tian
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei, Medical University, Shijiazhuang, P. R. China
| | - Jinhuan Wei
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei, Medical University, Shijiazhuang, P. R. China
| | - Mengxin Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei, Medical University, Shijiazhuang, P. R. China
| | - Yukun Niu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei, Medical University, Shijiazhuang, P. R. China
| | - Minyan Liu
- Chemical Engineering Institute, Shijiazhuang University, Shijiazhuang, P. R. China
| | - Yingfeng Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei, Medical University, Shijiazhuang, P. R. China
| | - Yiran Jin
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| |
Collapse
|
2
|
Semaniakou A, Croll RP, Chappe V. Animal Models in the Pathophysiology of Cystic Fibrosis. Front Pharmacol 2019; 9:1475. [PMID: 30662403 PMCID: PMC6328443 DOI: 10.3389/fphar.2018.01475] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/03/2018] [Indexed: 01/28/2023] Open
Abstract
Our understanding of the multiorgan pathology of cystic fibrosis (CF) has improved impressively during the last decades, but we still lack a full comprehension of the disease progression. Animal models have greatly contributed to the elucidation of specific mechanisms involved in CF pathophysiology and the development of new therapies. Soon after the cloning of the CF transmembrane conductance regulator (CFTR) gene in 1989, the first mouse model was generated and this model has dominated in vivo CF research ever since. Nonetheless, the failure of murine models to mirror human disease severity in the pancreas and lung has led to the generation of larger animal models such as pigs and ferrets. The following review presents and discusses data from the current animal models used in CF research.
Collapse
Affiliation(s)
- Anna Semaniakou
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Valerie Chappe
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Bazett M, Biala A, Huff RD, Bosiljcic M, Gunn H, Kalyan S, Hirota JA. A novel microbe-based treatment that attenuates the inflammatory profile in a mouse model of allergic airway disease. Sci Rep 2016; 6:35338. [PMID: 27734946 PMCID: PMC5062168 DOI: 10.1038/srep35338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/28/2016] [Indexed: 11/09/2022] Open
Abstract
There is an unmet need for effective new and innovative treatments for asthma. It is becoming increasingly evident that bacterial stimulation can have beneficial effects at attenuating allergic airway disease through immune modulation. Our aim was to test the ability of a novel inactivated microbe-derived therapeutic based on Klebsiella (KB) in a model of allergic airway disease in mice. BALB/c mice were exposed intranasally to house dust mite (HDM) for two weeks. Mice were treated prophylactically via subcutaneous route with either KB or placebo for one week prior to HDM exposure and throughout the two week exposure period. 24 hours after the last exposure, lungs were analysed for inflammatory cell infiltrate, gene expression, cytokine levels, goblet cell metaplasia, and serum was analysed for allergen-specific serum IgE levels. HDM exposed mice developed goblet cell hyperplasia, elevated allergen-specific serum IgE, airway eosinophilia, and a concomitant increase in TH2 cytokines including IL-4, IL-13 and IL-5. Treatment with KB attenuated HDM-mediated airway eosinophilia, total bronchoalveolar lavage (BAL) cell numbers, BAL TH2 cytokine production, and goblet cell metaplasia. Our prophylactic intervention study illustrates the potential of subcutaneous treatment with bacterial derived biologics as a promising approach for allergic airway disease treatment.
