1
|
Wahabi JM, Wong JHD, Mahdiraji GA, Ung NM. Feasibility of determining external beam radiotherapy dose using LuSy dosimeter. J Appl Clin Med Phys 2024; 25:e14387. [PMID: 38778567 PMCID: PMC11163501 DOI: 10.1002/acm2.14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION Radiation dose measurement is an essential part of radiotherapy to verify the correct delivery of doses to patients and ensure patient safety. Recent advancements in radiotherapy technology have highlighted the need for fast and precise dosimeters. Technologies like FLASH radiotherapy and magnetic-resonance linear accelerators (MR-LINAC) demand dosimeters that can meet their unique requirements. One promising solution is the plastic scintillator-based dosimeter with high spatial resolution and real-time dose output. This study explores the feasibility of using the LuSy dosimeter, an in-house developed plastic scintillator dosimeter for dose verification across various radiotherapy techniques, including conformal radiotherapy (CRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS). MATERIALS AND METHODS A new dosimetry system, comprising a new plastic scintillator as the sensing material, was developed and characterized for radiotherapy beams. Treatment plans were created for conformal radiotherapy, IMRT, VMAT, and SRS and delivered to a phantom. LuSy dosimeter was used to measure the delivered dose for each plan on the surface of the phantom and inside the target volumes. Then, LuSy measurements were compared against an ionization chamber, MOSFET dosimeter, radiochromic films, and dose calculated using the treatment planning system (TPS). RESULTS For CRT, surface dose measurement by LuSy dosimeter showed a deviation of -5.5% and -5.4% for breast and abdomen treatment from the TPS, respectively. When measuring inside the target volume for IMRT, VMAT, and SRS, the LuSy dosimeter produced a mean deviation of -3.0% from the TPS. Surface dose measurement resulted in higher TPS discrepancies where the deviations for IMRT, VMAT, and SRS were -2.0%, -19.5%, and 16.1%, respectively. CONCLUSION The LuSy dosimeter was feasible for measuring radiotherapy doses for various treatment techniques. Treatment delivery verification enables early error detection, allowing for safe treatment delivery for radiotherapy patients.
Collapse
Affiliation(s)
- Janatul Madinah Wahabi
- Department of Biomedical ImagingFaculty of MedicineUniversiti MalayaKuala LumpurMalaysia
- Radiotherapy and Oncology DepartmentNational Cancer InstitutePutrajayaMalaysia
| | - Jeannie Hsiu Ding Wong
- Department of Biomedical ImagingFaculty of MedicineUniversiti MalayaKuala LumpurMalaysia
- Universiti Malaya Research Imaging Centre (UMRIC), Faculty of MedicineUniversiti MalayaKuala LumpurMalaysia
| | | | - Ngie Min Ung
- Clinical Oncology UnitFaculty of MedicineUniversiti MalayaKuala LumpurMalaysia
| |
Collapse
|
2
|
Hou B, Yi L, Hu D, Luo Z, Gao D, Li C, Xing B, Wang JW, Lee CN, Zhang R, Sheng Z, Zhou B, Liu X. A swallowable X-ray dosimeter for the real-time monitoring of radiotherapy. Nat Biomed Eng 2023; 7:1242-1251. [PMID: 37055542 DOI: 10.1038/s41551-023-01024-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/15/2023] [Indexed: 04/15/2023]
Abstract
Monitoring X-ray radiation in the gastrointestinal tract can enhance the precision of radiotherapy in patients with gastrointestinal cancer. Here we report the design and performance, in the gastrointestinal tract of rabbits, of a swallowable X-ray dosimeter for the simultaneous real-time monitoring of absolute absorbed radiation dose and of changes in pH and temperature. The dosimeter consists of a biocompatible optoelectronic capsule containing an optical fibre, lanthanide-doped persistent nanoscintillators, a pH-sensitive polyaniline film and a miniaturized system for the wireless readout of luminescence. The persistent luminescence of the nanoscintillators after irradiation can be used to continuously monitor pH without the need for external excitation. By using a neural-network-based regression model, we estimated the radiation dose from radioluminescence and afterglow intensity and temperature, and show that the dosimeter was approximately five times more accurate than standard methods for dose determination. Swallowable dosimeters may help to improve radiotherapy and to understand how radiotherapy affects tumour pH and temperature.
