1
|
Liu H, Xiong Z, Chen Q, Wang L, Wang C. Study on the preservation effect of 60Co-γ ray irradiation on potatoes. Sci Rep 2024; 14:21811. [PMID: 39294205 PMCID: PMC11410970 DOI: 10.1038/s41598-024-71151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/26/2024] [Indexed: 09/20/2024] Open
Abstract
To evaluate the effect of irradiation on the preservation of potatoes, fresh potatoes were selected as the irradiation objects, and irradiated with 60Co-γ radiation source for 0, 100, 200, 500 and 1000 Gy, respectively. During the irradiation, the well-packaged Y1.79Bi0.01Eu0.2MgTiO6 novel thermoluminescence dosimeter material was placed together with the potatoes at the same position. Then, the potatoes were stored in the same temperature and humidity environment, and the quality changes of the potatoes were observed. The Y1.79Bi0.01Eu0.2MgTiO6 material had good performance indicators, and was used to measure the irradiation dose of the potatoes. The experiment showed that irradiation could appropriately extend the storage time of potatoes, and gamma irradiation of about 1000 Gy could achieve the best preservation effect. The main pathogenic fungi that cause dry rot of potatoes were Fusarium solani and Fusarium oxysporum, and the appropriate dose of 60Co-γ irradiation could effectively inhibit the spread and growth of these fungi.
Collapse
Affiliation(s)
- Hao Liu
- School of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Zhengye Xiong
- School of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Qingxiang Chen
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China.
| | - Luyan Wang
- School of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Chunxi Wang
- School of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| |
Collapse
|
2
|
De Saint-Hubert M, Caprioli M, de Freitas Nascimento L, Delombaerde L, Himschoot K, Vandenbroucke D, Leblans P, Crijns W. New optically stimulated luminescence dosimetry film optimized for energy dependence guided by Monte Carlo simulations. Phys Med Biol 2024; 69:075005. [PMID: 38394683 DOI: 10.1088/1361-6560/ad2ca2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/23/2024] [Indexed: 02/25/2024]
Abstract
Optically stimulated luminescence (OSL) film dosimeters, based on BaFBr:Eu2+phosphor material, have major dosimetric advantages such as dose linearity, high spatial resolution, film re-usability, and immediate film readout. However, they exhibit an energy-dependent over-response at low photon energies because they are not made of tissue-equivalent materials. In this work, the OSL energy-dependent response was optimized by lowering the phosphor grain size and seeking an optimal choice of phosphor concentration and film thickness to achieve sufficient signal sensitivity. This optimization process combines measurement-based assessments of energy response in narrow x-ray beams with various energy response calculation methods applied to different film metrics. Theoretical approaches and MC dose simulations were used for homogeneous phosphor distributions and for isolated phosphor grains of different dimensions, where the dose in the phosphor grain was calculated. In total 8 OSL films were manufactured with different BaFBr:Eu2+median particle diameters (D50): 3.2μm, 1.5μm and 230 nm and different phosphor concentrations (1.6%, 5.3% and 21.3 %) and thicknesses (from 5.2 to 49μm). Films were irradiated in narrow x-ray spectra (N60, N80, N-150 and N-300) and the signal intensity relative to the nominal dose-to-water value was normalized to Co-60. Finally, we experimentally tested the response of several films in Varian 6MV TrueBeam STx linear accelerator using the following settings: 10 × 10 cm2field, 0deggantry angle, 90 cm SSD, 10 cm depth. The x-ray irradiation experiment reported a reduced energy response for the smallest grain size with an inverse correlation between response and grain size. The N-60 irradiation showed a 43% reduction in the energy over-response when going from 3μm to 230 nm grain size for the 5% phosphor concentration. Energy response calculation using a homogeneous dispersion of the phosphor underestimated the experimental response and was not able to obtain the experimental correlation between grain size and energy response. Isolated grain size modeling combined with MC dose simulations allowed to establish a good agreement with experimental data, and enabled steering the production of optimized OSL-films. The clinical 6 MV beam test confirmed a reduction in energy dependence, which is visible in small-grain films where a decrease in out-of-field over-response was observed.
Collapse
Affiliation(s)
| | - Marco Caprioli
- Department of Oncology, KU Leuven, Herestraat 49, Leuven, Belgium
| | | | - Laurence Delombaerde
- Department of Oncology, KU Leuven, Herestraat 49, Leuven, Belgium
- Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Katleen Himschoot
- Corporate Innovation Office, Agfa N.V., Septestraat 27, Mortsel, B-2640, Belgium
| | - Dirk Vandenbroucke
- Corporate Innovation Office, Agfa N.V., Septestraat 27, Mortsel, B-2640, Belgium
| | - Paul Leblans
- Corporate Innovation Office, Agfa N.V., Septestraat 27, Mortsel, B-2640, Belgium
| | - Wouter Crijns
- Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| |
Collapse
|
3
|
Abdullahi S, Alshahrie A, Banoqitah E, Mohiuddin SMU, Salah N. Ag/Dy-incorporated Alq3 nanocomposite sheets as a promising X-ray dosimeters. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
4
|
Gasparian PBG, Malthez ALMC, Campos LL. Using the optically stimulated luminescence technique for one- and two-dimensional dose mapping: a brief review. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac9030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022]
Abstract
Abstract
In respect of radiation dosimetry, several applications require dose distribution verification rather than absolute dosimetry. Most protocols use radiological and radiochromic films and ionization chambers or diode arrays for dose mapping. The films are disposable which causes the precision of the results dependent on film production variability. The measurements with arrays of ionization chambers or diodes mainly lack spatial resolution. This review aims to provide an overview of the use of optically stimulated luminescence detectors (OSLDs) for one-dimensional (1D) and two-dimensional (2D) dose mapping in different applications. It reviews the ideas, OSL materials, and applications related to the assessment of dose distribution using OSLDs in the form of film or ceramic plate (BeO). Additionally, it reviews research published in the international scientific literature from 1998 to 2021. As an outcome, a table containing the main characteristics of each relevant paper is shown. The results section was divided by the type of OSL material, and we briefly described the principal findings and the significant developments of each mentioned study such as film production and OSL reader assembly. The purpose of this study was to present an overview of the main findings of several research groups on the use of OSLD in the form of film or plate for 1D and 2D dose mapping. Finally, the potential future development of dose mapping using OSLD films was outlined.