Collapse
Affiliation(s)
- Mark Bazett
- Qu Biologics Inc., Vancouver, BC, V5T 4T5, Canada
| | - Agnieszka Biala
- University of British Columbia, Department of Medicine, Division of Respiratory Medicine, Vancouver, BC, V6H 3Z6, Canada
| | - Ryan D Huff
- University of British Columbia, Department of Medicine, Division of Respiratory Medicine, Vancouver, BC, V6H 3Z6, Canada
| | | | - Hal Gunn
- Qu Biologics Inc., Vancouver, BC, V5T 4T5, Canada
| | - Shirin Kalyan
- Qu Biologics Inc., Vancouver, BC, V5T 4T5, Canada.,University of British Columbia, Department of Medicine, Division of Endocrinology, CeMCOR, Vancouver, BC, V5Z 1M9
| | - Jeremy A Hirota
- University of British Columbia, Department of Medicine, Division of Respiratory Medicine, Vancouver, BC, V6H 3Z6, Canada
| |
Collapse
|
4
|
Wang FP, Fan YQ, Li SY, Mao H. Biomarkers of in vivo fluorescence imaging in allergic airway inflammation. Mol Cell Probes 2016; 30:100-5. [PMID: 26902991 DOI: 10.1016/j.mcp.2016.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 02/05/2023]
Abstract
Airway inflammation is a central component of the manifestation of asthma but is relatively inaccessible to study. Current imaging techniques such as X-ray CT, MRI, and PET, have advanced noninvasive research on pulmonary diseases. However, these techniques mainly facilitate the anatomical or structural assessment of the diseased lung and/or typically use radioactive agents. In vivo fluorescence imaging is a novel method for noninvasive, real-time, and specific monitoring of lung airway inflammation, which is particularly important to gain a further understanding asthma. Compared to conventional techniques, fluorescent imaging has the advantages of rapid feedback, as well as high sensitivity and resolution. Recently, there has been an increase in the identification of biomarkers, including matrix metalloproteinases, cathepsins, selectins, folate receptor-beta, nanoparticles, as well as sialic acid-binding immunoglobulin-like lectin-F to assess the level of airway inflammation in asthma. Recent advances in our understanding of these biomarkers as molecular probes for in vivo imaging are discussed in this review.
Collapse
Affiliation(s)
- Fa-Ping Wang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying-Qi Fan
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su-Yun Li
- Department of Respiratory Medicine, First Affiliated Hospital of Henan College of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Hui Mao
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Liravi B, Piedrafita D, Nguyen G, Bischof RJ. Dynamics of IL-4 and IL-13 expression in the airways of sheep following allergen challenge. BMC Pulm Med 2015; 15:101. [PMID: 26362930 PMCID: PMC4566292 DOI: 10.1186/s12890-015-0097-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/01/2015] [Indexed: 01/03/2023] Open
Abstract
Background IL-4 and IL-13 play a critical yet poorly understood role in orchestrating the recruitment and activation of effector cells of the asthmatic response and driving the pathophysiology of allergic asthma. The house dust mite (HDM) sheep asthma model displays many features of the human condition and is an ideal model to further elucidate the involvement of these critical Th2 cytokines. We hypothesized that airway exposure to HDM allergen would induce or elevate the expression profile of IL-4 and IL-13 during the allergic airway response in this large animal model of asthma. Methods Bronchoalveolar lavage (BAL) samples were collected from saline- and house dust mite (HDM)- challenged lung lobes of sensitized sheep from 0 to 48 h post-challenge. BAL cytokines (IL-4, IL-13, IL-6, IL-10, TNF-α) were each measured by ELISA. IL-4 and IL-13 expression was assessed in BAL leukocytes by flow cytometry and in airway tissue sections by immunohistology. Results IL-4 and IL-13 were increased in BAL samples following airway allergen challenge. HDM challenge resulted in a significant increase in BAL IL-4 levels at 4 h compared to saline-challenged airways, while BAL IL-13 levels were elevated at all time-points after allergen challenge. IL-6 levels were maintained following HDM challenge but declined after saline challenge, while HDM administration resulted in an acute elevation in IL-10 at 4 h but no change in TNF-α levels over time. Lymphocytes were the main early source of IL-4, with IL-4 release by alveolar macrophages (AMs) prominent from 24 h post-allergen challenge. IL-13 producing AMs were increased at 4 and 24 h following HDM compared to saline challenge, and tissue staining provided evidence of IL-13 expression in airway epithelium as well as immune cells in airway tissue. Conclusion In a sheep model of allergic asthma, airway inflammation is accompanied by the temporal release of key cytokines following allergen exposure that primarily reflects the Th2-driven nature of the immune response in asthma. The present study demonstrates for the first time the involvement of IL-4 and IL-13 in a relevant large animal model of allergic airways disease.