Collapse
Affiliation(s)
- Bo Hou
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Luying Yi
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Dehong Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Duyang Gao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chao Li
- Department of Spaceborne Microwave Remote Sensing System, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
| | - Bowen Xing
- Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chuen Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rong Zhang
- Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Zonghai Sheng
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Bin Zhou
- Department of Precision Instruments, Tsinghua University, Beijing, China.
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Materials Research and Engineering, Agency for Science,Technology and Research, Singapore, Singapore.
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou, China.
| |
Collapse
|
3
|
Zheng L, Xu C, Wang T, Cheng Y, Christy YB, Li H, Cheng J, Peng G, Guo Q. Low energy X-ray dosimeter based on LYSO:Ce fluorescent powder. APPLIED OPTICS 2023; 62:2734-2739. [PMID: 37133113 DOI: 10.1364/ao.486050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cerium-doped lutetium yttrium orthosilicate (LYSO:Ce) powder has been synthesized by the co-precipitation method. The influence of the Ce3+ doping concentration on the lattice structure and luminescence characteristics of LYSO:Ce powder was investigated by X-ray diffraction (XRD) and photoluminescence (PL). The XRD measurement indicates that the lattice structure of LYSO:Ce powder was not changed by doping ions. PL results show that LYSO:Ce powder has better luminescence performance when the Ce doping concentration is 0.3 mol%. In addition, the fluorescence lifetime of the samples was measured, and the results show that LYSO:Ce has a short decay time. The radiation dosimeter was prepared by LYSO:Ce powder with a Ce doping concentration of 0.3 mol%. Radioluminescence properties of the radiation dosimeter also were studied under X-ray irradiation at doses from 0.03 to 0.76 Gy, with dose rate from 0.09 to 2.284 Gy/min. The results show that the dosimeter has a certain linear relationship response and stability. The radiation responses of the dosimeter at different energies were obtained under X-ray irradiation with X-ray tube voltages ranging from 20 to 80 kV. The results show that the dosimeter has a certain linear relationship response in the low energy range of radiotherapy. These results indicate the potential application of LYSO:Ce powder dosimeters in remote radiotherapy and online radiation monitoring.
Collapse
|
4
|
Yada R, Maenaka K, Miyamoto S, Okada G, Sasakura A, Ashida M, Adachi M, Sato T, Wang T, Akasaka H, Mukumoto N, Shimizu Y, Sasaki R. Real-time in vivo dosimetry system based on an optical fiber-coupled microsized photostimulable phosphor for stereotactic body radiation therapy. Med Phys 2020; 47:5235-5249. [PMID: 32654194 DOI: 10.1002/mp.14383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/21/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To develop an in vivo dosimeter system for stereotactic body radiation therapy (SBRT) that can perform accurate and precise real-time measurements, using a microsized amount of a photostimulable phosphor (PSP), BaFBr:Eu2+ . METHODS The sensitive volume of the PSP was 1.26 × 10-5 cm3 . The dosimeter system was designed to apply photostimulation to the PSP after the decay of noise signals, in synchronization with the photon beam pulse of a linear accelerator (LINAC), to eliminate the noise signals completely using a time separation technique. The noise signals included stem signals, and radioluminescence signals generated by the PSP. In addition, the dosimeter system was built on a storage-type dosimeter that could read out a signal after an arbitrary preset number of photon beam pulses were incident. First, the noise and photostimulated luminescence (PSL) signal decay times were measured. Subsequently, we confirmed that the PSL signals could be exclusively read out within the photon beam pulse interval. Finally, using a water phantom, the basic characteristics of the dosimeter system were demonstrated under SBRT conditions, and the feasibility for clinical application was investigated. The reproducibility, dose linearity, dose-rate dependence, temperature dependence, and angular dependence were evaluated. The feasibility was confirmed by measurements at various dose gradients and using a representative treatment plan for a metastatic liver tumor. A clinical plan was created with a two-arc beam volumetric modulated arc therapy using a 10 MV flattening filter-free photon beam. For the water phantom measurements, the clinical plan was compiled into a plan with a fixed gantry angle of 0°. To evaluate the energy dependence during SBRT, the percent depth dose (PDD) was measured and compared with those calculated via Monte Carlo (MC) simulations. RESULTS All the PSL signals could be read out while eliminating the noise signals within the minimum pulse interval of the LINAC. Stable real-time measurements could be performed with a time resolution of 56 ms (i.e., number of pulses = 20). The dose linearity was good in the dose range of 0.01-100 Gy. The measurements agreed within 1% at dose rates of 40-2400 cGy/min. The temperature and angular dependence were also acceptable since these dependencies had only a negligible effect on the measurements in SBRT. At a dose gradient of 2.21 Gy/mm, the measured dose agreed with that calculated using a treatment planning system (TPS) within the measurement uncertainties due to the probe position. For measurements using a representative treatment plan, the measured dose agreed with that calculated using the TPS within 0.5% at the center of the beam axis. The PDD measurements agreed with the MC calculations to within 1% for field sizes <5 × 5 cm2 . CONCLUSION The in vivo dosimeter system developed using BaFBr:Eu2+ is capable of real-time, accurate, and precise measurement under SBRT conditions. The probe is smaller than a conventional dosimeter, has excellent spatial resolution, and can be valuable in SBRT with a steep dose distribution over a small field. The developed PSP dosimeter system appears to be suitable for in vivo SBRT dosimetry.
