1
|
Marciniak A, Ciesielski B, Juniewicz M. EPR dosimetry in glass: a review. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:179-203. [PMID: 35306595 DOI: 10.1007/s00411-022-00970-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Electron Paramagnetic Resonance (EPR) spectroscopy enables detection of paramagnetic centers generated in solids by ionising radiation. In the last years, the ubiquity of glass in personal utility items increased significance of fortuities retrospective dosimetry based on EPR in glass parts of mobile phones and watches. Despite of fading of the signals and their susceptibility to light, it enables dosimetry at medical triage level of 1-2 Gy. In this article information relevant for assessment of applicability and planning of the EPR dosimetry is presented-particularly at dose levels typical for radiation accidents. Reported data on fading of the radiation-induced spectral components are presented and compared. Effects of light on background spectra and on the dosimetric signals are also presented. It is concluded that when properly accounting for the fading and for the obscuring effects of light, the EPR dosimetry in glasses from mobile phones and watches can be used in dose assessment after radiation accidents.
Collapse
Affiliation(s)
- Agnieszka Marciniak
- Department of Physics and Biophysics, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Bartłomiej Ciesielski
- Department of Physics and Biophysics, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.
| | - Małgorzata Juniewicz
- Department of Physics and Biophysics, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| |
Collapse
|
2
|
Gallo S, Iacoviello G, Panzeca S, Veronese I, Bartolotta A, Dondi D, Gueli AM, Loi G, Longo A, Mones E, Marrale M. Characterization of phenolic pellets for ESR dosimetry in photon beam radiotherapy. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:471-480. [PMID: 28929295 DOI: 10.1007/s00411-017-0716-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
This work deals with the dosimetric features of a particular phenolic compound (IRGANOX 1076®) for dosimetry of clinical photon beams by using electron spin resonance (ESR) spectroscopy. After the optimization of the ESR readout parameters (namely modulation amplitude and microwave power) to maximise the signal without excessive spectrum distortions, basic dosimetric properties of laboratory-made phenolic dosimeters in pellet form, such as reproducibility, dose-response, sensitivity, linearity and dose rate dependence were investigated. The dosimeters were tested by measuring the depth dose profile of a 6 MV photon beam. A satisfactory intra-batch reproducibility of the ESR signal of the manufactured dosimeters was obtained. The ESR signal proved to increase linearly with increasing dose in the investigated dose range 1-13 Gy. The presence of an intrinsic background signal limits the minimum detectable dose to a value of approximately 0.6 Gy. Reliable and accurate assessment of the dose was achieved, independently of the dose rate. Such characteristics, together with the fact that IRGANOX 1076® is almost tissue-equivalent, and the stability of the ESR signal, make these dosimeters promising materials for ESR dosimetric applications in radiotherapy.
Collapse
Affiliation(s)
- Salvatore Gallo
- Department of Physics, Università degli Studi di Milano and Istituto Nazionale di Fisica Nucleare-Sezione di Milano, Milan, Italy.
| | | | - Salvatore Panzeca
- Department of Physics and Chemistry, Università degli Studi di Palermo, Palermo, Italy
- Istituto Nazionale di Fisica Nucleare-Sezione di Catania, Catania, Italy
| | - Ivan Veronese
- Department of Physics, Università degli Studi di Milano and Istituto Nazionale di Fisica Nucleare-Sezione di Milano, Milan, Italy
| | - Antonio Bartolotta
- Department of Physics and Chemistry, Università degli Studi di Palermo, Palermo, Italy
| | - Daniele Dondi
- Department of Chemistry, Università degli Studi di Pavia and Istituto Nazionale di Fisica Nucleare-Sezione di Pavia, Pavia, Italy
| | - Anna Maria Gueli
- Istituto Nazionale di Fisica Nucleare-Sezione di Catania, Catania, Italy
- Department of Physics and Astronomy, PH3DRA Laboratories, Università degli Studi di Catania, Catania, Italy
| | - Gianfranco Loi
- Medical Physics Department, Azienda Ospedaliero Universitaria Maggiore della Carità, Novara, Italy
| | - Anna Longo
- Department of Physics and Chemistry, Università degli Studi di Palermo, Palermo, Italy
| | - Eleonora Mones
- Medical Physics Department, Azienda Ospedaliero Universitaria Maggiore della Carità, Novara, Italy
| | - Maurizio Marrale
- Department of Physics and Chemistry, Università degli Studi di Palermo, Palermo, Italy
- Istituto Nazionale di Fisica Nucleare-Sezione di Catania, Catania, Italy
- Advanced Technologies Network Center (ATeN Center), Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
3
|
Shishkina EA, Volchkova AY, Timofeev YS, Fattibene P, Wieser A, Ivanov DV, Krivoschapov VA, Zalyapin VI, Della Monaca S, De Coste V, Degteva MO, Anspaugh LR. External dose reconstruction in tooth enamel of Techa riverside residents. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:477-499. [PMID: 27600653 DOI: 10.1007/s00411-016-0666-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