Collapse
Affiliation(s)
- Bahar Liravi
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, 3800, VIC, Australia.
| | - David Piedrafita
- School of Applied and Biomedical Sciences, Federation University, Churchill, 3842, VIC, Australia.
| | - Gary Nguyen
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, 3800, VIC, Australia.
| | - Robert J Bischof
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, 3800, VIC, Australia. .,The Ritchie Centre, Hudson Institute of Medical Research, Clayton, 3168, VIC, Australia.
| |
Collapse
|
6
|
Key mediators in the immunopathogenesis of allergic asthma. Int Immunopharmacol 2014; 23:316-29. [PMID: 24933589 DOI: 10.1016/j.intimp.2014.05.034] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
Asthma is described as a chronic inflammatory disorder of the conducting airways. It is characterized by reversible airway obstruction, eosinophil and Th2 infiltration, airway hyper-responsiveness and airway remodeling. Our findings to date have largely been dependent on work done using animal models, which have been instrumental in broadening our understanding of the mechanism of the disease. However, using animals to model a uniquely human disease is not without its drawbacks. This review aims to examine some of the key mediators and cells of allergic asthma learned from animal models and shed some light on emerging mediators in the pathogenesis allergic airway inflammation in acute and chronic asthma.
Collapse
|
7
|
The role of inflammation resolution speed in airway smooth muscle mass accumulation in asthma: insight from a theoretical model. PLoS One 2014; 9:e90162. [PMID: 24632688 PMCID: PMC3954558 DOI: 10.1371/journal.pone.0090162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/27/2014] [Indexed: 12/20/2022] Open
Abstract
Despite a large amount of in vitro data, the dynamics of airway smooth muscle (ASM) mass increase in the airways of patients with asthma is not well understood. Here, we present a novel mathematical model that describes qualitatively the growth dynamics of ASM cells over short and long terms in the normal and inflammatory environments typically observed in asthma. The degree of ASM accumulation can be explained by an increase in the rate at which ASM cells switch between non-proliferative and proliferative states, driven by episodic inflammatory events. Our model explores the idea that remodelling due to ASM hyperplasia increases with the frequency and magnitude of these inflammatory events, relative to certain sensitivity thresholds. It highlights the importance of inflammation resolution speed by showing that when resolution is slow, even a series of small exacerbation events can result in significant remodelling, which persists after the inflammatory episodes. In addition, we demonstrate how the uncertainty in long-term outcome may be quantified and used to design an optimal low-risk individual anti-proliferative treatment strategy. The model shows that the rate of clearance of ASM proliferation and recruitment factors after an acute inflammatory event is a potentially important, and hitherto unrecognised, target for anti-remodelling therapy in asthma. It also suggests new ways of quantifying inflammation severity that could improve prediction of the extent of ASM accumulation. This ASM growth model should prove useful for designing new experiments or as a building block of more detailed multi-cellular tissue-level models.
Collapse
|
8
|
Drake MG, Kaufman EH, Fryer AD, Jacoby DB. The therapeutic potential of Toll-like receptor 7 stimulation in asthma. ACTA ACUST UNITED AC 2013; 11:484-91. [PMID: 23078048 DOI: 10.2174/187152812803589967] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/20/2012] [Accepted: 05/21/2012] [Indexed: 01/21/2023]
Abstract
Asthma is an inflammatory disorder of the airways frequently characterized by an excessive Th2 adaptive immune response. Activation of Toll-like receptor (TLR)-7, a single-stranded viral RNA receptor that is highly expressed in the airways, triggers a rapid innate immune response and favors a subsequent Th1 response. Because of this role in pulmonary immunoregulation, TLR7 has gained considerable interest as a therapeutic target in asthma. Synthetic TLR7 ligands, including the imidazoquinolines imiquimod (R837) and resiquimod (R848), and 8-hydroxyadenine derivatives have been developed for other clinical indications. TLR7 activation prevents ovalbumin-induced airway hyperreactivity, eosinophilic inflammation, goblet cell hyperplasia and airway remodeling in murine models of asthma. TLR7 activation also inhibits viral replication in the lung and prevents virus-induced airway hyperreactivity. Furthermore, it has recently been shown that stimulating TLR7 rapidly relaxes airway smooth muscle, dilating the airways. This bronchodilating effect, which occurs in seconds to minutes and depends on rapid production of nitric oxide, indicates that TLR7 can signal via previously unrecognized pathways. The effects of decreasing the allergic Th2 response, acting as an immediate bronchodilator, and promoting an antiviral immune environment, make TLR7 an attractive drug target. We examine the current understanding of TLR7 as a therapeutic target and its translation to asthma treatment in humans.