Collapse
Affiliation(s)
- Ryuichi Yada
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Kazusuke Maenaka
- Department of Electrical Engineering and Computer Science, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Shuji Miyamoto
- Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigoricho, Akogun, Hyogo, 678-1205, Japan
| | - Go Okada
- Co-creative Research Center of Industrial Science and Technology, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa, 924-0838, Japan
| | - Aki Sasakura
- Meisyo Kiko Co., Ltd, 148 Numa, Hikamicho, Tamba, Hyogo, 669-3634, Japan
| | - Motoi Ashida
- Meisyo Kiko Co., Ltd, 148 Numa, Hikamicho, Tamba, Hyogo, 669-3634, Japan
| | - Masashi Adachi
- Meisyo Kiko Co., Ltd, 148 Numa, Hikamicho, Tamba, Hyogo, 669-3634, Japan
| | - Tatsuhiko Sato
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan
| | - Tianyuan Wang
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Hiroaki Akasaka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Naritoshi Mukumoto
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Yasuyuki Shimizu
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
5
|
Blake SJ, Cheng Z, McNamara A, Lu M, Vial P, Kuncic Z. A high
DQE
water‐equivalent
EPID
employing an array of plastic‐scintillating fibers for simultaneous imaging and dosimetry in radiotherapy. Med Phys 2018; 45:2154-2168. [DOI: 10.1002/mp.12882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 03/02/2018] [Accepted: 03/11/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Samuel J. Blake
- Institute of Medical Physics School of Physics University of Sydney Sydney NSW 2006Australia
- Ingham Institute for Applied Medical Research Sydney NSW 2170Australia
| | - Zhangkai Cheng
- Institute of Medical Physics School of Physics University of Sydney Sydney NSW 2006Australia
- Ingham Institute for Applied Medical Research Sydney NSW 2170Australia
| | - Aimee McNamara
- Department of Radiation Oncology Massachusetts General Hospital Harvard Medical School 30 Fruit St Boston MA 02114USA
| | - Minghui Lu
- Varex Imaging Corporation Santa Clara CA 95054USA
| | - Philip Vial
- Institute of Medical Physics School of Physics University of Sydney Sydney NSW 2006Australia
- Ingham Institute for Applied Medical Research Sydney NSW 2170Australia
- Department of Medical Physics Liverpool and Macarthur Cancer Therapy Centers NSW 2170 Australia
| | - Zdenka Kuncic
- Institute of Medical Physics School of Physics University of Sydney Sydney NSW 2006Australia
| |
Collapse
|
6
|
Characterisation of a plastic scintillation detector to be used in a multicentre stereotactic radiosurgery dosimetry audit. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2017.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Cantley JL, Cheng CW, Jesseph FB, Podder TK, Colussi VC, Traughber BJ, Ponsky LE, Ellis RJ. Real-time in vivo dosimetry for SBRT prostate treatment using plastic scintillating dosimetry embedded in a rectal balloon: a case study. J Appl Clin Med Phys 2016; 17:305-311. [PMID: 27929503 PMCID: PMC5690496 DOI: 10.1120/jacmp.v17i6.6508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/04/2022] Open
Abstract
A novel FDA approved in vivo dosimetry device system using plastic scintillating detectors placed in an endorectal balloon to provide real‐time in vivo dosimetry for prostatic rectal interface was tested for use with stereotactic body radiotherapy (SBRT). The system was used for the first time ever to measure dose during linear accelerator based SBRT. A single patient was treated with a total dose of 36.25 Gy given in 5 fractions. Delivered dose was measured for each treatment with the detectors placed against the anterior rectal wall near the prostate rectal interface. Measured doses showed varying degrees of agreement with computed/ planned doses, with average combined dose found to be within 6% of the expected dose. The variance between measurements is most likely due to uncertainty of the detector location, as well as variation in the placement of a new balloon prior to each fraction. Distance to agreement for the detectors was generally found to be within a few millimeters, which also suggested that the differences in measured and calculated doses were due to positional uncertainty of the detectors during the SBRT, which had sharp dose falloff near the penumbra along the rectal wall. Overall, the use of a real time in vivo dosimeter provided a level of safety and improved confidence in treatment delivery. We are evaluating the device further in an IRB‐approved prospective partial prostate SBRT trial, and believe further clinical investigations are warranted. PACS number(s): 87.53.Bn, 87.53.Ly, 87.55.km