This study summarizes the 20-year efforts for dose reconstruction in tooth enamel of the Techa riverside residents exposed to ionizing radiation as a result of radionuclide releases into the river in 1949-1956. It represents the first combined analysis of all the data available on EPR dosimetry with teeth of permanent residents of the Techa riverside territory. Results of electron paramagnetic resonance (EPR) measurements of 302 teeth donated by 173 individuals living permanently in Techa riverside settlements over the period of 1950-1952 were analyzed. These people were residents of villages located at the free-flowing river stream or at the banks of stagnant reservoirs such as ponds or blind river forks. Cumulative absorbed doses measured using EPR are from several sources of exposure, viz., background radiation, internal exposure due to bone-seeking radionuclides (89Sr, 90Sr/90Y), internal exposure due to 137Cs/137mBa incorporated in soft tissues, and anthropogenic external exposure. The purpose of the present study was to evaluate the contribution of different sources of enamel exposure and to deduce external doses to be used for validation of the Techa River Dosimetry System (TRDS). Since various EPR methods were used, harmonization of these methods was critical. Overall, the mean cumulative background dose was found to be 63 ± 47 mGy; cumulative internal doses due to 89Sr and 90Sr/90Y were within the range of 10-110 mGy; cumulative internal doses due to 137Cs/137mBa depend on the distance from the site of releases and varied from 1 mGy up to 90 mGy; mean external doses were maximum for settlements located at the banks of stagnant reservoirs (~500 mGy); in contrast, external doses for settlements located along the free-flowing river stream did not exceed 160 mGy and decreased downstream with increasing distance from the site of release. External enamel doses calculated using the TRDS code and derived from the EPR measurements were found to be in good agreement.
Collapse
Affiliation(s)
- E A Shishkina
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., Chelyabinsk, Russia, 454076.
| | - A Yu Volchkova
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., Chelyabinsk, Russia, 454076
| | - Y S Timofeev
- Southern Urals State University, 76, Lenin Av., Chelyabinsk, Russia, 454080
| | - P Fattibene
- Istituto Superiore di Sanità and Istituto Nazionale di Fisica Nucleare, Viale Regina Elena 299, 00161, Rome, Italy
| | - A Wieser
- German Research Centre for Environmental Health, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - D V Ivanov
- M.N. Mikheev Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, 18 S. Kovalevskaya Street, Ekaterinburg, Russia, 620990
- Ural Federal University, 19 Mira Str, Yekaterinburg, Russia, 620002
| | - V A Krivoschapov
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., Chelyabinsk, Russia, 454076
| | - V I Zalyapin
- Southern Urals State University, 76, Lenin Av., Chelyabinsk, Russia, 454080
| | - S Della Monaca
- Istituto Superiore di Sanità and Istituto Nazionale di Fisica Nucleare, Viale Regina Elena 299, 00161, Rome, Italy
| | - V De Coste
- Istituto Superiore di Sanità and Istituto Nazionale di Fisica Nucleare, Viale Regina Elena 299, 00161, Rome, Italy
| | - M O Degteva
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., Chelyabinsk, Russia, 454076
| | - L R Anspaugh
- University of Utah, 201 Presidents Circle, Salt Lake City, UT, 84112, USA
| |
Collapse
|
4
|
Trompier F, Burbidge C, Bassinet C, Baumann M, Bortolin E, De Angelis C, Eakins J, Della Monaca S, Fattibene P, Quattrini MC, Tanner R, Wieser A, Woda C. Overview of physical dosimetry methods for triage application integrated in the new European network RENEB. Int J Radiat Biol 2016; 93:65-74. [DOI: 10.1080/09553002.2016.1221545] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Christopher Burbidge
- C2TN, Instituto Superior Técnico, Universidade de Lisboa, Portugal, now at SUERC, University of Glasgow, UK
| | - Céline Bassinet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France
| | - Marion Baumann
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France
| | | | | | - Jonathan Eakins
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), UK
| | | | | | | | - Rick Tanner
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE), UK
| | | | | |
Collapse
|
5
|
Study of the response of phenol compounds exposed to thermal neutrons beams for Electron Paramagnetic Resonance dosimetry. RADIAT MEAS 2015. [DOI: 10.1016/j.radmeas.2015.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Marrale M, Longo A, Barbon A, Brustolon M, Brai M. Radical distributions in ammonium tartrate single crystals exposed to photon and neutron beams. RADIATION PROTECTION DOSIMETRY 2014; 161:398-402. [PMID: 24591730 DOI: 10.1093/rpd/ncu033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The radiation therapy carried out by means of heavy charged particles (such as carbon ions) and neutrons is rapidly becoming widespread worldwide. The success of these radiation therapies relies on the high density of energy released by these particles or by secondary particles produced after primary interaction with matter. The biological damages produced by ionising radiations in tissues and cells depend more properly on the energy released per unit pathlength, which is the linear energy transfer and which determines the radiation quality. To improve the therapy effectiveness, it is necessary to grasp the mechanisms of free radical production and distribution after irradiation with these particles when compared with the photon beams. In this work some preliminary results on the analysis of the spatial distributions of the free radicals produced after exposure of ammonium tartrate crystals to various radiation beams ((60)Co gamma photons and thermal neutrons) were reported. Electron spin resonance analyses were performed by the electron spin echo technique, which allows the determination of local spin concentrations and by double electron-electron resonance technique, which is able to measure the spatial distance distribution (range 1.5-8 nm) among pairs of radicals in solids. The results of these analyses are discussed on the basis of the different distributions of free radicals produced by the two different radiation beams used.