Collapse
Affiliation(s)
- Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | |
Collapse
|
9
|
Yuksel H, Yilmaz O, Karaman M, Bagriyanik HA, Firinci F, Kiray M, Turkeli A, Karaman O. Role of vascular endothelial growth factor antagonism on airway remodeling in asthma. Ann Allergy Asthma Immunol 2013; 110:150-5. [PMID: 23548522 DOI: 10.1016/j.anai.2012.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/16/2012] [Accepted: 12/14/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is an important mediator of the neoangiogenesis component of remodeling in asthma. OBJECTIVE To evaluate the influence of VEGF blockage on airway remodeling, specifically epithelium thickness, subepithelial smooth muscle thickness, number of mast and goblet cells, and basement membrane thickness, in a mouse model of chronic asthma. METHODS We used 30 BALB/c mice. The control group was not exposed to ovalbumin or any medication (group 1). Other groups were exposed to intraperitoneal and inhaled ovalbumin to achieve chronic asthma. Each of these groups received intraperitoneal saline (group 2), intraperitoneal dexamethasone (group 3), or intraperitoneal bevacizumab (group 4). Histomorphologic examination for epithelium thickness, subepithelial smooth muscle thickness, number of mast and goblet cells, and basement membrane thickness was performed from the middle zone of the left lung. RESULTS Treatment with anti-VEGF caused significant reduction in epithelial, subepithelial muscle, and basement membrane thickness compared with untreated asthmatic mice (P = .001, P = .03, and P = .009, respectively). Goblet and mast cell numbers were significantly lower in mice treated with anti-VEGF than in untreated mice (P = .02 and P = .007, respectively). Dexamethasone treatment resulted in improvement of all histomorphologic markers, except goblet cell number. Influences of dexamethasone and anti-VEGF on epithelial and basement membrane thickness and mast and goblet cell numbers did not differ (P > .05), but subepithelial muscle layer was thinner in the former (P = .003). CONCLUSION VEGF blockage may provide adjunctive therapeutic options as steroid-sparing agents for more effective treatment of remodeling in asthma.
Collapse
Affiliation(s)
- Hasan Yuksel
- Celal Bayar University Medical Faculty, Department of Pediatric Allergy and Pulmonology, Manisa, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Domnik NJ, Seaborn G, Vincent SG, Akl SG, Redfearn DP, Fisher JT. OVA-induced airway hyperresponsiveness alters murine heart rate variability and body temperature. Front Physiol 2012; 3:456. [PMID: 23227012 PMCID: PMC3514704 DOI: 10.3389/fphys.2012.00456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 11/15/2012] [Indexed: 01/07/2023] Open
Abstract
Altered autonomic (ANS) tone in chronic respiratory disease is implicated as a factor in cardiovascular co-morbidities, yet no studies address its impact on cardiovascular function in the presence of murine allergic airway (AW) hyperresponsiveness (AHR). Since antigen (Ag)-induced AHR is used to model allergic asthma (in which ANS alterations have been reported), we performed a pilot study to assess measurement feasibility of, as well as the impact of allergic sensitization to ovalbumin (OVA) on, heart rate variability (HRV) in a murine model. Heart rate (HR), body temperature (TB), and time- and frequency-domain HRV analyses, a reflection of ANS control, were obtained in chronically instrumented mice (telemetry) before, during and for 22 h after OVA or saline aerosolization in sensitized (OVA) or Alum adjuvant control exposed animals. OVA mice diverged significantly from Alum mice with respect to change in HR during aerosol challenge (P < 0.001, Two-Way ANOVA; HR max change Ctrl = +80 ± 10 bpm vs. OVA = +1 ± 23 bpm, mean ± SEM), and displayed elevated HR during the subsequent dark cycle (P = 0.006). Sensitization decreased the TB during aerosol challenge (P < 0.001). Sensitized mice had decreased HRV prior to challenge (SDNN: P = 0.038; Low frequency (LF) power: P = 0.021; Low/high Frequency (HF) power: P = 0.042), and increased HRV during Ag challenge (RMSSD: P = 0.047; pNN6: P = 0.039). Sensitized mice displayed decreased HRV subsequent to OVA challenge, primarily in the dark cycle (RMSSD: P = 0.018; pNN6: P ≤ 0.001; LF: P ≤ 0.001; HF: P = 0.040; LF/HF: P ≤ 0.001). We conclude that implanted telemetry technology is an effective method to assess the ANS impact of allergic sensitization. Preliminary results show mild sensitization is associated with reduced HRV and a suppression of the acute TB-response to OVA challenge. This approach to assess altered ANS control in the acute OVA model may also be beneficial in chronic AHR models.