Collapse
|
8
|
Woulfe P, Sullivan FJ, O’Keeffe S. Optical fibre sensors: their role in in vivo dosimetry for prostate cancer radiotherapy. Cancer Nanotechnol 2016; 7:7. [PMID: 27818715 PMCID: PMC5069313 DOI: 10.1186/s12645-016-0020-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/06/2016] [Indexed: 11/21/2022] Open
Abstract
Review is made of dosimetric studies of current optical fibre technology in radiotherapy for therapeutic applications, focusing particularly on in vivo dosimetry for prostate radiotherapy. We present the various sensor designs along with the main advantages and disadvantages associated with this technology. Optical fibres are ideally placed for applications in radiotherapy dosimetry; due to their small size they are lightweight and immune to electromagnetic interferences. The small dimensions of optical fibres allows it to be easily guided within existing brachytherapy equipment; for example, within the seed implantation needle for direct tumour dose analysis, in the urinary catheter to monitor urethral dose, or within the biopsy needle holder of the transrectal ultrasound probe to monitor rectal wall dose. The article presents the range of optical fibre dosimeter designs along with the main dosimetric properties required for a modern in vivo dosimetry system to be utilised in a clinical environment.
Collapse
Affiliation(s)
- P. Woulfe
- Optical Fibre Sensors Research Centre, University of Limerick, Limerick, Ireland
- Department of Radiotherapy Physics, Galway Clinic, Galway, Ireland
| | - F. J. Sullivan
- Prostate Cancer Institute, National University of Ireland Galway, Galway, Ireland
- Department of Radiotherapy, Galway Clinic, Galway, Ireland
| | - S. O’Keeffe
- Optical Fibre Sensors Research Centre, University of Limerick, Limerick, Ireland
| |
Collapse
|
9
|
Beaulieu L, Beddar S. Review of plastic and liquid scintillation dosimetry for photon, electron, and proton therapy. Phys Med Biol 2016; 61:R305-R343. [DOI: 10.1088/0031-9155/61/20/r305] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Lee J, Park JM, Wu HG, Kim JH, Ye SJ. The effect of body contouring on the dose distribution delivered with volumetric-modulated arc therapy technique. J Appl Clin Med Phys 2015; 16:365-375. [PMID: 26699591 PMCID: PMC5691003 DOI: 10.1120/jacmp.v16i6.5810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/20/2015] [Accepted: 07/08/2015] [Indexed: 11/23/2022] Open
Abstract
The purpose of the study was to investigate the dosimetric effect defining the body structure with various Hounsfield unit (HU) threshold values on the dose distributions of volumetric‐modulated arc therapy (VMAT) plans. Twenty patients with prostate cancer and twenty patients with head and neck (H&N) cancer were retrospectively selected. For each patient, the body structure was redefined with HU threshold values of −180(Body180), −350(Body350), −700(Body700), and −980(Body980). For each patient, dose‐volumetric parameters with those body structures were calculated using identical VMAT plans. The differences in dose‐volumetric parameters due to the varied HU threshold values were calculated. For the prostate boost target volume, the maximum dose, mean dose, D95%, and D5% with Body180 were higher than those with Body980 by approximately 0.7% (p<0.001). For H&N target volumes, the changes in D95% of the targets receiving 67.5 Gy, 54 Gy, and 48 Gy between Body180 and Body980 were −1.2%, −0.9%, and −1.2%, respectively (p<0.001). The differences were larger for H&N VMAT plans than for prostate VMAT plans due to the inclusion of an immobilization device in the irradiated region in H&N cases. To apply all attenuating materials to dose calculation, the body structure would be defined with −980 HU. Otherwise, systematic error of about 1%, resulting in underdosage of the target volume, can occur. PACS number: 87.55.ne
Collapse
Affiliation(s)
- Jaegi Lee
- Seoul National University Graduate School of Convergence Science and Technology and Seoul National University Hospital.