Collapse
|
5
|
Shakarami Z, Broggi S, Vecchio AD, Fiorino C, Spinelli AE. Radioluminescence imaging feasibility for robotic radiosurgery field size quality assurance. Med Phys 2022; 49:6588-6598. [PMID: 35946490 DOI: 10.1002/mp.15914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 01/07/2023] Open
Abstract
PURPOSE To investigate the feasibility of radioluminescence imaging (RLI) as a novel 2D quality assurance (QA) dosimetry system for CyberKnife®. METHODS We developed a field size measurement system based on a commercial complementary metal oxide semiconductor (CMOS) camera facing a radioluminescence screen located at the isocenter normal to the beam axis. The radioluminescence light collected by a lens was used to measure 2D dose distributions. An image transformation procedure, based on two reference phantoms, was developed to correct for projective distortion due to the angle (15°) between the optical and beam axis. Dose profiles were measured for field sizes ranging from 5 mm to 60 mm using fixed circular and iris collimators and compared against gafchromic (GC) film. The corresponding full width at half maximum (FWHM) was measured using RLI and benchmarked against GC film. A small shift in the source-to-surface distance (SSD) of the measurement plane was intentionally introduced to test the sensitivity of the RLI system to field size variations. To assess reproducibility, the entire RLI procedure was tested by acquiring the 60 mm circle field three times on two consecutive days. RESULTS The implemented procedure for perspective image distortion correction showed improvements of up to 1 mm using the star phantom against the square phantom. The FWHM measurements using the RLI system indicated a strong agreement with GC film with maximum absolute difference equal to 0.131 mm for fixed collimators and 0.056 mm for the iris. A 2D analysis of RLI with respect to GC film showed that the differences in the central region are negligible, while small discrepancies are in the penumbra region. Changes in field sizes of 0.2 mm were detectable by RLI. Repeatability measurements of the beam FWHM have shown a standard deviation equal to 0.11 mm. CONCLUSIONS The first application of a RLI approach for CyberKnife® field size measurement was presented and tested. Results are in agreement with GC film measurements. Spatial resolution and immediate availability of the data indicate that RLI is a feasible technique for robotic radiosurgery QA.
Collapse
Affiliation(s)
- Zahra Shakarami
- Experimental Imaging Centre, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Sara Broggi
- Medical Physics Department, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Antonella Del Vecchio
- Medical Physics Department, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Claudio Fiorino
- Medical Physics Department, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Antonello E Spinelli
- Experimental Imaging Centre, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| |
Collapse
|
6
|
Yukihara EG, Bos AJ, Bilski P, McKeever SW. The quest for new thermoluminescence and optically stimulated luminescence materials: Needs, strategies and pitfalls. RADIAT MEAS 2022. [DOI: 10.1016/j.radmeas.2022.106846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Yukihara E, Christensen J, Togno M. Demonstration of an optically stimulated luminescence (OSL) material with reduced quenching for proton therapy dosimetry: MgB4O7:Ce,Li. RADIAT MEAS 2022. [DOI: 10.1016/j.radmeas.2022.106721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Yukihara EG, Kron T. APPLICATIONS OF OPTICALLY STIMULATED LUMINESCENCE IN MEDICAL DOSIMETRY. RADIATION PROTECTION DOSIMETRY 2020; 192:122-138. [PMID: 33412585 DOI: 10.1093/rpd/ncaa213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
If the first decade of the new millennium saw the establishment of a more solid foundation for the use of the Optically Stimulated Luminescence (OSL) in medical dosimetry, the second decade saw the technique take root and become more widely used in clinical studies. Recent publications report not only characterization and feasibility studies of the OSL technique for various applications in radiotherapy and radiology, but also the practical use of OSL for postal audits, estimation of staff dose, in vivo dosimetry, dose verification and dose mapping studies. This review complements previous review papers and reports on the topic, providing a panorama of the new advances and applications in the last decade. Attention is also dedicated to potential future applications, such as LET dosimetry, 2D/3D dosimetry using OSL, dosimetry in magnetic resonance imaging-guided radiotherapy (MRIgRT) and dosimetry of extremely high dose rates (FLASH therapy).
Collapse
Affiliation(s)
- Eduardo G Yukihara
- Department of Radiation Safety and Security, Paul Scherrer Institute, 5200 Villigen, Switzerland
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, 3000 Melbourne, Australia
| |
Collapse
|