Collapse
Affiliation(s)
- N J Domnik
- Department of Biomedical and Molecular Sciences (Physiology Program), Queen's University Kingston, ON, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Developmental perturbation induced by maternal asthma during pregnancy: the short- and long-term impacts on offspring. J Pregnancy 2012; 2012:741613. [PMID: 22830026 PMCID: PMC3399337 DOI: 10.1155/2012/741613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/06/2012] [Indexed: 12/11/2022] Open
Abstract
Maternal asthma is a common disease to complicate human pregnancy. Epidemiological studies have identified that asthma during pregnancy increases the risk of a number of poor outcomes for the neonate including growth restriction, lower birthweight, preterm delivery, neonatal resuscitation, and stillbirth. Asthma therefore represents a significant health burden to society and could have an impact on the lifelong health of the children of women with asthma. Our research has identified that maternal asthma in pregnancy induces placental dysfunction and developmental perturbation in the fetus in a sex specific manner. These alterations in development could increase the risk of metabolic disease in adulthood of children of asthmatic mothers, especially females. In this paper, we will discuss the evidence currently available that supports the hypothesis that children of mothers with asthma may be at risk of lifelong health complications which include diabetes and hypertension.
Collapse
|
12
|
Helyes Z, Hajna Z. Endotoxin-Induced Airway Inflammation and Asthma Models. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2012. [DOI: 10.1007/978-1-62703-077-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Meeusen EN. Exploiting mucosal surfaces for the development of mucosal vaccines. Vaccine 2011; 29:8506-11. [PMID: 21945494 DOI: 10.1016/j.vaccine.2011.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/19/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
Abstract
Mucosal immunity covers a variety of mucosal surfaces susceptible to different pathogens. This review highlights the diversity of mucosal tissues and the unique microenvironments in which an immune response is generated. It argues that tissue-specific factors present throughout mucosal tissues and lymph nodes determine the differentiation into IgA-producing B cells, which in turn determines their migration patterns. Mucosal immunity can therefore be induced when antigen is delivered at any mucosal tissue without the need for specific 'mucosal adjuvants' or targeting to specialised lymphoid structures. Non-oral vaccination strategies directed at alternative and more accessible mucosal tissue sites, may provide new avenues for both mucosal and systemic immunization, and will be greatly facilitated by the use of large animal models.
Collapse
Affiliation(s)
- Els N Meeusen
- School of Biomedical Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
14
|
Buckland GL. Harnessing opportunities in non-animal asthma research for a 21st-century science. Drug Discov Today 2011; 16:914-27. [PMID: 21875684 DOI: 10.1016/j.drudis.2011.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/29/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
Abstract
The incidence of asthma is on the increase and calls for research are growing, yet asthma is a disease that scientists are still trying to come to grips with. Asthma research has relied heavily on animal use; however, in light of increasingly robust in vitro and computational models and the need to more fully incorporate the 'Three Rs' principles of Replacement, Reduction and Refinement, is it time to reassess the asthma research paradigm? Progress in non-animal research techniques is reaching a level where commitment and integration are necessary. Many scientists believe that progress in this field rests on linking disciplines to make research directly translatable from the bench to the clinic; a '21st-century' scientific approach to address age-old questions.