| | | | | | | | | |
Collapse
|
11
|
Beierholm A, Behrens C, Andersen C. Studying the potential of point detectors in time-resolved dose verification of dynamic radiotherapy. RADIAT MEAS 2015. [DOI: 10.1016/j.radmeas.2015.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
O'Keeffe S, McCarthy D, Woulfe P, Grattan MWD, Hounsell AR, Sporea D, Mihai L, Vata I, Leen G, Lewis E. A review of recent advances in optical fibre sensors for in vivo dosimetry during radiotherapy. Br J Radiol 2015; 88:20140702. [PMID: 25761212 PMCID: PMC4628446 DOI: 10.1259/bjr.20140702] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/19/2015] [Accepted: 03/10/2015] [Indexed: 11/05/2022] Open
Abstract
This article presents an overview of the recent developments and requirements in radiotherapy dosimetry, with particular emphasis on the development of optical fibre dosemeters for radiotherapy applications, focusing particularly on in vivo applications. Optical fibres offer considerable advantages over conventional techniques for radiotherapy dosimetry, owing to their small size, immunity to electromagnetic interferences, and suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based dosemeters, together with being lightweight and flexible, mean that they are minimally invasive and thus particularly suited to in vivo dosimetry. This means that the sensor can be placed directly inside a patient, for example, for brachytherapy treatments, the optical fibres could be placed in the tumour itself or into nearby critical tissues requiring monitoring, via the same applicators or needles used for the treatment delivery thereby providing real-time dosimetric information. The article outlines the principal sensor design systems along with some of the main strengths and weaknesses associated with the development of these techniques. The successful demonstration of these sensors in a range of different clinical environments is also presented.
Collapse
Affiliation(s)
- S O'Keeffe
- Optical Fibre Sensors Research Centre, Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland
| | - D McCarthy
- Optical Fibre Sensors Research Centre, Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland
| | - P Woulfe
- Department of Radiotherapy Physics, Galway Clinic, Galway, Ireland
| | - M W D Grattan
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, UK
| | - A R Hounsell
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, UK
| | - D Sporea
- Laser Metrology Laboratory, National Institute for Laser, Plasma and Radiation Physics, Magurele, Romania
| | - L Mihai
- Laser Metrology Laboratory, National Institute for Laser, Plasma and Radiation Physics, Magurele, Romania
| | - I Vata
- “Horia Hulubei” National Institute of Physics and Nuclear Engineering, Magurele, Romania
| | - G Leen
- Optical Fibre Sensors Research Centre, Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland
| | - E Lewis
- Optical Fibre Sensors Research Centre, Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland
| |
Collapse
|
13
|
Gagnon LP, Beddar S, Beaulieu L. Characterization of a fiber-taper charge-coupled device system for plastic scintillation dosimetry and comparison with the traditional lens system. RADIAT MEAS 2015. [DOI: 10.1016/j.radmeas.2015.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Stanton IN, Belley MD, Nguyen G, Rodrigues A, Li Y, Kirsch DG, Yoshizumi TT, Therien MJ. Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure. NANOSCALE 2014; 6:5284-8. [PMID: 24696056 PMCID: PMC4519031 DOI: 10.1039/c4nr00497c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Eu- and Li-doped yttrium oxide nanocrystals [Y2-xO3; Eux, Liy], in which Eu and Li dopant ion concentrations were systematically varied, were developed and characterized (TEM, XRD, Raman spectroscopic, UV-excited lifetime, and ICP-AES data) in order to define the most emissive compositions under specific X-ray excitation conditions. These optimized [Y2-xO3; Eux, Liy] compositions display scintillation responses that: (i) correlate linearly with incident radiation exposure at X-ray energies spanning from 40-220 kVp, and (ii) manifest no evidence of scintillation intensity saturation at the highest evaluated radiation exposures [up to 4 Roentgen per second]. For the most emissive nanoscale scintillator composition, [Y1.9O3; Eu0.1, Li0.16], excitation energies of 40, 120, and 220 kVp were chosen to probe the dependence of the integrated emission intensity upon X-ray exposure-rate in energy regimes having different mass-attenuation coefficients and where either the photoelectric or the Compton effect governs the scintillation mechanism. These experiments demonstrate for the first time for that for comparable radiation exposures, when the scintillation mechanism is governed by the photoelectric effect and a comparably larger mass-attenuation coefficient (120 kVp excitation), greater integrated emission intensities are recorded relative to excitation energies where the Compton effect regulates scintillation (220 kVp) in nanoscale [Y2-xO3; Eux] crystals. Nanoscale [Y1.9O3; Eu0.1, Li0.16] (70 ± 20 nm) was further exploited as a detector material in a prototype fiber-optic radiation sensor. The scintillation intensity from the [Y1.9O3; Eu0.1, Li0.16]-modified, 400 μm sized optical fiber tip, recorded using a CCD-photodetector and integrated over the 605-617 nm wavelength domain, was correlated with radiation exposure using a Precision XRAD 225Cx small-animal image guided radiation therapy (IGRT) system. For both 80 and 225 kVp energies, this radiotransparent device recorded scintillation intensities that tracked linearly with total radiation exposure, highlighting its capability to provide alternately accurate dosimetry measurements for both diagnostic imaging (80 kVp) and radiation therapy treatment (225 kVp).