Collapse
Affiliation(s)
- M Marrale
- Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Ed.18, I-90128 Palermo, Italy Gruppo V, INFN, Sezione di Catania, Catania, Italy
| | - A Longo
- Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Ed.18, I-90128 Palermo, Italy Gruppo V, INFN, Sezione di Catania, Catania, Italy
| | - A Barbon
- Dipartimento di Scienze Chimiche, Università di Padova, Via F. Marzolo 1, 35131 Padova, Italy Sezione di Padova Istituto Nazionale di Fisica Nucleare, Via Marzolo 8, 35131 Padova, Italy
| | - M Brustolon
- Dipartimento di Scienze Chimiche, Università di Padova, Via F. Marzolo 1, 35131 Padova, Italy Sezione di Padova Istituto Nazionale di Fisica Nucleare, Via Marzolo 8, 35131 Padova, Italy
| | - M Brai
- Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Ed.18, I-90128 Palermo, Italy Gruppo V, INFN, Sezione di Catania, Catania, Italy
| |
Collapse
|
7
|
Fattibene P, Trompier F, Wieser A, Brai M, Ciesielski B, De Angelis C, Della Monaca S, Garcia T, Gustafsson H, Hole EO, Juniewicz M, Krefft K, Longo A, Leveque P, Lund E, Marrale M, Michalec B, Mierzwińska G, Rao JL, Romanyukha AA, Tuner H. EPR dosimetry intercomparison using smart phone touch screen glass. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:311-320. [PMID: 24671362 DOI: 10.1007/s00411-014-0533-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
This paper presents the results of an interlaboratory comparison of retrospective dosimetry using the electron paramagnetic resonance method. The test material used in this exercise was glass coming from the touch screens of smart phones that might be used as fortuitous dosimeters in a large-scale radiological incident. There were 13 participants to whom samples were dispatched, and 11 laboratories reported results. The participants received five calibration samples (0, 0.8, 2, 4, and 10 Gy) and four blindly irradiated samples (0, 0.9, 1.3, and 3.3 Gy). Participants were divided into two groups: for group A (formed by three participants), samples came from a homogeneous batch of glass and were stored in similar setting; for group B (formed by eight participants), samples came from different smart phones and stored in different settings of light and temperature. The calibration curves determined by the participants of group A had a small error and a critical level in the 0.37-0.40-Gy dose range, whereas the curves determined by the participants of group B were more scattered and led to a critical level in the 1.3-3.2-Gy dose range for six participants out of eight. Group A were able to assess the dose within 20 % for the lowest doses (<1.5 Gy) and within 5 % for the highest doses. For group B, only the highest blind dose could be evaluated in a reliable way because of the high critical values involved. The results from group A are encouraging, whereas the results from group B suggest that the influence of environmental conditions and the intervariability of samples coming from different smart phones need to be further investigated. An alongside conclusion is that the protocol was easily transferred to participants making a network of laboratories in case of a mass casualty event potentially feasible.
Collapse
Affiliation(s)
- Paola Fattibene
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Marrale M, Longo A, Brai M, Barbon A, Brustolon M. Discrimination of Radiation Quality Through Second Harmonic Out-of-Phase cw-ESR Detection. Radiat Res 2014; 181:184-92. [DOI: 10.1667/rr13436.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Maurizio Marrale
- Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo, Italy and Gruppo V INFN Sezione di Catania, Via Santa Sofia, 64, Catania, 95123, Italy
| | - Anna Longo
- Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo, Italy and Gruppo V INFN Sezione di Catania, Via Santa Sofia, 64, Catania, 95123, Italy
| | - Maria Brai
- Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo, Italy and Gruppo V INFN Sezione di Catania, Via Santa Sofia, 64, Catania, 95123, Italy
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy, and Gruppo V INFN Sezione di Padova, Via Marzolo, 8, Padova, 35131, Italy
| | - Marina Brustolon
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy, and Gruppo V INFN Sezione di Padova, Via Marzolo, 8, Padova, 35131, Italy
| |
Collapse
|