Collapse
|
15
|
Liu D, Zheng Y, Li B, Yao H, Li R, Zhang Y, Yang X. Adjuvant effects of gaseous formaldehyde on the hyper-responsiveness and inflammation in a mouse asthma model immunized by ovalbumin. J Immunotoxicol 2011; 8:305-14. [PMID: 21854218 DOI: 10.3109/1547691x.2011.600738] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Asthma is a complex pulmonary inflammatory disease, which is characterized by airway hyper-responsiveness, airflow obstruction, and airway inflammation. Exposure to a number of chemicals including formaldehyde (FA) can lead to asthma. This study aimed to explore the underlying role of FA exposure in occupational asthma, especially when it is combined with allergen exposure. Balb/c mice were randomly divided into six groups (n = 6/group): (1) saline control; (2) ovalbumin (OVA)-immunized (OVA(imm)) only; (3) 0.5 mg FA/m(3) exposure; (4) OVA(imm) + 0.5 mg FA/m(3); (5) 3.0 mg FA/m(3) FA exposure; and, (6) OVA(imm) + 3.0 mg FA/m(3). These low and high exposure FA levels were adopted from current (0.5 mg/m(3)) and original (3.0 mg/m(3)) Chinese Occupational Threshold Limit Values. Experiments were conducted after 3 week of combined exposure and a 1-week challenge with aerosolized OVA. Airway hyper-responsiveness, pulmonary tissue damage, eosinophil infiltration, and increased interleukin (IL)-4 and IL-6 levels in lung tissues were found in the OVA + 3.0 mg FA/m(3) hosts as compared to values seen in the OVA-immunized only mice. The results here suggest to us that FA exposure can induce and aggravate asthma in Balb/c mice when it is combined with OVA immunization.
Collapse
Affiliation(s)
- Dandan Liu
- Laboratory of Environmental Sciences, Huazhong Normal University, Wuhan City, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Abraham G, Zizzadoro C, Kacza J, Ellenberger C, Abs V, Franke J, Schoon HA, Seeger J, Tesfaigzi Y, Ungemach FR. Growth and differentiation of primary and passaged equine bronchial epithelial cells under conventional and air-liquid-interface culture conditions. BMC Vet Res 2011; 7:26. [PMID: 21649893 PMCID: PMC3117700 DOI: 10.1186/1746-6148-7-26] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 06/07/2011] [Indexed: 01/05/2023] Open
Abstract
Background Horses develop recurrent airway obstruction (RAO) that resembles human bronchial asthma. Differentiated primary equine bronchial epithelial cells (EBEC) in culture that closely mimic the airway cells in vivo would be useful to investigate the contribution of bronchial epithelium in inflammation of airway diseases. However, because isolation and characterization of EBEC cultures has been limited, we modified and optimized techniques of generating and culturing EBECs from healthy horses to mimic in vivo conditions. Results Large numbers of EBEC were obtained by trypsin digestion and successfully grown for up to 2 passages with or without serum. However, serum or ultroser G proved to be essential for EBEC differentiation on membrane inserts at ALI. A pseudo-stratified muco-ciliary epithelium with basal cells was observed at differentiation. Further, transepithelial resistance (TEER) was more consistent and higher in P1 cultures compared to P0 cultures while ciliation was delayed in P1 cultures. Conclusions This study provides an efficient method for obtaining a high-yield of EBECs and for generating highly differentiated cultures. These EBEC cultures can be used to study the formation of tight junction or to identify epithelial-derived inflammatory factors that contribute to lung diseases such as asthma.
Collapse
Affiliation(s)
- Getu Abraham
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 15, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lactobacillus rhamnosus HN001 attenuates allergy development in a pig model. PLoS One 2011; 6:e16577. [PMID: 21386995 PMCID: PMC3046142 DOI: 10.1371/journal.pone.0016577] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/03/2011] [Indexed: 01/10/2023] Open
Abstract
Background Probiotics have been studied as immunomodulatory agents of allergy. Several human probiotic trials tracking the development of eczema and other forms of allergy have yielded inconsistent results. A recent infant study demonstrated that pre and postnatal Lactobacillus rhamnosus HN001 (HN001) supplementation decreased the prevalence of eczema and IgE associated eczema. However, the influence of HN001 on the incidence of wheeze, asthma, and/or other allergic manifestations has yet to be reported. Objective This study was conducted to determine the effects of the probiotic HN001 on the development of allergic lung disease in a pig model. Methods Allergy was induced by a series of subcutaneous and intratracheal sensitizations with Ascaris suum allergen (ASA) during a six week time frame in post-weanling pigs supplemented daily with HN001, or without supplementation. One week following final sensitization intradermal skin tests and respiratory challenges were conducted. Results In response to intradermal and respiratory challenges, ASA-sensitized pigs fed HN001 had less severe skin flare reactions, smaller increases in pleural pressure, and trends towards lower changes in arterial oxygen and carbon dioxide partial pressure levels compared to control pigs. The frequency of ASA-specific IFN-γ-secreting peripheral blood mononuclear cells, as well as the amount of IL-10 produced by ASA-specific cells, was of greater magnitude in probiotic-fed pigs compared to control animals. These observations suggest that differences in clinical responses to the allergen challenges may be related to probiotic-induced modulation of Th1 (IFN-γ) and regulatory (IL-10) cytokine expression. Conclusions Probiotic supplementation decreased the severity of allergic skin and lung responses in allergen-sensitized pigs with a corresponding increase in IFN-γ expression. A similar correlation between certain allergic responses and increased IFN-γ expression has been reported in human clinical studies of allergy; this pig model of allergy may be indicative of potential probiotic modulation of allergic lung disease in humans.
