1
|
Kruk DMLW, Heijink IH, Slebos DJ, Timens W, Ten Hacken NH. Mesenchymal Stromal Cells to Regenerate Emphysema: On the Horizon? Respiration 2018; 96:148-158. [PMID: 29719298 DOI: 10.1159/000488149] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/02/2018] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem or stromal cells (MSCs) are multipotent cells that play a pivotal role in various phases of lung development and lung homeostasis, and potentially also lung regeneration. MSCs do not only self-renew and differentiate into renew tissues, but also have anti-inflammatory and paracrine properties to reduce damage and to support tissue regeneration, constituting a promising cell-based treatment strategy for the repair of damaged alveolar tissue in emphysema. This review discusses the current state of the art regarding the potential of MSCs for the treatment of emphysema. The optimism regarding this treatment strategy is supported by promising results from animal models. Still, there are considerable challenges before effective stem cell treatment can be realized in emphysema patients. It is difficult to draw definitive conclusions from the available animal studies, as different models, dosage protocols, administration routes, and sources of MSCs have been used with different measures of effectiveness. Moreover, the regrowth potential of differentiated tissues and organs differs between species. Essential questions about MSC engraftment, retention, and survival have not been sufficiently addressed in a systematic manner. Few human studies have investigated MSC treatment for chronic obstructive pulmonary disease, demonstrating short-term safety but no convincing benefits on clinical outcomes. Possible explanations for the lack of beneficial effects on clinical outcomes could be the source (bone marrow), route, dosage, frequency of administration, and delivery (lack of a bioactive scaffold). This review will provide a comprehensive overview of the (pre)clinical studies on MSC effects in emphysema and discuss the current challenges regarding the optimal use of MSCs for cell-based therapies.
Collapse
Affiliation(s)
- Dennis M L W Kruk
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Irene H Heijink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Dirk-Jan Slebos
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nick H Ten Hacken
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Han Y, Yue L, Wei M, Ren X, Shao Z, Zhang L, Levine RL, Epling-Burnette PK. Mesenchymal Cell Reprogramming in Experimental MPLW515L Mouse Model of Myelofibrosis. PLoS One 2017; 12:e0166014. [PMID: 28135282 PMCID: PMC5279751 DOI: 10.1371/journal.pone.0166014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/21/2016] [Indexed: 11/18/2022] Open
Abstract
Myelofibrosis is an indicator of poor prognosis in myeloproliferative neoplasms (MPNs), but the precise mechanism(s) contributing to extracellular matrix remodeling and collagen deposition in the bone marrow (BM) niche remains unanswered. In this study, we isolated mesenchymal stromal cells (MSCs) from mice transplanted with wild-type thrombopoietin receptor (MPLWT) and MPLW515L retroviral-transduced bone marrow. Using MSCs derived from MPLW515-transplant recipients, excessive collagen deposition was maintained in the absence of the virus and neoplastic hematopoietic cells suggested that the MSCs were reprogrammed in vivo. TGFβ production by malignant megakaryocytes plays a definitive role promoting myelofibrosis in MPNs. However, TGFβ was equally expressed by MSCs derived from MPLWT and MPLW515L expressing mice and the addition of neutralizing anti-TGFβ antibody only partially reduced collagen secretion in vitro. Interestingly, profibrotic MSCs displayed increased levels of pSmad3 and pSTAT3 suggesting that inflammatory mediators cooperating with the TGFβ-receptor signaling may maintain the aberrant phenotype ex vivo. FGFb is a known suppressor of TGFβ signaling. Reduced collagen deposition by FGFb-treated MSCs derived from MPLW515L mice suggests that the activating pathway is vulnerable to this suppressive mediator. Therefore, our findings have implications for the future investigation of therapies to reverse fibrosis in MPNs.
Collapse
Affiliation(s)
- Ying Han
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, United States of America
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Lanzhu Yue
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, United States of America
- Department of Hematology, Tianjin medical University General Hospital, Tianjin, PR China
| | - Max Wei
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Xiubao Ren
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Zonghong Shao
- Department of Hematology, Tianjin medical University General Hospital, Tianjin, PR China
| | - Ling Zhang
- Department of Hematopathology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Ross L. Levine
- Leukemia Center, Memorial Sloan Kettering Cancer Center, New York City, New York, United States of America
| | | |
Collapse
|