Collapse
Affiliation(s)
- Ian N Stanton
- Department of Chemistry, French Family Science Center, Duke University, 124 Science Drive, Durham, North Carolina 27708, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wootton L, Kudchadker R, Lee A, Beddar S. Real-time in vivo rectal wall dosimetry using plastic scintillation detectors for patients with prostate cancer. Phys Med Biol 2014; 59:647-60. [PMID: 24434775 DOI: 10.1088/0031-9155/59/3/647] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We designed and constructed an in vivo dosimetry system using plastic scintillation detectors (PSDs) to monitor dose to the rectal wall in patients undergoing intensity-modulated radiation therapy for prostate cancer. Five patients were enrolled in an Institutional Review Board-approved protocol for twice weekly in vivo dose monitoring with our system, resulting in a total of 142 in vivo dose measurements. PSDs were attached to the surface of endorectal balloons used for prostate immobilization to place the PSDs in contact with the rectal wall. Absorbed dose was measured in real time and the total measured dose was compared with the dose calculated by the treatment planning system on the daily computed tomographic image dataset. The mean difference between measured and calculated doses for the entire patient population was -0.4% (standard deviation 2.8%). The mean difference between daily measured and calculated doses for each patient ranged from -3.3% to 3.3% (standard deviation ranged from 5.6% to 7.1% for four patients and was 14.0% for the last, for whom optimal positioning of the detector was difficult owing to the patient's large size). Patients tolerated the detectors well and the treatment workflow was not compromised. Overall, PSDs performed well as in vivo dosimeters, providing excellent accuracy, real-time measurement and reusability.
Collapse
Affiliation(s)
- Landon Wootton
- Department of Radiation Physics, The University of Texas M D Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | | | | | | |
Collapse
|
16
|
Beaulieu L, Goulet M, Archambault L, Beddar S. Current status of scintillation dosimetry for megavoltage beams. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/444/1/012013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Abstract
We examined temperature dependence in plastic scintillation detectors (PSDs) made of BCF-60 or BCF-12 scintillating fiber coupled to optical fiber with cyanoacrylate. PSDs were subjected to a range of temperatures using a temperature-controlled water bath and irradiated at each temperature while either the dose was measured using a CCD camera or the spectral output was measured using a spectrometer. The spectrometer was used to examine the intensity and spectral distribution of scintillation light emitted by the PSDs, Cerenkov light generated within the PSD, and light transmitted through an isolated optical coupling. BCF-60 PSDs exhibited a 0.50% decrease and BCF-12 PSDs a 0.09% decrease in measured dose per °C increase, relative to dose measured at 22 °C. Spectrometry revealed that the total intensity of the light generated by BCF-60 and BCF-12 PSDs decreased by 0.32% and 0.13%, respectively, per °C increase. The spectral distribution of the light changed slightly with temperature for both PSDs, accounting for the disparity between the change in measured dose and total light output. The generation of Cerenkov light was temperature independent. However, light transmitted through optical coupling between the scintillator and the optical fiber also exhibited temperature dependence.
Collapse
Affiliation(s)
- Landon Wootton
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | | |
Collapse
|