Collapse
|
18
|
North ML, Amatullah H, Khanna N, Urch B, Grasemann H, Silverman F, Scott JA. Augmentation of arginase 1 expression by exposure to air pollution exacerbates the airways hyperresponsiveness in murine models of asthma. Respir Res 2011; 12:19. [PMID: 21291525 PMCID: PMC3037317 DOI: 10.1186/1465-9921-12-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 02/03/2011] [Indexed: 12/19/2022] Open
Abstract
Background Arginase overexpression contributes to airways hyperresponsiveness (AHR) in asthma. Arginase expression is further augmented in cigarette smoking asthmatics, suggesting that it may be upregulated by environmental pollution. Thus, we hypothesize that arginase contributes to the exacerbation of respiratory symptoms following exposure to air pollution, and that pharmacologic inhibition of arginase would abrogate the pollution-induced AHR. Methods To investigate the role of arginase in the air pollution-induced exacerbation of airways responsiveness, we employed two murine models of allergic airways inflammation. Mice were sensitized to ovalbumin (OVA) and challenged with nebulized PBS (OVA/PBS) or OVA (OVA/OVA) for three consecutive days (sub-acute model) or 12 weeks (chronic model), which exhibit inflammatory cell influx and remodeling/AHR, respectively. Twenty-four hours after the final challenge, mice were exposed to concentrated ambient fine particles plus ozone (CAP+O3), or HEPA-filtered air (FA), for 4 hours. After the CAP+O3 exposures, mice underwent tracheal cannulation and were treated with an aerosolized arginase inhibitor (S-boronoethyl-L-cysteine; BEC) or vehicle, immediately before determination of respiratory function and methacholine-responsiveness using the flexiVent®. Lungs were then collected for comparison of arginase activity, protein expression, and immunohistochemical localization. Results Compared to FA, arginase activity was significantly augmented in the lungs of CAP+O3-exposed OVA/OVA mice in both the sub-acute and chronic models. Western blotting and immunohistochemical staining revealed that the increased activity was due to arginase 1 expression in the area surrounding the airways in both models. Arginase inhibition significantly reduced the CAP+O3-induced increase in AHR in both models. Conclusions This study demonstrates that arginase is upregulated following environmental exposures in murine models of asthma, and contributes to the pollution-induced exacerbation of airways responsiveness. Thus arginase may be a therapeutic target to protect susceptible populations against the adverse health effects of air pollution, such as fine particles and ozone, which are two of the major contributors to smog.
Collapse
Affiliation(s)
- Michelle L North
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Shiau HJ, Reynolds MA. Sex differences in destructive periodontal disease: exploring the biologic basis. J Periodontol 2010; 81:1505-17. [PMID: 20594052 DOI: 10.1902/jop.2010.100045] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Epidemiologic studies provide broad-based evidence that men are at greater risk for developing destructive periodontal disease than women, even after adjusting for behavioral and environmental factors, such as oral hygiene practice and smoking. What requires clarification, however, is whether sex-specific differences in immune function provide a plausible biologic basis for a sexual dimorphism in susceptibility to destructive periodontal disease. This review examines evidence that might provide an underlying biologic basis for a sexual dimorphism in the prevalence and severity of destructive periodontal disease. METHODS A narrative review of the literature related to sexual dimorphism in pathogen-mediated inflammatory diseases and immune response was retrieved from searches of computerized databases (MEDLINE, PubMed, and SCOPUS). RESULTS Sex steroids exert profound effects on multiple immunologic parameters regulating both the amplification and resolution of inflammation. Strong evidence exists for sexual dimorphisms in immune function, involving both innate and acquired immunity. Injury and infection have been associated with higher levels of inflammatory cytokines, including interleukin-1β and tumor necrosis factor-α, in men than women, paralleling observed sex-specific differences in periodontitis. CONCLUSION Differential gene regulation, particularly in sex steroid-responsive genes, may contribute to a sexual dimorphism in susceptibility to destructive periodontal disease.
Collapse
Affiliation(s)
- Harlan J Shiau
- Department of Periodontics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | | |
Collapse
|
20
|
Abeynaike L, Meeusen EN, Bischof RJ. An ovine tracheal explant culture model for allergic airway inflammation. JOURNAL OF INFLAMMATION-LONDON 2010; 7:46. [PMID: 20804555 PMCID: PMC2940870 DOI: 10.1186/1476-9255-7-46] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 08/30/2010] [Indexed: 01/21/2023]
Abstract
Background The airway epithelium is thought to play an important role in the pathogenesis of asthmatic disease. However, much of our understanding of airway epithelial cell function in asthma has been derived from in vitro studies that may not accurately reflect the interactive cellular and molecular pathways active between different tissue constituents in vivo. Methods Using a sheep model of allergic asthma, tracheal explants from normal sheep and allergic sheep exposed to house dust mite (HDM) allergen were established to investigate airway mucosal responses ex vivo. Explants were cultured for up to 48 h and tissues were stained to identify apoptotic cells, goblet cells, mast cells and eosinophils. The release of cytokines (IL-1α, IL-6 and TNF-α) by cultured tracheal explants, was assessed by ELISA. Results The general morphology and epithelial structure of the tracheal explants was well maintained in culture although evidence of advanced apoptosis within the mucosal layer was noted after culture for 48 h. The number of alcian blue/PAS positive mucus-secreting cells within the epithelial layer was reduced in all cultured explants compared with pre-cultured (0 h) explants, but the loss of staining was most evident in allergic tissues. Mast cell and eosinophil numbers were elevated in the allergic tracheal tissues compared to naïve controls, and in the allergic tissues there was a significant decline in mast cells after 24 h culture in the presence or absence of HDM allergen. IL-6 was released by allergic tracheal explants in culture but was undetected in cultured control explants. Conclusions Sheep tracheal explants maintain characteristics of the airway mucosa that may not be replicated when studying isolated cell populations in vitro. There were key differences identified in explants from allergic compared to control airways and in their responses in culture for 24 h. Importantly, this study establishes the potential for the application of tracheal explant cultures in relevant ex vivo investigations on the therapeutic and mechanistic modalities of asthmatic disease.
Collapse
Affiliation(s)
- Latasha Abeynaike
- Biotechnology Research Laboratories, Department of Physiology, School of Biomedical Sciences, Monash University, Clayton VIC 3800, Australia.
| | | | | |
Collapse
|
21
|
Meeusen EN, Snibson KJ, Hirst SJ, Bischof RJ. Sheep as a model species for the study and treatment of human asthma and other respiratory diseases. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.ddmod.2009.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Bates JHT, Rincon M, Irvin CG. Animal models of asthma. Am J Physiol Lung Cell Mol Physiol 2009; 297:L401-10. [PMID: 19561139 DOI: 10.1152/ajplung.00027.2009] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Studies in animal models form the basis for much of our current understanding of the pathophysiology of asthma, and are central to the preclinical development of drug therapies. No animal model completely recapitulates all features of the human disease, however. Research has focused primarily on ways to generate allergic inflammation by sensitizing and challenging animals with a variety of foreign proteins, leading to an increased understanding of the immunological factors that mediate the inflammatory response and its physiological expression in the form of airways hyperresponsiveness. Animal models of exaggerated airway narrowing are also lending support to the notion that asthma may represent an abnormality of the airway smooth muscle. The mouse is now the species of choice for asthma research involving animals. This presents practical challenges for physiological study because the mouse is so small, but modern imaging methodologies, coupled with the forced oscillation technique for measuring lung mechanics, have allowed the asthma phenotype in mice to be precisely characterized.
Collapse
Affiliation(s)
- Jason H T Bates
- Vermont Lung Center and Center for Immunology and Infectious Disease, University of Vermont College of Medicine, HSRF 228, 149 Beaumont Ave., Burlington, VT 05405-0075, USA.
| | | | | |
Collapse
|